Articles | Volume 14, issue 16
https://doi.org/10.5194/acp-14-8679-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-14-8679-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
PM2.5 pollution in a megacity of southwest China: source apportionment and implication
South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
J. Gao
Chinese Research Academy of Environmental Sciences, Beijing, China
Air Quality Research Division, Science Technology Branch, Environment Canada, Toronto, Canada
RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Key Laboratory of Atmospheric Chemistry (LAC), Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences (CAMS), China
South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
Z. Lin
South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
J. Jing
Centre for Atmosphere Watch and Services (CAWAS), Meteorological Observation Center of CMA, Beijing, China
J. Cao
Key Laboratory of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
S.-C. Hsu
Research Center for Environmental Changes (RCEC), Academia Sinica, Taipei, Taiwan
Related authors
Yanqin Ren, Gehui Wang, Jie Wei, Jun Tao, Zhisheng Zhang, and Hong Li
Atmos. Chem. Phys., 23, 6835–6848, https://doi.org/10.5194/acp-23-6835-2023, https://doi.org/10.5194/acp-23-6835-2023, 2023
Short summary
Short summary
Nine quantified nitrated aromatic compounds (NACs) in PM2.5 were examined at the peak of Mt. Wuyi. They manifested a significant rise in overall abundance in the winter and autumn. The transport of contaminants had a significant impact on NACs. Under low-NOx conditions, the formation of NACs was comparatively sensitive to NO2, suggesting that NACs would become significant in the aerosol characteristics when nitrate concentrations decreased as a result of emission reduction measures.
Ling Huang, Hanqing Liu, Greg Yarwood, Gary Wilson, Jun Tao, Zhiwei Han, Dongsheng Ji, Yangjun Wang, and Li Li
EGUsphere, https://doi.org/10.5194/egusphere-2022-1502, https://doi.org/10.5194/egusphere-2022-1502, 2023
Preprint archived
Short summary
Short summary
Secondary organic aerosols are an important component of PM2.5, with contributions from anthropogenic, biogenic volatile organic compounds, semi- and intermediate volatility organic compounds. Policy makers need to know which SOA precursors are important. We investigated the role of different SOA precursors and SOA algorithms by applying two commonly used models, CAMx and CMAQ. Suggestions for SOA modelling and control are provided.
Li Liu, Ye Kuang, Miaomiao Zhai, Biao Xue, Yao He, Jun Tao, Biao Luo, Wanyun Xu, Jiangchuan Tao, Changqin Yin, Fei Li, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, and Min Shao
Atmos. Chem. Phys., 22, 7713–7726, https://doi.org/10.5194/acp-22-7713-2022, https://doi.org/10.5194/acp-22-7713-2022, 2022
Short summary
Short summary
Using simultaneous measurements of a humidified nephelometer system and an aerosol chemical speciation monitor in winter in Guangzhou, the strongest scattering ability of more oxidized oxygenated organic aerosol (MOOA) among aerosol components considering their dry-state scattering ability and water uptake ability was revealed, leading to large impacts of MOOA on visibility degradation. This has important implications for visibility improvement in China and aerosol radiative effect simulation.
Shengzhen Zhou, Luolin Wu, Junchen Guo, Weihua Chen, Xuemei Wang, Jun Zhao, Yafang Cheng, Zuzhao Huang, Jinpu Zhang, Yele Sun, Pingqing Fu, Shiguo Jia, Jun Tao, Yanning Chen, and Junxia Kuang
Atmos. Chem. Phys., 20, 6435–6453, https://doi.org/10.5194/acp-20-6435-2020, https://doi.org/10.5194/acp-20-6435-2020, 2020
Short summary
Short summary
In this work, measurements of size-segregated aerosols were conducted at three altitudes (ground level, 118 m, and 488 m) on the 610 m high Canton Tower in southern China. Vertical variations of PM and size-segregated chemical compositions were investigated. The results indicated that meteorological parameters and atmospheric aqueous and heterogeneous reactions together led to aerosol formation and haze episodes in the Pearl River Delta region during the measurement periods.
Jun Tao, Zhisheng Zhang, Yunfei Wu, Leiming Zhang, Zhijun Wu, Peng Cheng, Mei Li, Laiguo Chen, Renjian Zhang, and Junji Cao
Atmos. Chem. Phys., 19, 8471–8490, https://doi.org/10.5194/acp-19-8471-2019, https://doi.org/10.5194/acp-19-8471-2019, 2019
Short summary
Short summary
Mass-scattering efficiencies (MSE) of dominant chemical species in atmospheric aerosols are important parameters for building the relationships between chemical species and the particle-scattering coefficient. Particle MSE mainly depends on the mass fractions of (NH4)2SO4, NH4NO3, and organic matter and their MSEs in the droplet mode. MSEs of (NH4)2SO4, NH4NO3 and organic matter were determined by their size distributions in the droplet mode.
Jun Tao, Leiming Zhang, Junji Cao, and Renjian Zhang
Atmos. Chem. Phys., 17, 9485–9518, https://doi.org/10.5194/acp-17-9485-2017, https://doi.org/10.5194/acp-17-9485-2017, 2017
Short summary
Short summary
In this study, studies on PM2.5 chemical composition, source apportionment and its impact on aerosol optical properties across China are thoroughly reviewed, and historical emission control policies in China and their effectiveness in reducing PM2.5 are discussed.
Yunfei Wu, Xiaojia Wang, Jun Tao, Rujin Huang, Ping Tian, Junji Cao, Leiming Zhang, Kin-Fai Ho, Zhiwei Han, and Renjian Zhang
Atmos. Chem. Phys., 17, 7965–7975, https://doi.org/10.5194/acp-17-7965-2017, https://doi.org/10.5194/acp-17-7965-2017, 2017
Short summary
Short summary
As black carbon (BC) aerosols play an important role in the climate and environment, the size distribution of refractory BC (rBC) was investigated. On this basis, the source of rBC was further analyzed. The local traffic exhausts contributed greatly to the rBC in urban areas. However, its contribution decreased significantly in the polluted period compared to the clean period, implying the increasing contribution of other sources, e.g., coal combustion or biomass burning, in the polluted period.
Chunpeng Leng, Junyan Duan, Chen Xu, Hefeng Zhang, Yifan Wang, Yanyu Wang, Xiang Li, Lingdong Kong, Jun Tao, Renjian Zhang, Tiantao Cheng, Shuping Zha, and Xingna Yu
Atmos. Chem. Phys., 16, 9221–9234, https://doi.org/10.5194/acp-16-9221-2016, https://doi.org/10.5194/acp-16-9221-2016, 2016
Short summary
Short summary
Meteorological conditions, local anthropogenic emissions and aerosol properties played major roles in this historic winter haze weather formation. Aerosols the size of 600–1400 nm are mostly responsible for the impairment of atmospheric visibility. This study was performed by combining many on-line measurement techniques which were calibrated regularly to ensure reliability, and can act as a reference for forecasting and eliminating the occurrences of regional atmospheric pollutions in China.
G. H. Wang, C. L. Cheng, Y. Huang, J. Tao, Y. Q. Ren, F. Wu, J. J. Meng, J. J. Li, Y. T. Cheng, J. J. Cao, S. X. Liu, T. Zhang, R. Zhang, and Y. B. Chen
Atmos. Chem. Phys., 14, 11571–11585, https://doi.org/10.5194/acp-14-11571-2014, https://doi.org/10.5194/acp-14-11571-2014, 2014
Z. J. Lin, Z. S. Zhang, L. Zhang, J. Tao, R. J. Zhang, J. J. Cao, S. J. Fan, and Y. H. Zhang
Atmos. Chem. Phys., 14, 7631–7644, https://doi.org/10.5194/acp-14-7631-2014, https://doi.org/10.5194/acp-14-7631-2014, 2014
Z. J. Lin, J. Tao, F. H. Chai, S. J. Fan, J. H. Yue, L. H. Zhu, K. F. Ho, and R. J. Zhang
Atmos. Chem. Phys., 13, 1115–1128, https://doi.org/10.5194/acp-13-1115-2013, https://doi.org/10.5194/acp-13-1115-2013, 2013
G. H. Wang, B. H. Zhou, C. L. Cheng, J. J. Cao, J. J. Li, J. J. Meng, J. Tao, R. J. Zhang, and P. Q. Fu
Atmos. Chem. Phys., 13, 819–835, https://doi.org/10.5194/acp-13-819-2013, https://doi.org/10.5194/acp-13-819-2013, 2013
Pierluigi Renan Guaita, Riccardo Marzuoli, Leiming Zhang, Steven Turnock, Gerbrand Koren, Oliver Wild, Paola Crippa, and Giacomo Alessandro Gerosa
EGUsphere, https://doi.org/10.5194/egusphere-2024-2573, https://doi.org/10.5194/egusphere-2024-2573, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study assesses the global impact of tropospheric ozone on wheat crops in the 21st century under various climate scenarios. The research highlights that ozone damage to wheat varies by region and depends on both ozone levels and climate. Vulnerable regions include East Asia, Northern Europe, and the Southern and Eastern edges of the Tibetan Plateau. Our results emphasize the need of policies to reduce ozone levels and mitigate climate change to protect global food security.
Zhenyu Zhang, Jing Li, Huizheng Che, Yueming Dong, Oleg Dubovik, Thomas Eck, Pawan Gupta, Brent Holben, Jhoon Kim, Elena Lind, Trailokya Saud, Sachchida Nand Tripathi, and Tong Ying
EGUsphere, https://doi.org/10.5194/egusphere-2024-2533, https://doi.org/10.5194/egusphere-2024-2533, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We used ground-based remote sensing data from the Aerosol Robotic Network to examine long-term trends in aerosol characteristics. We found aerosol loadings generally decreased globally, and aerosols became more scattering. These changes are closely related to variations in aerosol compositions, such as decreased anthropogenic emissions over East Asia, Europe, and North America, increased anthropogenic source over North India, increased dust activities over the Arabian Peninsula, etc.
Bowen Li, Jian Gao, Chun Chen, Liang Wen, Yuechong Zhang, Junling Li, Yuzhe Zhang, Xiaohui Du, Kai Zhang, and Jiaqi Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2141, https://doi.org/10.5194/egusphere-2024-2141, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The photolysis rate constants of particulate nitrate for HONO production (JHONO) with PM2.5 samples collected from five representative sites in China varied over a wide range. The parameterization equation between JHONO and OC/NO3− has been established and can be used to estimate JHONO in different environments. Our work provided an important reference for the research in other areas in the world with high proportion of organic components in aerosol samples, such as United States and Europe.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024, https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Short summary
This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and NO2+O3 measured in 10 Canadian cities during the last 2 to 3 decades. We also investigate associated driving forces in terms of emission reductions, perturbations from varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
EGUsphere, https://doi.org/10.5194/egusphere-2024-980, https://doi.org/10.5194/egusphere-2024-980, 2024
Short summary
Short summary
1. A novel concept integrating crop cycle information into fire spots extraction was proposed. 2. Spatiotemporal variations of open straw burning in Northeast China were revealed. 3. Open straw burning in Northeast China emitted a total of 221 Tg of CO2-eq during 2001–2020. 4. The policy of banning straw burning effectively reduced greenhouse gases emissions.
Junling Li, Chaofan Lian, Mingyuan Liu, Hao Zhang, Yongxin Yan, Yufei Song, Chun Chen, Haijie Zhang, Yanqin Ren, Yucong Guo, Weigang Wang, Yisheng Xu, Hong Li, Jian Gao, and Maofa Ge
EGUsphere, https://doi.org/10.5194/egusphere-2024-367, https://doi.org/10.5194/egusphere-2024-367, 2024
Short summary
Short summary
In recent years, the concentration of atmospheric particulate matter in China decreased significantly, but the ozone concentration showed a fluctuating upward trend, the atmospheric oxidation capacity increased significantly, especially in the warm season. Given the contribution of HONO to atmospheric oxidation capacity, its sources should be studied in more detail.
Jiaqi Wang, Jian Gao, Fei Che, Xin Yang, Yuanqin Yang, Lei Liu, Yan Xiang, and Haisheng Li
Atmos. Chem. Phys., 23, 14715–14733, https://doi.org/10.5194/acp-23-14715-2023, https://doi.org/10.5194/acp-23-14715-2023, 2023
Short summary
Short summary
Regional-scale observations of surface O3, PM2.5 and its major chemical species, mixing layer height (MLH), and other meteorological parameters were made in the North China Plain during summer. Unlike the cold season, synchronized increases in MDA8 O3 and PM2.5 under medium MLH conditions have been witnessed. The increasing trend of PM2.5 was associated with enhanced secondary chemical formation. The correlation between MLH and secondary air pollutants should be treated with care in hot seasons.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Yong Zhang, Jie Tian, Qiyuan Wang, Lu Qi, Manousos Ioannis Manousakas, Yuemei Han, Weikang Ran, Yele Sun, Huikun Liu, Renjian Zhang, Yunfei Wu, Tianqu Cui, Kaspar Rudolf Daellenbach, Jay Gates Slowik, André S. H. Prévôt, and Junji Cao
Atmos. Chem. Phys., 23, 9455–9471, https://doi.org/10.5194/acp-23-9455-2023, https://doi.org/10.5194/acp-23-9455-2023, 2023
Short summary
Short summary
PM2.5 pollution still frequently occurs in northern China during winter, and it is necessary to figure out the causes of air pollution based on intensive real-time measurement. The findings elaborate the chemical characteristics and source contributions of PM2.5 in three pilot cities, reveal potential formation mechanisms of secondary aerosols, and highlight the importance of controlling biomass burning and inhibiting generation of secondary aerosol for air quality improvement.
Yue Peng, Hong Wang, Xiaoye Zhang, Zhaodong Liu, Wenjie Zhang, Siting Li, Chen Han, and Huizheng Che
Atmos. Chem. Phys., 23, 8325–8339, https://doi.org/10.5194/acp-23-8325-2023, https://doi.org/10.5194/acp-23-8325-2023, 2023
Short summary
Short summary
This study demonstrates a strong link between local circulation, aerosol–radiation interaction (ARI), and haze pollution. Under the weak weather-scale systems, the typical local circulation driven by mountainous topography is the main cause of pollutant distribution in the Beijing–Tianjin–Hebei region, and the ARI mechanism amplifies this influence of local circulation on pollutants, making haze pollution aggravated by the superposition of both.
Siting Li, Ping Wang, Hong Wang, Yue Peng, Zhaodong Liu, Wenjie Zhang, Hongli Liu, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 16, 4171–4191, https://doi.org/10.5194/gmd-16-4171-2023, https://doi.org/10.5194/gmd-16-4171-2023, 2023
Short summary
Short summary
Optimizing the initial state of atmospheric chemistry model input is one of the most essential methods to improve forecast accuracy. Considering the large computational load of the model, we introduce an ensemble optimal interpolation scheme (EnOI) for operational use and efficient updating of the initial fields of chemical components. The results suggest that EnOI provides a practical and cost-effective technique for improving the accuracy of chemical weather numerical forecasts.
Xiaojing Shen, Junying Sun, Huizheng Che, Yangmei Zhang, Chunhong Zhou, Ke Gui, Wanyun Xu, Quan Liu, Junting Zhong, Can Xia, Xinyao Hu, Sinan Zhang, Jialing Wang, Shuo Liu, Jiayuan Lu, Aoyuan Yu, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 8241–8257, https://doi.org/10.5194/acp-23-8241-2023, https://doi.org/10.5194/acp-23-8241-2023, 2023
Short summary
Short summary
New particle formation (NPF) events occur when the dust episodes' fade is analysed based on long-term measurement of particle number size distribution. Analysis shows that the observed formation and growth rates are approximately 50 % of and 30 % lower than those of other NPF events. As a consequence of the uptake of precursor gases on mineral dust, the physical and chemical properties of submicron particles, as well as the ability to be cloud condensation nuclei, can be changed.
Yanqin Ren, Gehui Wang, Jie Wei, Jun Tao, Zhisheng Zhang, and Hong Li
Atmos. Chem. Phys., 23, 6835–6848, https://doi.org/10.5194/acp-23-6835-2023, https://doi.org/10.5194/acp-23-6835-2023, 2023
Short summary
Short summary
Nine quantified nitrated aromatic compounds (NACs) in PM2.5 were examined at the peak of Mt. Wuyi. They manifested a significant rise in overall abundance in the winter and autumn. The transport of contaminants had a significant impact on NACs. Under low-NOx conditions, the formation of NACs was comparatively sensitive to NO2, suggesting that NACs would become significant in the aerosol characteristics when nitrate concentrations decreased as a result of emission reduction measures.
Yingfang Li, Zhili Wang, Yadong Lei, Huizheng Che, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 2499–2523, https://doi.org/10.5194/acp-23-2499-2023, https://doi.org/10.5194/acp-23-2499-2023, 2023
Short summary
Short summary
Since few studies have assessed the impacts of future combined reductions in aerosols, ozone, and their precursors on future climate change, we use models with an interactive representation of tropospheric aerosols and atmospheric chemistry schemes to quantify the impact of their reductions on the Asian climate. Our results suggest that their reductions will exacerbate the warming effect caused by greenhouse gases, increasing future climate extremes and associated population exposure risk.
Ling Huang, Hanqing Liu, Greg Yarwood, Gary Wilson, Jun Tao, Zhiwei Han, Dongsheng Ji, Yangjun Wang, and Li Li
EGUsphere, https://doi.org/10.5194/egusphere-2022-1502, https://doi.org/10.5194/egusphere-2022-1502, 2023
Preprint archived
Short summary
Short summary
Secondary organic aerosols are an important component of PM2.5, with contributions from anthropogenic, biogenic volatile organic compounds, semi- and intermediate volatility organic compounds. Policy makers need to know which SOA precursors are important. We investigated the role of different SOA precursors and SOA algorithms by applying two commonly used models, CAMx and CMAQ. Suggestions for SOA modelling and control are provided.
Yu Lin, Leiming Zhang, Qinchu Fan, He Meng, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 16073–16090, https://doi.org/10.5194/acp-22-16073-2022, https://doi.org/10.5194/acp-22-16073-2022, 2022
Short summary
Short summary
In this study, we analyzed 7-year (from May 2014 to April 2021) concentration data of six criteria air pollutants (PM2.5, PM10, O3, NO2, CO and SO2) as well as the sum of NO2 and O3 in six cities in South China. Three different analysis methods were used to identify emission-driven interannual variations and perturbations from varying weather conditions. In addition, a self-developed method was further introduced to constrain analysis uncertainties.
Qian Zhang, Yujie Zhang, Zhichun Wu, Bin Zhang, Yaling Zeng, Jian Sun, Hongmei Xu, Qiyuan Wang, Zhihua Li, Junji Cao, and Zhenxing Shen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-801, https://doi.org/10.5194/acp-2022-801, 2022
Revised manuscript not accepted
Short summary
Short summary
We identified the brown carbon (BrC) molecules and their absorbing abilities on a molecular level from animal dung fuel combustion over the Tibetan Plateau region in China. The ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometer coupled with the partial least squares regression were precisely applied to characterize the molecular absorptions, key molecular markers, and radiative effects of BrC from household combustion scenarios at the high-altitude area.
Wenjie Zhang, Hong Wang, Xiaoye Zhang, Liping Huang, Yue Peng, Zhaodong Liu, Xiao Zhang, and Huizheng Che
Atmos. Chem. Phys., 22, 15207–15221, https://doi.org/10.5194/acp-22-15207-2022, https://doi.org/10.5194/acp-22-15207-2022, 2022
Short summary
Short summary
Aerosol–cloud interaction (ACI) is first implemented in the atmospheric chemistry system GRAPES_Meso5.1/CUACE. ACI can improve the simulated cloud, temperature, and precipitation under haze pollution conditions in Jing-Jin-Ji in China. This paper demonstrates the critical role of ACI in current numerical weather prediction over the severely polluted region.
Diwei Wang, Zhenxing Shen, Qian Zhang, Yali Lei, Tian Zhang, Shasha Huang, Jian Sun, Hongmei Xu, and Junji Cao
Atmos. Chem. Phys., 22, 14893–14904, https://doi.org/10.5194/acp-22-14893-2022, https://doi.org/10.5194/acp-22-14893-2022, 2022
Short summary
Short summary
The optical properties and molecular structure of atmospheric brown carbon (BrC) in winter of several megacities in China were analyzed, and the source contribution of brown carbon was improved by using positive matrix factorization coupled with a multilayer perceptron neural network. These results can provide a basis for the more effective control of BrC to reduce its impacts on regional climates and human health.
Irene Cheng, Leiming Zhang, Zhuanshi He, Hazel Cathcart, Daniel Houle, Amanda Cole, Jian Feng, Jason O'Brien, Anne Marie Macdonald, Julian Aherne, and Jeffrey Brook
Atmos. Chem. Phys., 22, 14631–14656, https://doi.org/10.5194/acp-22-14631-2022, https://doi.org/10.5194/acp-22-14631-2022, 2022
Short summary
Short summary
Nitrogen (N) and sulfur (S) deposition decreased significantly at 14 Canadian sites during 2000–2018. The greatest decline was observed in southeastern Canada owing to regional SO2 and NOx reductions. Wet deposition was more important than dry deposition, comprising 71–95 % of total N and 45–89 % of total S deposition. While critical loads (CLs) were exceeded at a few sites in the early 2000s, acidic deposition declined below CLs after 2012, which signifies recovery from legacy acidification.
Lei Li, Yevgeny Derimian, Cheng Chen, Xindan Zhang, Huizheng Che, Gregory L. Schuster, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Christian Matar, Fabrice Ducos, Yana Karol, Benjamin Torres, Ke Gui, Yu Zheng, Yuanxin Liang, Yadong Lei, Jibiao Zhu, Lei Zhang, Junting Zhong, Xiaoye Zhang, and Oleg Dubovik
Earth Syst. Sci. Data, 14, 3439–3469, https://doi.org/10.5194/essd-14-3439-2022, https://doi.org/10.5194/essd-14-3439-2022, 2022
Short summary
Short summary
A climatology of aerosol composition concentration derived from POLDER-3 observations using GRASP/Component is presented. The conceptual specifics of the GRASP/Component approach are in the direct retrieval of aerosol speciation without intermediate retrievals of aerosol optical characteristics. The dataset of satellite-derived components represents scarce but imperative information for validation and potential adjustment of chemical transport models.
Haobin Zhong, Ru-Jin Huang, Chunshui Lin, Wei Xu, Jing Duan, Yifang Gu, Wei Huang, Haiyan Ni, Chongshu Zhu, Yan You, Yunfei Wu, Renjian Zhang, Jurgita Ovadnevaite, Darius Ceburnis, and Colin D. O'Dowd
Atmos. Chem. Phys., 22, 9513–9524, https://doi.org/10.5194/acp-22-9513-2022, https://doi.org/10.5194/acp-22-9513-2022, 2022
Short summary
Short summary
To investigate the physico-chemical properties of aerosol transported from major pollution regions in China, observations were conducted ~200 m above the ground at the junction location of the two key pollution areas. We found that the formation efficiency, oxidation state and production rate of secondary aerosol were different in the transport sectors from different pollution regions, and they were largely enhanced by the regional long-distance transport.
Junting Zhong, Xiaoye Zhang, Ke Gui, Jie Liao, Ye Fei, Lipeng Jiang, Lifeng Guo, Liangke Liu, Huizheng Che, Yaqiang Wang, Deying Wang, and Zijiang Zhou
Earth Syst. Sci. Data, 14, 3197–3211, https://doi.org/10.5194/essd-14-3197-2022, https://doi.org/10.5194/essd-14-3197-2022, 2022
Short summary
Short summary
Historical long-term PM2.5 records with high temporal resolution are essential but lacking for research and environmental management. Here, we reconstruct site-based and gridded PM2.5 datasets at 6-hour intervals from 1960 to 2020 that combine visibility, meteorological data, and emissions based on a machine learning model with extracted spatial features. These two PM2.5 datasets will lay the foundation of research studies associated with air pollution, climate change, and aerosol reanalysis.
Ke Gui, Wenrui Yao, Huizheng Che, Linchang An, Yu Zheng, Lei Li, Hujia Zhao, Lei Zhang, Junting Zhong, Yaqiang Wang, and Xiaoye Zhang
Atmos. Chem. Phys., 22, 7905–7932, https://doi.org/10.5194/acp-22-7905-2022, https://doi.org/10.5194/acp-22-7905-2022, 2022
Short summary
Short summary
This study investigates the aerosol optical and radiative properties and meteorological drivers during two mega SDS events over Northern China in March 2021. The MODIS-retrieved DOD data registered these two events as the most intense episode in the same period in history over the past 20 years. These two extreme SDS events were associated with both atmospheric circulation extremes and local meteorological anomalies that favor enhanced dust emissions in the Gobi Desert.
Li Liu, Ye Kuang, Miaomiao Zhai, Biao Xue, Yao He, Jun Tao, Biao Luo, Wanyun Xu, Jiangchuan Tao, Changqin Yin, Fei Li, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, and Min Shao
Atmos. Chem. Phys., 22, 7713–7726, https://doi.org/10.5194/acp-22-7713-2022, https://doi.org/10.5194/acp-22-7713-2022, 2022
Short summary
Short summary
Using simultaneous measurements of a humidified nephelometer system and an aerosol chemical speciation monitor in winter in Guangzhou, the strongest scattering ability of more oxidized oxygenated organic aerosol (MOOA) among aerosol components considering their dry-state scattering ability and water uptake ability was revealed, leading to large impacts of MOOA on visibility degradation. This has important implications for visibility improvement in China and aerosol radiative effect simulation.
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022, https://doi.org/10.5194/acp-22-7489-2022, 2022
Short summary
Short summary
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in BB aerosols, we used a combined combustion and aging system to generate fresh and aged aerosols from burning straw. The results showed the emission factors (EFaged) of total diacids of aging experiments were around an order of magnitude higher than EFfresh. This meant that dicarboxylic acids are involved with secondary photochemical processes in the atmosphere rather than primary emissions from BB.
Yu Zheng, Huizheng Che, Yupeng Wang, Xiangao Xia, Xiuqing Hu, Xiaochun Zhang, Jun Zhu, Jibiao Zhu, Hujia Zhao, Lei Li, Ke Gui, and Xiaoye Zhang
Atmos. Meas. Tech., 15, 2139–2158, https://doi.org/10.5194/amt-15-2139-2022, https://doi.org/10.5194/amt-15-2139-2022, 2022
Short summary
Short summary
Ground-based observations of aerosols and aerosol data verification is important for satellite and climate model modification. Here we present an evaluation of aerosol microphysical, optical and radiative properties measured using a multiwavelength photometer with a highly integrated design and smart control performance. The validation of this product is discussed in detail using AERONET as a reference. This work contributes to reducing AOD uncertainties in China and combating climate change.
Men Xia, Xiang Peng, Weihao Wang, Chuan Yu, Zhe Wang, Yee Jun Tham, Jianmin Chen, Hui Chen, Yujing Mu, Chenglong Zhang, Pengfei Liu, Likun Xue, Xinfeng Wang, Jian Gao, Hong Li, and Tao Wang
Atmos. Chem. Phys., 21, 15985–16000, https://doi.org/10.5194/acp-21-15985-2021, https://doi.org/10.5194/acp-21-15985-2021, 2021
Short summary
Short summary
ClNO2 is an important precursor of chlorine radical that affects photochemistry. However, its production and impact are not well understood. Our study presents field observations of ClNO2 at three sites in northern China. These observations provide new insights into nighttime processes that produce ClNO2 and the significant impact of ClNO2 on secondary pollutions during daytime. The results improve the understanding of photochemical pollution in the lower part of the atmosphere.
Hui Zhang, Xuewu Fu, Ben Yu, Baoxin Li, Peng Liu, Guoqing Zhang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 15847–15859, https://doi.org/10.5194/acp-21-15847-2021, https://doi.org/10.5194/acp-21-15847-2021, 2021
Short summary
Short summary
Our observations of speciated atmospheric mercury at the Waliguan GAW Baseline Observatory show that concentrations of gaseous elemental mercury (GEM) and particulate bound mercury (PBM) were elevated compared to the Northern Hemisphere background. We propose that the major sources of GEM and PBM were mainly related to anthropogenic emissions and desert dust sources. This study highlights that dust-related sources played an important role in the variations of PBM in the Tibetan Plateau.
Ke Gui, Huizheng Che, Yu Zheng, Hujia Zhao, Wenrui Yao, Lei Li, Lei Zhang, Hong Wang, Yaqiang Wang, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 15309–15336, https://doi.org/10.5194/acp-21-15309-2021, https://doi.org/10.5194/acp-21-15309-2021, 2021
Short summary
Short summary
This study utilized the globally gridded aerosol extinction data from CALIOP during 2007–2019 to investigate the 3D climatology, trends, and meteorological drivers of tropospheric type-dependent aerosols. Results revealed that the planetary boundary layer (PBL) and the free troposphere contribute 62.08 % and 37.92 %, respectively, of the global tropospheric TAOD. Trends in
CALIOP-derived aerosol loading, in particular those partitioned in the PBL, can be explained to a large extent by meteorology.
Zhiyong Wu, Leiming Zhang, John T. Walker, Paul A. Makar, Judith A. Perlinger, and Xuemei Wang
Geosci. Model Dev., 14, 5093–5105, https://doi.org/10.5194/gmd-14-5093-2021, https://doi.org/10.5194/gmd-14-5093-2021, 2021
Short summary
Short summary
A community dry deposition algorithm for modeling the gaseous dry deposition process in chemistry transport models was extended to include an additional 12 oxidized volatile organic compounds and hydrogen cyanide based on their physicochemical properties and was then evaluated using field flux measurements over a mixed forest. This study provides a useful tool that is needed in chemistry transport models with increasing complexity for simulating an important atmospheric process.
Qingyang Xiao, Yixuan Zheng, Guannan Geng, Cuihong Chen, Xiaomeng Huang, Huizheng Che, Xiaoye Zhang, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 21, 9475–9496, https://doi.org/10.5194/acp-21-9475-2021, https://doi.org/10.5194/acp-21-9475-2021, 2021
Short summary
Short summary
We used both statistical methods and a chemical transport model to assess the contribution of meteorology and emissions to PM2.5 during 2000–2018. Both methods revealed that emissions dominated the long-term PM2.5 trend with notable meteorological effects ranged up to 37.9 % of regional annual average PM2.5. The meteorological contribution became more beneficial to PM2.5 control in southern China but more unfavorable in northern China during the studied period.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
Xuewu Fu, Chen Liu, Hui Zhang, Yue Xu, Hui Zhang, Jun Li, Xiaopu Lyu, Gan Zhang, Hai Guo, Xun Wang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 6721–6734, https://doi.org/10.5194/acp-21-6721-2021, https://doi.org/10.5194/acp-21-6721-2021, 2021
Short summary
Short summary
TGM concentrations and isotopic compositions in 10 Chinese cities showed strong seasonality with higher TGM concentrations and Δ199Hg and lower δ202Hg in summer. We found the seasonal variations in TGM concentrations and isotopic compositions were highly related to regional surface Hg(0) emissions, suggesting land surface Hg(0) emissions are an important source of atmospheric TGM that contribute dominantly to the seasonal variations in TGM concentrations and isotopic compositions.
Mengdi Song, Xin Li, Suding Yang, Xuena Yu, Songxiu Zhou, Yiming Yang, Shiyi Chen, Huabin Dong, Keren Liao, Qi Chen, Keding Lu, Ningning Zhang, Junji Cao, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 4939–4958, https://doi.org/10.5194/acp-21-4939-2021, https://doi.org/10.5194/acp-21-4939-2021, 2021
Short summary
Short summary
Due to their lower diffusion capacities and higher conversion capacities, urban areas in Xi’an experienced severe ozone pollution in the summer. In this study, a campaign of comprehensive field observations and VOC grid sampling was conducted in Xi’an from 20 June to 20 July 2019. We found that Xi'an has a strong local emission source of VOCs, and vehicle exhaust was the primary VOC source. In addition, alkenes, aromatics, and oxygenated VOCs played a dominant role in secondary transformations.
Lei Zhang, Sunling Gong, Tianliang Zhao, Chunhong Zhou, Yuesi Wang, Jiawei Li, Dongsheng Ji, Jianjun He, Hongli Liu, Ke Gui, Xiaomei Guo, Jinhui Gao, Yunpeng Shan, Hong Wang, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 14, 703–718, https://doi.org/10.5194/gmd-14-703-2021, https://doi.org/10.5194/gmd-14-703-2021, 2021
Short summary
Short summary
Development of chemical transport models with advanced physics and chemical schemes is important for improving air-quality forecasts. This study develops the chemical module CUACE by updating with a new particle dry deposition scheme and adding heterogenous chemical reactions and couples it with the WRF model. The coupled model (WRF/CUACE) was able to capture well the variations of PM2.5, O3, NO2, and secondary inorganic aerosols in eastern China.
Yujiao Zhu, Likun Xue, Jian Gao, Jianmin Chen, Hongyong Li, Yong Zhao, Zhaoxin Guo, Tianshu Chen, Liang Wen, Penggang Zheng, Ye Shan, Xinfeng Wang, Tao Wang, Xiaohong Yao, and Wenxing Wang
Atmos. Chem. Phys., 21, 1305–1323, https://doi.org/10.5194/acp-21-1305-2021, https://doi.org/10.5194/acp-21-1305-2021, 2021
Short summary
Short summary
This work investigates the long-term changes in new particle formation (NPF) events under reduced SO2 emissions at the summit of Mt. Tai during seven campaigns from 2007 to 2018. We found the NPF intensity increased 2- to 3-fold in 2018 compared to 2007. In contrast, the probability of new particles growing to CCN size largely decreased. Changes to biogenic VOCs and anthropogenic emissions are proposed to explain the distinct NPF characteristics.
Huikun Liu, Qiyuan Wang, Li Xing, Yong Zhang, Ting Zhang, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 21, 973–987, https://doi.org/10.5194/acp-21-973-2021, https://doi.org/10.5194/acp-21-973-2021, 2021
Short summary
Short summary
We conducted black carbon (BC) source apportionment on the southeastern Tibetan Plateau (TP) by an improved aethalometer model with the site-dependent Ångström exponent and BC mass absorption cross section (MAC). The result shows that the biomass-burning BC on the TP is slightly higher than fossil fuel BC, mainly from cross-border transportation instead of the local region, and the BC radiative effect is lower than that in the southwestern Himalaya but higher than that on the northeastern TP.
Pragati Rai, Jay G. Slowik, Markus Furger, Imad El Haddad, Suzanne Visser, Yandong Tong, Atinderpal Singh, Günther Wehrle, Varun Kumar, Anna K. Tobler, Deepika Bhattu, Liwei Wang, Dilip Ganguly, Neeraj Rastogi, Ru-Jin Huang, Jaroslaw Necki, Junji Cao, Sachchida N. Tripathi, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 21, 717–730, https://doi.org/10.5194/acp-21-717-2021, https://doi.org/10.5194/acp-21-717-2021, 2021
Short summary
Short summary
We present a simple conceptual framework based on elemental size distributions and enrichment factors that allows for a characterization of major sources, site-to-site similarities, and local differences and the identification of key information required for efficient policy development. Absolute concentrations are by far the highest in Delhi, followed by Beijing, and then the European cities.
Haiyan Ni, Ru-Jin Huang, Max M. Cosijn, Lu Yang, Jie Guo, Junji Cao, and Ulrike Dusek
Atmos. Chem. Phys., 20, 16041–16053, https://doi.org/10.5194/acp-20-16041-2020, https://doi.org/10.5194/acp-20-16041-2020, 2020
Short summary
Short summary
We investigated sources of carbonaceous aerosols in Beijing and Xi'an during severe winter haze. Elemental carbon (EC) was dominated by vehicle emissions in Xi’an and coal burning in Beijing. Organic carbon (OC) increment during haze days was driven by the increase in primary and secondary OC (SOC). SOC was more from fossil sources in Beijing than Xi’an, especially during haze days. In Xi’an, no strong day–night differences in EC or OC sources suggest a large accumulation of particles.
Qiyuan Wang, Huikun Liu, Ping Wang, Wenting Dai, Ting Zhang, Youzhi Zhao, Jie Tian, Wenyan Zhang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 20, 15537–15549, https://doi.org/10.5194/acp-20-15537-2020, https://doi.org/10.5194/acp-20-15537-2020, 2020
Short summary
Short summary
Light-absorbing carbonaceous (LAC) aerosol is an important influencing factor for global climate forcing. In this study, we used a receptor model coupling multi-wavelength absorption with chemical species to explore the source-specific LAC optical properties at a tropical marine monsoon climate zone. The results can improve our understanding of the LAC radiative effects caused by ship emissions.
Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 20, 15427–15442, https://doi.org/10.5194/acp-20-15427-2020, https://doi.org/10.5194/acp-20-15427-2020, 2020
Short summary
Short summary
Recently, China has promulgated a series of regulations to reduce air pollutants. The decreased black carbon (BC) and co-emitted pollutants could affect the interactions between BC and other aerosols, which in turn results in changes in BC. Herein, we re-assessed the characteristics of BC of a representative pollution site in northern China in the final year of the Chinese
Action Plan for the Prevention and Control of Air Pollution.
Xiaoning Xie, Anmin Duan, Zhengguo Shi, Xinzhou Li, Hui Sun, Xiaodong Liu, Xugeng Cheng, Tianliang Zhao, Huizheng Che, and Yangang Liu
Atmos. Chem. Phys., 20, 11143–11159, https://doi.org/10.5194/acp-20-11143-2020, https://doi.org/10.5194/acp-20-11143-2020, 2020
Short summary
Short summary
Observational and modeling results both show that the surface dust concentrations over the East Asian (EA) dust source region and over the northwestern Pacific (NP) in MAM are significantly positively correlated with TPSH. These atmospheric circulation anomalies induced by the increased TPSH result in increasing westerly winds over both EA and NP, which in turn increases dust emissions over the dust source and dust transport over these two regions, as well as the regional dust cycles.
Xiaofei Qin, Leiming Zhang, Guochen Wang, Xiaohao Wang, Qingyan Fu, Jian Xu, Hao Li, Jia Chen, Qianbiao Zhao, Yanfen Lin, Juntao Huo, Fengwen Wang, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 20, 10985–10996, https://doi.org/10.5194/acp-20-10985-2020, https://doi.org/10.5194/acp-20-10985-2020, 2020
Short summary
Short summary
The uncertainties in mercury emissions are much larger from natural sources than anthropogenic sources. A method was developed to quantify the contributions of natural surface emissions to ambient GEM based on PMF modeling. The annual GEM concentration in eastern China showed a decreasing trend from 2015 to 2018, while the relative contribution of natural surface emissions increased significantly from 41 % in 2015 to 57 % in 2018, gradually surpassing those from anthropogenic sources.
Teruyuki Nakajima, Monica Campanelli, Huizheng Che, Victor Estellés, Hitoshi Irie, Sang-Woo Kim, Jhoon Kim, Dong Liu, Tomoaki Nishizawa, Govindan Pandithurai, Vijay Kumar Soni, Boossarasiri Thana, Nas-Urt Tugjsurn, Kazuma Aoki, Sujung Go, Makiko Hashimoto, Akiko Higurashi, Stelios Kazadzis, Pradeep Khatri, Natalia Kouremeti, Rei Kudo, Franco Marenco, Masahiro Momoi, Shantikumar S. Ningombam, Claire L. Ryder, Akihiro Uchiyama, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 4195–4218, https://doi.org/10.5194/amt-13-4195-2020, https://doi.org/10.5194/amt-13-4195-2020, 2020
Short summary
Short summary
This paper overviews the progress in sky radiometer technology and the development of the network called SKYNET. It is found that the technology has produced useful on-site calibration methods, retrieval algorithms, and data analyses from sky radiometer observations of aerosol, cloud, water vapor, and ozone. The paper also discusses current issues of SKYNET to provide better information for the community.
Ru-Jin Huang, Yao He, Jing Duan, Yongjie Li, Qi Chen, Yan Zheng, Yang Chen, Weiwei Hu, Chunshui Lin, Haiyan Ni, Wenting Dai, Junji Cao, Yunfei Wu, Renjian Zhang, Wei Xu, Jurgita Ovadnevaite, Darius Ceburnis, Thorsten Hoffmann, and Colin D. O'Dowd
Atmos. Chem. Phys., 20, 9101–9114, https://doi.org/10.5194/acp-20-9101-2020, https://doi.org/10.5194/acp-20-9101-2020, 2020
Short summary
Short summary
We systematically compared the submicron particle (PM1) processes in haze days with low and high relative humidity (RH) in wintertime Beijing. Nitrate had similar daytime growth rates in low-RH and high-RH pollution. OOA had a higher growth rate in low-RH pollution than in high-RH pollution. Sulfate had a decreasing trend in low-RH pollution, while it increased significantly in high-RH pollution. This distinction may be explained by the different processes affected by meteorological conditions.
Jiawei Li, Zhiwei Han, Yunfei Wu, Zhe Xiong, Xiangao Xia, Jie Li, Lin Liang, and Renjian Zhang
Atmos. Chem. Phys., 20, 8659–8690, https://doi.org/10.5194/acp-20-8659-2020, https://doi.org/10.5194/acp-20-8659-2020, 2020
Short summary
Short summary
Aerosol–radiation–climate interaction is one of the least understood mechanisms in air pollution and climate change. A coupled chemistry–climate model is developed to explore the mechanisms of haze evolution and aerosol radiative feedback in north China. The feedback exerts a significant impact on haze evolution. The contributions of physical and chemical processes to the feedback-induced aerosol changes are elucidated and quantified, providing new insights into the feedback mechanism.
Yuan Yang, Yonghong Wang, Putian Zhou, Dan Yao, Dongsheng Ji, Jie Sun, Yinghong Wang, Shuman Zhao, Wei Huang, Shuanghong Yang, Dean Chen, Wenkang Gao, Zirui Liu, Bo Hu, Renjian Zhang, Limin Zeng, Maofa Ge, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Yuesi Wang
Atmos. Chem. Phys., 20, 8181–8200, https://doi.org/10.5194/acp-20-8181-2020, https://doi.org/10.5194/acp-20-8181-2020, 2020
Shengzhen Zhou, Luolin Wu, Junchen Guo, Weihua Chen, Xuemei Wang, Jun Zhao, Yafang Cheng, Zuzhao Huang, Jinpu Zhang, Yele Sun, Pingqing Fu, Shiguo Jia, Jun Tao, Yanning Chen, and Junxia Kuang
Atmos. Chem. Phys., 20, 6435–6453, https://doi.org/10.5194/acp-20-6435-2020, https://doi.org/10.5194/acp-20-6435-2020, 2020
Short summary
Short summary
In this work, measurements of size-segregated aerosols were conducted at three altitudes (ground level, 118 m, and 488 m) on the 610 m high Canton Tower in southern China. Vertical variations of PM and size-segregated chemical compositions were investigated. The results indicated that meteorological parameters and atmospheric aqueous and heterogeneous reactions together led to aerosol formation and haze episodes in the Pearl River Delta region during the measurement periods.
Yucong Miao, Huizheng Che, Xiaoye Zhang, and Shuhua Liu
Atmos. Chem. Phys., 20, 5899–5909, https://doi.org/10.5194/acp-20-5899-2020, https://doi.org/10.5194/acp-20-5899-2020, 2020
Short summary
Short summary
By combining long-term observational data analyses, synoptic classifications, and meteorology–chemistry coupled simulations, the complicated impacts of large-scale synoptic forcing and local boundary layer processes on the aerosol pollution in the Beijing–Tianjin–Hebei region have been investigated. The influences of the aerosol radiative effect on boundary layer structure and pollution were also examined. This study has important implications for better understanding pollution in China.
Tao Ma, Hiroshi Furutani, Fengkui Duan, Takashi Kimoto, Jingkun Jiang, Qiang Zhang, Xiaobin Xu, Ying Wang, Jian Gao, Guannan Geng, Meng Li, Shaojie Song, Yongliang Ma, Fei Che, Jie Wang, Lidan Zhu, Tao Huang, Michisato Toyoda, and Kebin He
Atmos. Chem. Phys., 20, 5887–5897, https://doi.org/10.5194/acp-20-5887-2020, https://doi.org/10.5194/acp-20-5887-2020, 2020
Short summary
Short summary
The formation mechanisms of organic matter and sulfate in winter haze in the North China Plain remain unclear. This paper presents the identification and quantification of hydroxymethanesulfonate (HMS) in PM2.5 in Beijing winter and elucidates the heterogeneous HMS chemistry in favorable winter haze conditions. We show that the HMS not only contributes a substantial mass of organic matter, but also leads to an overestimation of sulfate in conventional measurements.
Yonggang Xue, Yu Huang, Steven Sai Hang Ho, Long Chen, Liqin Wang, Shuncheng Lee, and Junji Cao
Atmos. Chem. Phys., 20, 5425–5436, https://doi.org/10.5194/acp-20-5425-2020, https://doi.org/10.5194/acp-20-5425-2020, 2020
Short summary
Short summary
Particulate active metallic oxides in dust were proposed to influence the photochemical reactions of ambient volatile organic compounds (VOCs). A case study investigated the origin and transformation of VOCs during a windblown dust-to-haze pollution episode. In the dust event, a sharp decrease in VOC loading and aging of their components was observed. An increase in Ti and Fe and a fast decrease in trans-/cis-2-butene ratios demonstrated that dust can accelerate the oxidation of ambient VOCs.
Yuning Xie, Gehui Wang, Xinpei Wang, Jianmin Chen, Yubao Chen, Guiqian Tang, Lili Wang, Shuangshuang Ge, Guoyan Xue, Yuesi Wang, and Jian Gao
Atmos. Chem. Phys., 20, 5019–5033, https://doi.org/10.5194/acp-20-5019-2020, https://doi.org/10.5194/acp-20-5019-2020, 2020
Short summary
Short summary
As a result of strict emission control, nitrate-dominated PM2.5 in pollution episodes was observed in urban Beijing during the winter of 2017–2018. With the help of sufficient ammonia, particle pH could increase to near neutral (5.4) as particulate nitrate fraction increases. Further tests imply that airborne particle hygroscopicity would be enhanced at moderate RH in nitrate-dominated particles, and pH elevation will be accelerated when ammonia and particulate nitrate both increase.
Jianjun Li, Qi Zhang, Gehui Wang, Jin Li, Can Wu, Lang Liu, Jiayuan Wang, Wenqing Jiang, Lijuan Li, Kin Fai Ho, and Junji Cao
Atmos. Chem. Phys., 20, 4889–4904, https://doi.org/10.5194/acp-20-4889-2020, https://doi.org/10.5194/acp-20-4889-2020, 2020
Short summary
Short summary
We examined light absorption properties and molecular composition of water-soluble (WS) and water-insoluble (WI) BrC in PM2.5 collected from northwest China. We found that photochemical formation contributes significantly to light absorption of WI-BrC in summer, whereas aqueous-phase reactions play an important role in secondary WS-BrC formation in winter. BrC was estimated to account for 1.36 % and 3.74 %, respectively, of total down-welling solar radiation in the UV range in summer and winter.
Chuan Yu, Zhe Wang, Men Xia, Xiao Fu, Weihao Wang, Yee Jun Tham, Tianshu Chen, Penggang Zheng, Hongyong Li, Ye Shan, Xinfeng Wang, Likun Xue, Yan Zhou, Dingli Yue, Yubo Ou, Jian Gao, Keding Lu, Steven S. Brown, Yuanhang Zhang, and Tao Wang
Atmos. Chem. Phys., 20, 4367–4378, https://doi.org/10.5194/acp-20-4367-2020, https://doi.org/10.5194/acp-20-4367-2020, 2020
Short summary
Short summary
This study provides a holistic picture of N2O5 heterogeneous uptake on ambient aerosols and the influencing factors under various climatic and chemical conditions in China, and it proposes an observation-based empirical parameterization. The empirical parameterization can be used in air quality models to improve the prediction of PM2.5 and photochemical pollution in China and similar polluted regions of the world.
Jing Duan, Ru-Jin Huang, Yongjie Li, Qi Chen, Yan Zheng, Yang Chen, Chunshui Lin, Haiyan Ni, Meng Wang, Jurgita Ovadnevaite, Darius Ceburnis, Chunying Chen, Douglas R. Worsnop, Thorsten Hoffmann, Colin O'Dowd, and Junji Cao
Atmos. Chem. Phys., 20, 3793–3807, https://doi.org/10.5194/acp-20-3793-2020, https://doi.org/10.5194/acp-20-3793-2020, 2020
Short summary
Short summary
We characterized secondary aerosol formation in Beijing. Our results showed that relative humidity (RH) and Ox have opposite effects on sulfate and nitrate formation in summer and winter. The wintertime more-oxidized OOA (MO-OOA) showed a good correlation with aerosol liquid water content (ALWC). Meanwhile, the dependence of less-oxidized OOA (LO-OOA) and the mass ratio of LO-OOA to MO-OOA in Ox both degraded when RH > 60 %, suggesting that RH or ALWC may also affect LO-OOA formation.
Zhe Jiang, Minzheng Duan, Huizheng Che, Wenxing Zhang, Teruyuki Nakajima, Makiko Hashimoto, Bin Chen, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 1195–1212, https://doi.org/10.5194/amt-13-1195-2020, https://doi.org/10.5194/amt-13-1195-2020, 2020
Short summary
Short summary
This study analyzed the aerosol optical properties derived by SKYRAD.pack versions 5.0 and 4.2 using the radiometer measurements over Qionghai and Yucheng in China, which are two new sites of SKYNET. The seasonal variability of the aerosol properties over the two sites were investigated based on SKYRAD.pack V5.0. The validation results provide valuable references for continued improvement of the retrieval algorithms of SKYNET and other aerosol observational networks.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 20, 721–733, https://doi.org/10.5194/acp-20-721-2020, https://doi.org/10.5194/acp-20-721-2020, 2020
Short summary
Short summary
An innovative approach is developed to preprocess monitored wet deposition data of inorganic ions for generating their decadal trends. Differing from traditional approaches which directly apply annual or seasonal average data to trend analysis tools, the proposed new approach makes use of slopes of regression equations between a series of study years and a climatology (base) year in terms of monthly averaged data. The new approach yields more robust results than the traditional tools.
Haiyan Ni, Ru-Jin Huang, Junji Cao, Jie Guo, Haoyue Deng, and Ulrike Dusek
Atmos. Chem. Phys., 19, 15609–15628, https://doi.org/10.5194/acp-19-15609-2019, https://doi.org/10.5194/acp-19-15609-2019, 2019
Short summary
Short summary
We present a 1-year source apportionment record of carbonaceous aerosols in Xi'an, China. Biomass burning strongly increases in winter, while seasonal changes of coal and liquid fossil fuel combustion are moderate. We find strong evidence for fossil secondary OC formation during the warm period that is further enhanced in stagnant, polluted conditions due to longer atmospheric residence times. At the same time we find that water-insoluble (primary) fossil is lost due to photochemical processing.
Jun Zhou, Miriam Elser, Ru-Jin Huang, Manuel Krapf, Roman Fröhlich, Deepika Bhattu, Giulia Stefenelli, Peter Zotter, Emily A. Bruns, Simone M. Pieber, Haiyan Ni, Qiyuan Wang, Yichen Wang, Yaqing Zhou, Chunying Chen, Mao Xiao, Jay G. Slowik, Samuel Brown, Laure-Estelle Cassagnes, Kaspar R. Daellenbach, Thomas Nussbaumer, Marianne Geiser, André S. H. Prévôt, Imad El-Haddad, Junji Cao, Urs Baltensperger, and Josef Dommen
Atmos. Chem. Phys., 19, 14703–14720, https://doi.org/10.5194/acp-19-14703-2019, https://doi.org/10.5194/acp-19-14703-2019, 2019
Short summary
Short summary
Reactive oxygen species (ROS) are believed to contribute to the adverse health effects of aerosols. We measured particle-bound ROS (PB-ROS) with an online instrument in two distinct environments, i.e., Beijing (China) and Bern (Switzerland). In both cities these exogenic ROS are predominantly related to secondary organic aerosol (SOA). PB-ROS content in SOA from various anthropogenic emission sources tested in the laboratory was comparable to that in the ambient measurements.
Jun Zhu, Xiangao Xia, Huizheng Che, Jun Wang, Zhiyuan Cong, Tianliang Zhao, Shichang Kang, Xuelei Zhang, Xingna Yu, and Yanlin Zhang
Atmos. Chem. Phys., 19, 14637–14656, https://doi.org/10.5194/acp-19-14637-2019, https://doi.org/10.5194/acp-19-14637-2019, 2019
Short summary
Short summary
The long-term temporal–spatial variations of the aerosol optical properties over the Tibetan Plateau (TP) based on the multiple ground-based sun photometer sites and the MODIS product are presented. Besides, the aerosol pollution and aerosol transport processes over the TP are also analyzed by the observations and models. The results in this region could help reduce the assessment uncertainties of aerosol radiative forcing and provide more information on aerosol transportation.
Lei Li, Oleg Dubovik, Yevgeny Derimian, Gregory L. Schuster, Tatyana Lapyonok, Pavel Litvinov, Fabrice Ducos, David Fuertes, Cheng Chen, Zhengqiang Li, Anton Lopatin, Benjamin Torres, and Huizheng Che
Atmos. Chem. Phys., 19, 13409–13443, https://doi.org/10.5194/acp-19-13409-2019, https://doi.org/10.5194/acp-19-13409-2019, 2019
Short summary
Short summary
A novel methodology to monitor atmospheric aerosol components using remote sensing is presented. The concept is realized within the GRASP (Generalized Retrieval of Aerosol and Surface Properties) project. Application to POLDER/PARASOL and AERONET observations yielded the spatial and temporal variability of absorbing and non-absorbing insoluble and soluble aerosol species in the fine and coarse size fractions. This presents the global-scale aerosol component derived from satellite measurements.
Huizheng Che, Xiangao Xia, Hujia Zhao, Oleg Dubovik, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Victor Estelles, Yaqiang Wang, Jun Zhu, Bing Qi, Wei Gong, Honglong Yang, Renjian Zhang, Leiku Yang, Jing Chen, Hong Wang, Yu Zheng, Ke Gui, Xiaochun Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 11843–11864, https://doi.org/10.5194/acp-19-11843-2019, https://doi.org/10.5194/acp-19-11843-2019, 2019
Short summary
Short summary
A full-scale description of ground-based aerosol microphysical and optical properties over China is presented. Moreover, the results have also provided significant information about optical and radiative aerosol properties for different types of sites covering a broad expanse of China. The results have considerable value for ground-truthing satellite observations and validating aerosol models.
Xianyi Yang, Huizheng Che, Hitoshi Irie, Quanliang Chen, Ke Gui, Ying Cai, Yu Zheng, Linchang An, Hujia Zhao, Lei Li, Yuanxin Liang, Yaqiang Wang, Hong Wang, and Xiaoye Zhang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-339, https://doi.org/10.5194/amt-2019-339, 2019
Preprint withdrawn
Short summary
Short summary
This study assesses the performance of SKYNET in comparison to AERONET (Aerosol Robotic Network) for retrieving aerosol optical properties (AOPs) in Beijing, China. SKYNET data retrieved by SR-CEReS analysis package are used to analyze a serious pollution event in winter over Beijing. The AOPs under three weather conditions (clean, dusty, haze) in Beijing are discussed. Measurements from the SKYNET skyradiometer can be used to analyze the AOPs over Beijing reasonably.
Meng Wang, Ru-Jin Huang, Junji Cao, Wenting Dai, Jiamao Zhou, Chunshui Lin, Haiyan Ni, Jing Duan, Ting Wang, Yang Chen, Yongjie Li, Qi Chen, Imad El Haddad, and Thorsten Hoffmann
Atmos. Meas. Tech., 12, 4779–4789, https://doi.org/10.5194/amt-12-4779-2019, https://doi.org/10.5194/amt-12-4779-2019, 2019
Short summary
Short summary
The analytical performances of SE-GC-MS and TD-GC-MS for the determination of n-alkanes, PAHs and hopanes were evaluated and compared. The two methods show a good agreement with a high correlation efficient (R2 > 0.98) and a slope close to unity. The concentrations of n-alkanes, PAHs and hopanes are found to be much higher in Beijing than those in Chengdu, Shanghai and Guangzhou, most likely due to emissions from coal combustion for wintertime heating in Beijing.
Huizheng Che, Ke Gui, Xiangao Xia, Yaqiang Wang, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Hong Wang, Yu Zheng, Hujia Zhao, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 10497–10523, https://doi.org/10.5194/acp-19-10497-2019, https://doi.org/10.5194/acp-19-10497-2019, 2019
Short summary
Short summary
A comprehensive assessment of the global and regional AOD trends over the past 37 years (1980–2016) is presented. AOD observations from both AERONET and CARSNET were used for the first time to assess the performance of the MERRA-2 AOD dataset on a global scale. Based on statistical models, we found the meteorological parameters explained a larger proportion of the regional AOD variability (20.4 %–2.8 %) when compared with emission factors (0 %%–56 %).
Haiyan Ni, Ru-Jin Huang, Junji Cao, Wenting Dai, Jiamao Zhou, Haoyue Deng, Anita Aerts-Bijma, Harro A. J. Meijer, and Ulrike Dusek
Atmos. Chem. Phys., 19, 10405–10422, https://doi.org/10.5194/acp-19-10405-2019, https://doi.org/10.5194/acp-19-10405-2019, 2019
Short summary
Short summary
We apply radiocarbon source apportionment of more volatile organic carbon (mvOC) to winter aerosol samples from six Chinese cities. We find a consistently larger contribution of fossil sources to mvOC than to secondary or total organic carbon. Fossil mvOC concentrations are strongly correlated with primary fossil OC but not with secondary fossil OC. The variability in nonfossil mvOC seems to be related to both primary and secondary biomass burning sources.
Jing Duan, Ru-Jin Huang, Chunshui Lin, Wenting Dai, Meng Wang, Yifang Gu, Ying Wang, Haobin Zhong, Yan Zheng, Haiyan Ni, Uli Dusek, Yang Chen, Yongjie Li, Qi Chen, Douglas R. Worsnop, Colin D. O'Dowd, and Junji Cao
Atmos. Chem. Phys., 19, 10319–10334, https://doi.org/10.5194/acp-19-10319-2019, https://doi.org/10.5194/acp-19-10319-2019, 2019
Short summary
Short summary
We present the seasonal distinction of secondary aerosol formation in urban Beijing. Both photochemical oxidation and aqueous-phase processing played important roles in SOA (secondary organic aerosol) formation during all three seasons; while for sulfate formation, gas-phase photochemical oxidation was the major pathway in late summer, aqueous-phase reactions were more responsible during early winter, and both processes had contributions during autumn.
Yunfei Wu, Yunjie Xia, Rujin Huang, Zhaoze Deng, Ping Tian, Xiangao Xia, and Renjian Zhang
Atmos. Meas. Tech., 12, 4347–4359, https://doi.org/10.5194/amt-12-4347-2019, https://doi.org/10.5194/amt-12-4347-2019, 2019
Short summary
Short summary
The morphology and effective density of externally mixed black carbon (extBC) aerosols were studied using a tandem technique coupling a DMA with a SP2. The study extended the mass–mobility relationship to large extBC with a mobility diameter larger than 350 nm, a size range seldom included in previous tandem measurements of BC aggregates. On this basis, quantities such as the mass–mobility scaling exponent were revealed for extBC in urban Beijing.
Yahui Che, Jie Guang, Gerrit de Leeuw, Yong Xue, Ling Sun, and Huizheng Che
Atmos. Meas. Tech., 12, 4091–4112, https://doi.org/10.5194/amt-12-4091-2019, https://doi.org/10.5194/amt-12-4091-2019, 2019
Short summary
Short summary
The use of AOD data retrieved from ATSR-2, AATSR and AVHRR to produce a very long time series is investigated. The study is made over a small area in northern China with a large variation of AOD values. Sun photometer data from AERONET and CARSNET and radiance-derived AOD are used as reference. The results show that all data sets compare well. However, AVHRR underestimates high AOD (mainly occurring in summer) but performs better than (A)ATSR in winter.
Huiyun Du, Jie Li, Xueshun Chen, Zifa Wang, Yele Sun, Pingqing Fu, Jianjun Li, Jian Gao, and Ying Wei
Atmos. Chem. Phys., 19, 9351–9370, https://doi.org/10.5194/acp-19-9351-2019, https://doi.org/10.5194/acp-19-9351-2019, 2019
Short summary
Short summary
Regional transport and heterogeneous reactions play crucial roles in haze formation. Using a chemical transport model, we found that chemical transformation of SO2 along the transport pathway from source regions to Beijing was the major source of sulfate. Heterogeneous chemistry had a stronger effect under high humidity and high pollution levels. Aerosols underwent aging during transport which altered the aerosol size and the degree of aging.
Jiarui Wu, Naifang Bei, Bo Hu, Suixin Liu, Meng Zhou, Qiyuan Wang, Xia Li, Lang Liu, Tian Feng, Zirui Liu, Yichen Wang, Junji Cao, Xuexi Tie, Jun Wang, Luisa T. Molina, and Guohui Li
Atmos. Chem. Phys., 19, 8703–8719, https://doi.org/10.5194/acp-19-8703-2019, https://doi.org/10.5194/acp-19-8703-2019, 2019
Short summary
Short summary
In the present study, simulations during a persistent and heavy haze pollution episode from 5 December 2015 to 4 January 2016 in the North China Plain (NCP) were performed using the WRF-Chem model to comprehensively quantify contributions of the aerosol shortwave radiative feedback (ARF) to near-surface PM2.5 mass concentrations. During the episode, the ARF deteriorates the haze pollution, increasing the near-surface PM2.5 concentration in the NCP by 10.2 μg m−3 (7.8 %) on average.
Jiarui Wu, Naifang Bei, Bo Hu, Suixin Liu, Meng Zhou, Qiyuan Wang, Xia Li, Lang Liu, Tian Feng, Zirui Liu, Yichen Wang, Junji Cao, Xuexi Tie, Jun Wang, Luisa T. Molina, and Guohui Li
Atmos. Chem. Phys., 19, 8721–8739, https://doi.org/10.5194/acp-19-8721-2019, https://doi.org/10.5194/acp-19-8721-2019, 2019
Short summary
Short summary
The near-surface PM2.5 contribution of the ALW total effect is 17.5 % in NCP, indicating that ALW plays an important role in the PM2.5 formation during the wintertime haze pollution. Moreover, the ALW-HET overwhelmingly dominates the PM2.5 enhancement due to the ALW. The ALW does not consistently enhance near-surface [PM2.5] with increasing RH. When the RH exceeds 80 %, the contribution of the ALW begins to decrease, which is caused by the high occurrence frequencies of precipitation.
Jun Tao, Zhisheng Zhang, Yunfei Wu, Leiming Zhang, Zhijun Wu, Peng Cheng, Mei Li, Laiguo Chen, Renjian Zhang, and Junji Cao
Atmos. Chem. Phys., 19, 8471–8490, https://doi.org/10.5194/acp-19-8471-2019, https://doi.org/10.5194/acp-19-8471-2019, 2019
Short summary
Short summary
Mass-scattering efficiencies (MSE) of dominant chemical species in atmospheric aerosols are important parameters for building the relationships between chemical species and the particle-scattering coefficient. Particle MSE mainly depends on the mass fractions of (NH4)2SO4, NH4NO3, and organic matter and their MSEs in the droplet mode. MSEs of (NH4)2SO4, NH4NO3 and organic matter were determined by their size distributions in the droplet mode.
Tian Feng, Shuyu Zhao, Naifang Bei, Jiarui Wu, Suixin Liu, Xia Li, Lang Liu, Yang Qian, Qingchuan Yang, Yichen Wang, Weijian Zhou, Junji Cao, and Guohui Li
Atmos. Chem. Phys., 19, 7429–7443, https://doi.org/10.5194/acp-19-7429-2019, https://doi.org/10.5194/acp-19-7429-2019, 2019
Short summary
Short summary
The observed ratio of organic carbon to element carbon has increased remarkably in Beijing. Here, based on the measurements and model simulation, we show that the enhanced atmospheric oxidizing capacity is an important contributor to that increase by facilitating the aging process of organic aerosols (add oxygen). Our results indicate a ubiquitous enhancement of secondary organic aerosol formation over Beijing–Tianjin–Hebei, China, in the context of increasing oxidizing capacity.
Hongmei Xu, Jean-François Léon, Cathy Liousse, Benjamin Guinot, Véronique Yoboué, Aristide Barthélémy Akpo, Jacques Adon, Kin Fai Ho, Steven Sai Hang Ho, Lijuan Li, Eric Gardrat, Zhenxing Shen, and Junji Cao
Atmos. Chem. Phys., 19, 6637–6657, https://doi.org/10.5194/acp-19-6637-2019, https://doi.org/10.5194/acp-19-6637-2019, 2019
Short summary
Short summary
This paper discusses the personal exposure characteristics and health implication of PM2.5 and bounded chemical species based on three anthropogenic sources and related populations (domestic fires for women, waste burning for students and motorcycle traffic for drivers) in Abidjan and Cotonou in dry and wet seasons of 2016. This work can be regarded as the first attempt at measuring personal exposure to PM2.5 and its related health risks in underdeveloped countries of Africa.
Long Chen, Yu Huang, Yonggang Xue, Zhenxing Shen, Junji Cao, and Wenliang Wang
Atmos. Chem. Phys., 19, 4075–4091, https://doi.org/10.5194/acp-19-4075-2019, https://doi.org/10.5194/acp-19-4075-2019, 2019
Short summary
Short summary
The present calculations show that the sequential addition of CIs to HHPs affords oligomers containing CIs as chain units. The addition of an –OOH group in HHPs to the central carbon atom of CIs is identified as the most energetically favorable channel, with a barrier height strongly dependent on both CI substituent number (one or two) and position (syn- or anti-). In particular, the introduction of a methyl group into the anti-position significantly increases the rate coefficient.
Yang Chen, Mi Tian, Ru-Jin Huang, Guangming Shi, Huanbo Wang, Chao Peng, Junji Cao, Qiyuan Wang, Shumin Zhang, Dongmei Guo, Leiming Zhang, and Fumo Yang
Atmos. Chem. Phys., 19, 3245–3255, https://doi.org/10.5194/acp-19-3245-2019, https://doi.org/10.5194/acp-19-3245-2019, 2019
Short summary
Short summary
Amine-containing particles were characterized in an urban area of Chongqing during both summer and winter using a single-particle aerosol mass spectrometer (SPAMS). Amines were observed to internally mix with elemental carbon (EC), organic carbon (OC), sulfate, and nitrate. Diethylamine (DEA) was the most abundant in both number and peak area among amine-containing particles. Vegetation and traffic were the primary sources of particulate amines.
Ru-Jin Huang, Yichen Wang, Junji Cao, Chunshui Lin, Jing Duan, Qi Chen, Yongjie Li, Yifang Gu, Jin Yan, Wei Xu, Roman Fröhlich, Francesco Canonaco, Carlo Bozzetti, Jurgita Ovadnevaite, Darius Ceburnis, Manjula R. Canagaratna, John Jayne, Douglas R. Worsnop, Imad El-Haddad, André S. H. Prévôt, and Colin D. O'Dowd
Atmos. Chem. Phys., 19, 2283–2298, https://doi.org/10.5194/acp-19-2283-2019, https://doi.org/10.5194/acp-19-2283-2019, 2019
Short summary
Short summary
We found that in wintertime Shijiazhuang fine PM was mostly from primary emissions without sufficient atmospheric aging. In addition, secondary inorganic and organic aerosol dominated in pollution events under high-RH conditions, likely due to enhanced aqueous-phase chemistry, whereas primary organic aerosol dominated in pollution events under low-RH and stagnant conditions. Our results also highlighted the importance of meteorological conditions for PM pollution in this highly polluted city.
Qiyuan Wang, Suixin Liu, Nan Li, Wenting Dai, Yunfei Wu, Jie Tian, Yaqing Zhou, Meng Wang, Steven Sai Hang Ho, Yang Chen, Renjian Zhang, Shuyu Zhao, Chongshu Zhu, Yongming Han, Xuexi Tie, and Junji Cao
Atmos. Chem. Phys., 19, 1881–1899, https://doi.org/10.5194/acp-19-1881-2019, https://doi.org/10.5194/acp-19-1881-2019, 2019
Hong Wang, Yue Peng, Xiaoye Zhang, Hongli Liu, Meng Zhang, Huizheng Che, Yanli Cheng, and Yu Zheng
Atmos. Chem. Phys., 18, 17717–17733, https://doi.org/10.5194/acp-18-17717-2018, https://doi.org/10.5194/acp-18-17717-2018, 2018
Short summary
Short summary
The explosive growth (EG) of PM2.5 resulted in a PM2.5 maximum, which was generally underestimated by atmospheric chemical models due to the deficient description of the local
turbulence intermittent. The aerosol–radiation feedback (AF) and decrease in turbulence diffusion (DTD) may reduce the underestimation of PM2.5 EG by 20–25% and 14–20%, respectively. The modeled EG stage PM2.5 error was decreased from −40 to −51% to −11 to 2% by the combined effects of AF and DTD in Jing–Jin–Ji.
Yue Peng, Hong Wang, Yubin Li, Changwei Liu, Tianliang Zhao, Xiaoye Zhang, Zhiqiu Gao, Tong Jiang, Huizheng Che, and Meng Zhang
Atmos. Chem. Phys., 18, 17421–17435, https://doi.org/10.5194/acp-18-17421-2018, https://doi.org/10.5194/acp-18-17421-2018, 2018
Short summary
Short summary
Two surface layer schemes are evaluated in eastern China based on observational flux data. The results indicate that the Li scheme better describes regional atmosphere stratification compared with the MM5 scheme, especially for the transition stage from unstable to stable atmosphere conditions, corresponding to PM2.5 accumulation. Our research suggests the potential improved possibilities for severe haze prediction in eastern China by coupling Li online into atmosphere chemical models.
Haiyan Ni, Ru-Jin Huang, Junji Cao, Weiguo Liu, Ting Zhang, Meng Wang, Harro A. J. Meijer, and Ulrike Dusek
Atmos. Chem. Phys., 18, 16363–16383, https://doi.org/10.5194/acp-18-16363-2018, https://doi.org/10.5194/acp-18-16363-2018, 2018
Short summary
Short summary
Seasonal changes in organic carbon (OC) and elemental carbon (EC) sources in Xi'an, China, are investigated based on measurements of radiocarbon and the stable isotope 13C. Relative contributions to EC from biomass burning, coal combustion, and vehicle emissions change substantially between different seasons. Biomass burning contributes 60 % to the EC increment in winter. Comparing concentrations and sources of primary OC to total OC suggests non-negligible OC loss due to active photochemistry.
Jingjing Meng, Gehui Wang, Zhanfang Hou, Xiaodi Liu, Benjie Wei, Can Wu, Cong Cao, Jiayuan Wang, Jianjun Li, Junji Cao, Erxun Zhang, Jie Dong, Jiazhen Liu, Shuangshuang Ge, and Yuning Xie
Atmos. Chem. Phys., 18, 15069–15086, https://doi.org/10.5194/acp-18-15069-2018, https://doi.org/10.5194/acp-18-15069-2018, 2018
Yu-Chi Lin, Shih-Chieh Hsu, Chuan-Yao Lin, Shuen-Hsin Lin, Yi-Tang Huang, Yunhua Chang, and Yan-Lin Zhang
Atmos. Chem. Phys., 18, 13865–13879, https://doi.org/10.5194/acp-18-13865-2018, https://doi.org/10.5194/acp-18-13865-2018, 2018
Short summary
Short summary
The Asian continent is a well-known big source of airborne As in the North Pacific region. Previously, high As concentrations over the free troposphere in the region have been observed and considered contributions of industrial emissions, especially of coal-combustion. In our study, we proposed a new concept for a potential source of high As over the subtropical free troposphere, that is, BB activities over southern Asia might be an important source of airborne arsenic in the springtime.
Jiamao Zhou, Xuexi Tie, Baiqing Xu, Shuyu Zhao, Mo Wang, Guohui Li, Ting Zhang, Zhuzi Zhao, Suixin Liu, Song Yang, Luyu Chang, and Junji Cao
Atmos. Chem. Phys., 18, 13673–13685, https://doi.org/10.5194/acp-18-13673-2018, https://doi.org/10.5194/acp-18-13673-2018, 2018
Short summary
Short summary
A global chemical transportation model (MOZART-4) was used to analyze the BC transport from the source regions and a radiative transfer model (SNICAR) was used to study the effect of BC on snow albedo on the northern Tibetan Plateau. The result provides useful information to study the effect of the upward BC emissions on environmental and climate issues. The radiative effect of BC deposition on the snow melting provides important information regarding the water resources in the region.
Xiaoning Xie, Xiaodong Liu, Huizheng Che, Xiaoxun Xie, Xinzhou Li, Zhengguo Shi, Hongli Wang, Tianliang Zhao, and Yangang Liu
Atmos. Chem. Phys., 18, 12683–12698, https://doi.org/10.5194/acp-18-12683-2018, https://doi.org/10.5194/acp-18-12683-2018, 2018
Short summary
Short summary
This study extends our previous investigation in dust–radiation interactions to investigate SRF and its feedbacks on the regional climate and the dust cycle over east Asia by use of the CAM4-BAM. Our results show that SRF increases the east Asian dust emissions significantly by 13.7 % in the spring, in contrast to −7.6 % of decreased dust emissions by DRF. Hence, a significant feature of SRF on the Tibetan Plateau can create a positive feedback loop to enhance the dust cycle over east Asia.
Nan Li, Qingyang He, Jim Greenberg, Alex Guenther, Jingyi Li, Junji Cao, Jun Wang, Hong Liao, Qiyuan Wang, and Qiang Zhang
Atmos. Chem. Phys., 18, 7489–7507, https://doi.org/10.5194/acp-18-7489-2018, https://doi.org/10.5194/acp-18-7489-2018, 2018
Short summary
Short summary
O3 pollution has been increasing in most Chinese cities in recent years. Our study reveals that the synergistic impact of individual source contributions to O3 formation should be considered in the formation of air pollution control strategies, especially for big cities in the vicinity of forests.
Qiyuan Wang, Junji Cao, Yongming Han, Jie Tian, Chongshu Zhu, Yonggang Zhang, Ningning Zhang, Zhenxing Shen, Haiyan Ni, Shuyu Zhao, and Jiarui Wu
Atmos. Chem. Phys., 18, 4639–4656, https://doi.org/10.5194/acp-18-4639-2018, https://doi.org/10.5194/acp-18-4639-2018, 2018
Short summary
Short summary
Black carbon (BC) aerosol in the Tibetan Plateau (TP) has important effects on the regional climate and hydrological processes in South and East Asia. We characterized BC at a high-altitude remote site in the southeastern Tibetan Plateau using a single-particle soot photometer and a photoacoustic extinctiometer. Our study provides insight into the sources and evolution of BC aerosol on the TP, and the results will be useful for improving models of the radiative effects in this area.
Xin Qiu, Irene Cheng, Fuquan Yang, Erin Horb, Leiming Zhang, and Tom Harner
Atmos. Chem. Phys., 18, 3457–3467, https://doi.org/10.5194/acp-18-3457-2018, https://doi.org/10.5194/acp-18-3457-2018, 2018
Short summary
Short summary
We developed emissions databases for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region and evaluated the emissions databases by comparing CALPUFF-modelled concentrations with monitored data. Model–measurement agreement improved near oil sands mines due to updated PAC emissions from tailings ponds. Modelled concentrations were underestimated at remote sites and for alkylated PACs suggesting that the emissions of PACs particularly alkylated compounds are underestimated.
Xing Peng, Jian Gao, Guoliang Shi, Xurong Shi, Yanqi Huangfu, Jiayuan Liu, Yuechong Zhang, Yinchang Feng, Wei Wang, Ruoyu Ma, Cesunica E. Ivey, and Yi Deng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-997, https://doi.org/10.5194/acp-2017-997, 2018
Preprint withdrawn
Short summary
Short summary
A finding here is that source emission dominates the level of pollutants and short-term meteorological condition determines the variation of pollutants. Primary source impact levels are mainly influenced by source emissions, and secondary source impact levels are mainly influenced by synoptic scale fluctuations and source emissions. The implications of results are for source apportionment analyses conducted with data from different geographical locations and under various weather conditions.
Jian Sun, Zhenxing Shen, Yu Huang, Junji Cao, Steven Sai Hang Ho, Xinyi Niu, Taobo Wang, Qian Zhang, Yali Lei, Hongmei Xu, and Hongxia Liu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-36, https://doi.org/10.5194/acp-2018-36, 2018
Revised manuscript not accepted
Tianze Sun, Huizheng Che, Bing Qi, Yaqiang Wang, Yunsheng Dong, Xiangao Xia, Hong Wang, Ke Gui, Yu Zheng, Hujia Zhao, Qianli Ma, Rongguang Du, and Xiaoye Zhang
Atmos. Chem. Phys., 18, 2949–2971, https://doi.org/10.5194/acp-18-2949-2018, https://doi.org/10.5194/acp-18-2949-2018, 2018
Short summary
Short summary
The Yangtze River Delta (YRD) region is a key hub in China with air pollution problems. We applied various data from observations and satellites, finding particles in summer prefer hygroscopic growth leading to high scatter. Transported scatter particles lead to a cooling effect which lowers the boundary layer, creating positive feedback. Transported pollutants over YRD are from the North China Plain, northwestern deserts, and southern biomass burning. This finding helps air quality control.
Cynthia H. Whaley, Paul A. Makar, Mark W. Shephard, Leiming Zhang, Junhua Zhang, Qiong Zheng, Ayodeji Akingunola, Gregory R. Wentworth, Jennifer G. Murphy, Shailesh K. Kharol, and Karen E. Cady-Pereira
Atmos. Chem. Phys., 18, 2011–2034, https://doi.org/10.5194/acp-18-2011-2018, https://doi.org/10.5194/acp-18-2011-2018, 2018
Short summary
Short summary
Using a modified air quality forecasting model, we have found that a significant fraction (> 50 %) of ambient ammonia comes from re-emission from plants and soils in the broader Athabasca Oil Sands region and much of Alberta and Saskatchewan. We also found that about 20 % of ambient ammonia in Alberta and Saskatchewan came from forest fires in the summer of 2013. The addition of these two processes improved modelled ammonia, which was a motivating factor in undertaking this research.
Bingliang Zhuang, Tijian Wang, Jane Liu, Huizheng Che, Yong Han, Yu Fu, Shu Li, Min Xie, Mengmeng Li, Pulong Chen, Huimin Chen, Xiu-qun Yang, and Jianning Sun
Atmos. Chem. Phys., 18, 1419–1436, https://doi.org/10.5194/acp-18-1419-2018, https://doi.org/10.5194/acp-18-1419-2018, 2018
Short summary
Short summary
Aerosols have a significant influence on climate changes. Their uncertainties could be substantially reduced if observation data were used. The properties and the DRF of fractionated aerosols in the western Yangtze River Delta are investigated based on measurements. Results reveal the characteristics of the optical properties and DRFs of different types of fractionated aerosols, which can be further used to improve aerosol modelling performance in the eastern regions of China.
Huanbo Wang, Mi Tian, Yang Chen, Guangming Shi, Yuan Liu, Fumo Yang, Leiming Zhang, Liqun Deng, Jiayan Yu, Chao Peng, and Xuyao Cao
Atmos. Chem. Phys., 18, 865–881, https://doi.org/10.5194/acp-18-865-2018, https://doi.org/10.5194/acp-18-865-2018, 2018
Huizheng Che, Bing Qi, Hujia Zhao, Xiangao Xia, Thomas F. Eck, Philippe Goloub, Oleg Dubovik, Victor Estelles, Emilio Cuevas-Agulló, Luc Blarel, Yunfei Wu, Jun Zhu, Rongguang Du, Yaqiang Wang, Hong Wang, Ke Gui, Jie Yu, Yu Zheng, Tianze Sun, Quanliang Chen, Guangyu Shi, and Xiaoye Zhang
Atmos. Chem. Phys., 18, 405–425, https://doi.org/10.5194/acp-18-405-2018, https://doi.org/10.5194/acp-18-405-2018, 2018
Short summary
Short summary
Sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify aerosols based on size and absorption. This study contributes to our understanding of aerosols and regional climate/air quality, and the results will be useful for validating satellite retrievals and for improving climate models and remote sensing.
Huiting Mao, Dolly Hall, Zhuyun Ye, Ying Zhou, Dirk Felton, and Leiming Zhang
Atmos. Chem. Phys., 17, 11655–11671, https://doi.org/10.5194/acp-17-11655-2017, https://doi.org/10.5194/acp-17-11655-2017, 2017
Short summary
Short summary
Mercury (Hg) is a global pollutant hazardous to human and ecosystem health, and its emission control is imperative. Anthropogenic mercury emissions have been reduced by 78 % in the United States from 1990 to 2014. However, no clearly defined trend was observed in Hg concentrations at urban locations such as the one in this study. This indicates that other factors may have dominated over anthropogenic emission control. The implications of this study could hence be highly policy relevant.
Ying Zhang, Zhengqiang Li, Yuhuan Zhang, Donghui Li, Lili Qie, Huizheng Che, and Hua Xu
Atmos. Meas. Tech., 10, 3203–3213, https://doi.org/10.5194/amt-10-3203-2017, https://doi.org/10.5194/amt-10-3203-2017, 2017
Jun Tao, Leiming Zhang, Junji Cao, and Renjian Zhang
Atmos. Chem. Phys., 17, 9485–9518, https://doi.org/10.5194/acp-17-9485-2017, https://doi.org/10.5194/acp-17-9485-2017, 2017
Short summary
Short summary
In this study, studies on PM2.5 chemical composition, source apportionment and its impact on aerosol optical properties across China are thoroughly reviewed, and historical emission control policies in China and their effectiveness in reducing PM2.5 are discussed.
Leiming Zhang, Seth Lyman, Huiting Mao, Che-Jen Lin, David A. Gay, Shuxiao Wang, Mae Sexauer Gustin, Xinbin Feng, and Frank Wania
Atmos. Chem. Phys., 17, 9133–9144, https://doi.org/10.5194/acp-17-9133-2017, https://doi.org/10.5194/acp-17-9133-2017, 2017
Short summary
Short summary
Future research needs are proposed for improving the understanding of atmospheric mercury cycling. These include refinement of mercury emission estimations, quantification of dry deposition and air–surface exchange, improvement of the treatment of chemical mechanisms in chemical transport models, increase in the accuracy of oxidized mercury measurements, better interpretation of atmospheric mercury chemistry data, and harmonization of network operation.
Rohan Jayaratne, Buddhi Pushpawela, Congrong He, Hui Li, Jian Gao, Fahe Chai, and Lidia Morawska
Atmos. Chem. Phys., 17, 8825–8835, https://doi.org/10.5194/acp-17-8825-2017, https://doi.org/10.5194/acp-17-8825-2017, 2017
Short summary
Short summary
Observations over a continuous 3-month period in Beijing showed 26 new particle formation (NPF) events, generally coinciding with periods with relatively clean air when the wind direction was from the less industrialized north. Large particles in the atmosphere suppress the gaseous supersaturation that is required for NPF. No events were observed when the daily mean PM2.5 concentration exceeded 43 µg m−3. These results provide useful insight into the formation of haze events in megacities.
Yunfei Wu, Xiaojia Wang, Jun Tao, Rujin Huang, Ping Tian, Junji Cao, Leiming Zhang, Kin-Fai Ho, Zhiwei Han, and Renjian Zhang
Atmos. Chem. Phys., 17, 7965–7975, https://doi.org/10.5194/acp-17-7965-2017, https://doi.org/10.5194/acp-17-7965-2017, 2017
Short summary
Short summary
As black carbon (BC) aerosols play an important role in the climate and environment, the size distribution of refractory BC (rBC) was investigated. On this basis, the source of rBC was further analyzed. The local traffic exhausts contributed greatly to the rBC in urban areas. However, its contribution decreased significantly in the polluted period compared to the clean period, implying the increasing contribution of other sources, e.g., coal combustion or biomass burning, in the polluted period.
Irene Cheng and Leiming Zhang
Atmos. Chem. Phys., 17, 4711–4730, https://doi.org/10.5194/acp-17-4711-2017, https://doi.org/10.5194/acp-17-4711-2017, 2017
Short summary
Short summary
Geographical and long-term (1983–2011) trends in air concentrations and wet deposition of inorganic ions and aerosol and precipitation acidity were analyzed at 31 sites in Canada. Declines in atmospheric ammonium, nitrate, and sulfate were consistent with decreasing emissions of NH3, NOx, and SO2. A decline in nitrate and sulfate wet deposition was also observed. Wet scavenging was further studied by estimating scavenging ratios and relative contributions of gases and aerosols to wet deposition.
Xiaohong Xu, Yanyin Liao, Irene Cheng, and Leiming Zhang
Atmos. Chem. Phys., 17, 1381–1400, https://doi.org/10.5194/acp-17-1381-2017, https://doi.org/10.5194/acp-17-1381-2017, 2017
Short summary
Short summary
This study addresses two issues related to source–receptor analysis of speciated atmospheric mercury: (1) comparing PMF and PCA and (2) testing different approaches in data selection for PMF modeling.
Jiayuan Wang, Gehui Wang, Jian Gao, Han Wang, Yanqin Ren, Jianjun Li, Bianhong Zhou, Can Wu, Lu Zhang, Shulan Wang, and Fahe Chai
Atmos. Chem. Phys., 17, 981–992, https://doi.org/10.5194/acp-17-981-2017, https://doi.org/10.5194/acp-17-981-2017, 2017
Short summary
Short summary
We compared the differences in concentrations of oxalic acid and related SOA and the stable carbon isotopic compositions of oxalic acid Beijing before, during and after the APEC 2014 conference, to investigate the impact of pollutant emission controls on the origins and formation mechanisms of PM2.5. Our results indicate that the significant reduction in PM2.5 during APEC is firstly due to the emission control and secondly attributed to the relatively colder and drier conditions.
L. Paige Wright, Leiming Zhang, and Frank J. Marsik
Atmos. Chem. Phys., 16, 13399–13416, https://doi.org/10.5194/acp-16-13399-2016, https://doi.org/10.5194/acp-16-13399-2016, 2016
Short summary
Short summary
The current knowledge concerning mercury dry deposition is reviewed, including dry deposition algorithms used in chemical transport models and at monitoring sites, measurement methods and studies for quantifying dry deposition of oxidized mercury, and measurement studies of litterfall and throughfall mercury. Over all the regions, dry deposition, estimated as the sum of litterfall and throughfall minus open-field wet deposition, is more dominant than wet deposition for Hg deposition.
Huiting Mao, Irene Cheng, and Leiming Zhang
Atmos. Chem. Phys., 16, 12897–12924, https://doi.org/10.5194/acp-16-12897-2016, https://doi.org/10.5194/acp-16-12897-2016, 2016
Short summary
Short summary
Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of TGM/GEM, GOM, and PBM in environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. Remaining questions/issues and recommendations were provided for future research.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 16, 11465–11475, https://doi.org/10.5194/acp-16-11465-2016, https://doi.org/10.5194/acp-16-11465-2016, 2016
Short summary
Short summary
Atmospheric NH3 plays an important role in forming secondary aerosols and has a direct impact on sensitive ecosystems. This study aims to study its long-term variation and find that the long-term trend can be affected by climate change as well as other anthropogenic factors, depending on sites. A large percentage increase of atmospheric NH3 at remote American sites is surprising and may cause a potential threat to sensitive ecosystems in the future.
Lei Sun, Likun Xue, Tao Wang, Jian Gao, Aijun Ding, Owen R. Cooper, Meiyun Lin, Pengju Xu, Zhe Wang, Xinfeng Wang, Liang Wen, Yanhong Zhu, Tianshu Chen, Lingxiao Yang, Yan Wang, Jianmin Chen, and Wenxing Wang
Atmos. Chem. Phys., 16, 10637–10650, https://doi.org/10.5194/acp-16-10637-2016, https://doi.org/10.5194/acp-16-10637-2016, 2016
Short summary
Short summary
We compiled the available observations of surface O3 at Mt. Tai – the highest mountain in the North China Plain, and found a significant increase of O3 concenrations from 2003 to 2015. The observed O3 increase was mainly due to the increase of O3 precursors, especially VOCs. Our analysis shows that controlling NOx alone, in the absence of VOC controls, is not sufficient to reduce regional O3 levels in North China in a short period.
Chunpeng Leng, Junyan Duan, Chen Xu, Hefeng Zhang, Yifan Wang, Yanyu Wang, Xiang Li, Lingdong Kong, Jun Tao, Renjian Zhang, Tiantao Cheng, Shuping Zha, and Xingna Yu
Atmos. Chem. Phys., 16, 9221–9234, https://doi.org/10.5194/acp-16-9221-2016, https://doi.org/10.5194/acp-16-9221-2016, 2016
Short summary
Short summary
Meteorological conditions, local anthropogenic emissions and aerosol properties played major roles in this historic winter haze weather formation. Aerosols the size of 600–1400 nm are mostly responsible for the impairment of atmospheric visibility. This study was performed by combining many on-line measurement techniques which were calibrated regularly to ensure reliability, and can act as a reference for forecasting and eliminating the occurrences of regional atmospheric pollutions in China.
Naifang Bei, Guohui Li, Ru-Jin Huang, Junji Cao, Ning Meng, Tian Feng, Suixin Liu, Ting Zhang, Qiang Zhang, and Luisa T. Molina
Atmos. Chem. Phys., 16, 7373–7387, https://doi.org/10.5194/acp-16-7373-2016, https://doi.org/10.5194/acp-16-7373-2016, 2016
Short summary
Short summary
Rapid industrialization and urbanization have caused severe air pollution in the Guanzhong basin, northwestern China with heavy haze events occurring frequently in recent winters. Due to frequent occurrence of unfavorable synoptic situations during wintertime, mitigation of emissions is the optimum approach to mitigate the air pollution in the Guanzhong basin.
Xiaodong Zhang, Tao Huang, Leiming Zhang, Yanjie Shen, Yuan Zhao, Hong Gao, Xiaoxuan Mao, Chenhui Jia, and Jianmin Ma
Atmos. Chem. Phys., 16, 6949–6960, https://doi.org/10.5194/acp-16-6949-2016, https://doi.org/10.5194/acp-16-6949-2016, 2016
Short summary
Short summary
This paper assesses long-term trend of biogenic isoprene emissions in the Three-North Shelter Forest Program, also known as "the Green Great Wall", the largest artificial afforestation in the human history. Results show that the TNRSF has altered the long-term emission trend in north China from a decreasing to an increasing trend from 1982 to 2010. Isoprene emission fluxes have increased in many places of the TNRSF over the last 3 decades due to the growing trees and vegetation coverage.
James Hansen, Makiko Sato, Paul Hearty, Reto Ruedy, Maxwell Kelley, Valerie Masson-Delmotte, Gary Russell, George Tselioudis, Junji Cao, Eric Rignot, Isabella Velicogna, Blair Tormey, Bailey Donovan, Evgeniya Kandiano, Karina von Schuckmann, Pushker Kharecha, Allegra N. Legrande, Michael Bauer, and Kwok-Wai Lo
Atmos. Chem. Phys., 16, 3761–3812, https://doi.org/10.5194/acp-16-3761-2016, https://doi.org/10.5194/acp-16-3761-2016, 2016
Short summary
Short summary
We use climate simulations, paleoclimate data and modern observations to infer that continued high fossil fuel emissions will yield cooling of Southern Ocean and North Atlantic surfaces, slowdown and shutdown of SMOC & AMOC, increasingly powerful storms and nonlinear sea level rise reaching several meters in 50–150 years, effects missed in IPCC reports because of omission of ice sheet melt and an insensitivity of most climate models, likely due to excessive ocean mixing.
Shuh-Ji Kao, Tzu-Ling Chiang, Da-Wei Li, Yi-Chia Hsin, Li-Wei Zheng, Jin-Yu Terence Yang, Shih-Chieh Hsu, Chau-Ron Wu, and Minhan Dai
Clim. Past Discuss., https://doi.org/10.5194/cp-2015-167, https://doi.org/10.5194/cp-2015-167, 2016
Preprint withdrawn
Short summary
Short summary
A 3-D model was run for the South China Sea to explore the effects of sea level drop and monsoon wind intensity on glacial patterns of circulation and ventilation. Winter northeasterly monsoon wind intensity governs the volume transport of Kuroshio intrusion through the Luzon Strait, subsequently, the water exchange rate and the mean residence time of water body of the SCS.
Miriam Elser, Ru-Jin Huang, Robert Wolf, Jay G. Slowik, Qiyuan Wang, Francesco Canonaco, Guohui Li, Carlo Bozzetti, Kaspar R. Daellenbach, Yu Huang, Renjian Zhang, Zhengqiang Li, Junji Cao, Urs Baltensperger, Imad El-Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 3207–3225, https://doi.org/10.5194/acp-16-3207-2016, https://doi.org/10.5194/acp-16-3207-2016, 2016
Short summary
Short summary
This work represents the first online chemical characterization of the PM2.5 using a high-resolution time-of flight aerosol mass spectrometer during extreme haze events China. The application of novel source apportionment techniques allowed for an improved identification and quantification of the sources of organic aerosols. The main sources and processes driving the extreme haze events are assessed.
Lei Zhang, Shuxiao Wang, Qingru Wu, Fengyang Wang, Che-Jen Lin, Leiming Zhang, Mulin Hui, Mei Yang, Haitao Su, and Jiming Hao
Atmos. Chem. Phys., 16, 2417–2433, https://doi.org/10.5194/acp-16-2417-2016, https://doi.org/10.5194/acp-16-2417-2016, 2016
L. Luo, X. H. Yao, H. W. Gao, S. C. Hsu, J. W. Li, and S. J. Kao
Atmos. Chem. Phys., 16, 325–341, https://doi.org/10.5194/acp-16-325-2016, https://doi.org/10.5194/acp-16-325-2016, 2016
Short summary
Short summary
Concentrations and depositions of various nitrogen species of water-soluble fraction in aerosols were observed during spring over the eastern China seas and northwestern Pacific Ocean. Results revealed nitrogen deposition associated with the sea fog weather was 6 times higher than that of spring supply from the Yangtze River to the ECS shelf. The DON emission had occurred most likely during sea spray. Weather conditions modulate the nitrogen exchange at the ocean-atmosphere boundary.
Y. Q. Wang, X. Y. Zhang, J. Y. Sun, X. C. Zhang, H. Z. Che, and Y. Li
Atmos. Chem. Phys., 15, 13585–13598, https://doi.org/10.5194/acp-15-13585-2015, https://doi.org/10.5194/acp-15-13585-2015, 2015
Short summary
Short summary
Concentrations of PM10, PM2.5 and PM1 were monitored at 24 stations of CAWNET from 2006 to 2014. The average levels of particulate matter (PM) concentrations and relationships were investigated. Seasonal, interannual and diurnal variations of the PM were revealed. The effects of meteorological factors on the PM were discussed. The highest PM concentrations were observed at the stations of Xian, Zhengzhou and Gucheng, in Guanzhong and the Huabei Plain.
J.-W. Xu, R. V. Martin, A. van Donkelaar, J. Kim, M. Choi, Q. Zhang, G. Geng, Y. Liu, Z. Ma, L. Huang, Y. Wang, H. Chen, H. Che, P. Lin, and N. Lin
Atmos. Chem. Phys., 15, 13133–13144, https://doi.org/10.5194/acp-15-13133-2015, https://doi.org/10.5194/acp-15-13133-2015, 2015
Short summary
Short summary
1. GOCI (Geostationary Ocean Color Imager) retrieval of AOD is consistent with AERONET AOD (RMSE=0.08-0.1)
2. GOCI-derived PM2.5 is in significant agreement with in situ observations (r2=0.66, rRMSE=18.3%)
3. Population-weighted GOCI-derived PM2.5 over eastern China for 2013 is 53.8 μg/m3, threatening the health of its more than 400 million residents
4. Secondary inorganics (SO42-, NO3-, NH4+) & organic matter are the most significant components of GOCI-derived PM2.5.
Q. Y. Wang, R.-J. Huang, J. J. Cao, X. X. Tie, H. Y. Ni, Y. Q. Zhou, Y. M. Han, T. F. Hu, C. S. Zhu, T. Feng, N. Li, and J. D. Li
Atmos. Chem. Phys., 15, 13059–13069, https://doi.org/10.5194/acp-15-13059-2015, https://doi.org/10.5194/acp-15-13059-2015, 2015
Short summary
Short summary
An intensive campaign was conducted at the Qinghai-Tibetan Plateau using a ground-based single particle soot photometer and a photoacoustic extinctiometer. Significant enhancements of rBC loadings and number fraction of coated rBC were observed during the pollution episode. Biomass burning from N. India is determined to be an important potential source influencing the northeastern Qinghai-Tibetan Plateau. The rBC mixing state is important in determining absorption during the pollution episode.
L. Zhang, D. K. Henze, G. A. Grell, G. R. Carmichael, N. Bousserez, Q. Zhang, O. Torres, C. Ahn, Z. Lu, J. Cao, and Y. Mao
Atmos. Chem. Phys., 15, 10281–10308, https://doi.org/10.5194/acp-15-10281-2015, https://doi.org/10.5194/acp-15-10281-2015, 2015
Short summary
Short summary
We attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Despite the limitations and uncertainties, using OMI AAOD to constrain BC sources we are able to improve model representation of BC distributions, particularly over China.
C. G. Nolte, K. W. Appel, J. T. Kelly, P. V. Bhave, K. M. Fahey, J. L. Collett Jr., L. Zhang, and J. O. Young
Geosci. Model Dev., 8, 2877–2892, https://doi.org/10.5194/gmd-8-2877-2015, https://doi.org/10.5194/gmd-8-2877-2015, 2015
Short summary
Short summary
This study is the most comprehensive evaluation of CMAQ inorganic
aerosol size-composition distributions conducted to date. We compare two
methods of inferring PM2.5 concentrations from the model: (1) based on
the sum of the masses in the fine aerosol modes, as is most commonly
done in CMAQ model evaluation; and (2) computed using the simulated size
distributions. Differences are generally less than 1 microgram/m3, and
are largest over the eastern USA during the summer.
I. Cheng, X. Xu, and L. Zhang
Atmos. Chem. Phys., 15, 7877–7895, https://doi.org/10.5194/acp-15-7877-2015, https://doi.org/10.5194/acp-15-7877-2015, 2015
Short summary
Short summary
Current knowledge of receptor-based studies using speciated atmospheric mercury is reviewed and recommendations for future research needs are provided.
H. Che, X.-Y. Zhang, X. Xia, P. Goloub, B. Holben, H. Zhao, Y. Wang, X.-C. Zhang, H. Wang, L. Blarel, B. Damiri, R. Zhang, X. Deng, Y. Ma, T. Wang, F. Geng, B. Qi, J. Zhu, J. Yu, Q. Chen, and G. Shi
Atmos. Chem. Phys., 15, 7619–7652, https://doi.org/10.5194/acp-15-7619-2015, https://doi.org/10.5194/acp-15-7619-2015, 2015
Short summary
Short summary
This work studied more than 10 years of measurements of aerosol optical depths (AODs) made for 50 sites of CARSNET compiled into a climatology of aerosol optical properties for China. It lets us see a detailed full-scale description of AOD observations over China. The results would benefit us a lot in comprehending the temporal and special distribution aerosol optical property over China. Also the data would be valuable to communities of aerosol satellite retrieval, modelling, etc.
Z. Y. Wu, L. Zhang, X. M. Wang, and J. W. Munger
Atmos. Chem. Phys., 15, 7487–7496, https://doi.org/10.5194/acp-15-7487-2015, https://doi.org/10.5194/acp-15-7487-2015, 2015
Short summary
Short summary
In this study, we have developed a modified micrometeorological gradient method (MGM), although based on existing micrometeorological theory, to estimate O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top. The new method provides an alternative approach in monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies and is expected to be useful for the scientific community.
C. Jiang, H. Wang, T. Zhao, T. Li, and H. Che
Atmos. Chem. Phys., 15, 5803–5814, https://doi.org/10.5194/acp-15-5803-2015, https://doi.org/10.5194/acp-15-5803-2015, 2015
Y.-C. Lin, C.-J. Tsai, Y.-C. Wu, R. Zhang, K.-H. Chi, Y.-T. Huang, S.-H. Lin, and S.-C. Hsu
Atmos. Chem. Phys., 15, 4117–4130, https://doi.org/10.5194/acp-15-4117-2015, https://doi.org/10.5194/acp-15-4117-2015, 2015
Short summary
Short summary
In this work, size distributions and chemical compositions of 36 PM metals emitted from traffic emissions are explored by tunnel experiments. Potential sources of tunnel PM are also identified. Importantly, fingerprinting ratios of wear debris and automotive catalysts are established. The ratios will be good tools for apportioning PM sources in the polluted urban atmosphere.
H. Wang, M. Xue, X. Y. Zhang, H. L. Liu, C. H. Zhou, S. C. Tan, H. Z. Che, B. Chen, and T. Li
Atmos. Chem. Phys., 15, 3257–3275, https://doi.org/10.5194/acp-15-3257-2015, https://doi.org/10.5194/acp-15-3257-2015, 2015
H. Wang, G. Y. Shi, X. Y. Zhang, S. L. Gong, S. C. Tan, B. Chen, H. Z. Che, and T. Li
Atmos. Chem. Phys., 15, 3277–3287, https://doi.org/10.5194/acp-15-3277-2015, https://doi.org/10.5194/acp-15-3277-2015, 2015
Short summary
Short summary
Solar radiation reaching the ground decreases about 15% in Chinese 3JNS region and by 20 to 25% in the region with the highest AOD. Aerosol cools the PBL atmosphere but warms the atmosphere above it, leading to a more stable atmosphere that causes a decrease in turbulence diffusion of about 52% and in PBL height of about 33%; this results in a positive feedback on the PM2.5 concentration within the PBL and the surface as well as the haze formation.
L. Zhang, I. Cheng, D. Muir, and J.-P. Charland
Atmos. Chem. Phys., 15, 1421–1434, https://doi.org/10.5194/acp-15-1421-2015, https://doi.org/10.5194/acp-15-1421-2015, 2015
Short summary
Short summary
This study analyzed air and precipitation concentrations of 43 polycyclic aromatic compounds (PACs) collected in the Athabasca oil sands region. A database has been built for the parameter scavenging ratio, which is defined as the ratio of the concentration of PACs in precipitation to that in air. A better understanding of the potential differences between gas and particulate scavenging and between snow and rain scavenging has been achieved.
Y.-L. Zhang, R.-J. Huang, I. El Haddad, K.-F. Ho, J.-J. Cao, Y. Han, P. Zotter, C. Bozzetti, K. R. Daellenbach, F. Canonaco, J. G. Slowik, G. Salazar, M. Schwikowski, J. Schnelle-Kreis, G. Abbaszade, R. Zimmermann, U. Baltensperger, A. S. H. Prévôt, and S. Szidat
Atmos. Chem. Phys., 15, 1299–1312, https://doi.org/10.5194/acp-15-1299-2015, https://doi.org/10.5194/acp-15-1299-2015, 2015
Short summary
Short summary
Source apportionment of fine carbonaceous aerosols using radiocarbon and other organic markers measurements during 2013 winter haze episodes was conducted at four megacities in China. Our results demonstrate that fossil emissions predominate EC with a mean contribution of 75±8%, whereas non-fossil sources account for 55±10% of OC; and the increment of TC on heavily polluted days was mainly driven by the increase of secondary OC from both fossil-fuel and non-fossil emissions.
S.-J. Kao, B.-Y. Wang, L.-W. Zheng, K. Selvaraj, S.-C. Hsu, X. H. Sean Wan, M. Xu, and C.-T. Arthur Chen
Biogeosciences, 12, 1–14, https://doi.org/10.5194/bg-12-1-2015, https://doi.org/10.5194/bg-12-1-2015, 2015
Short summary
Short summary
This paper presents a new sedimentary nitrogen isotope record (d15N) of a sediment core from the southeastern Arabian Sea (AS). By compiling the published nitrogen isotope data in the AS, we obtain geographically distinctive bottom-depth effects for the northern and southern AS since 35ka. After eliminating the bottom-depth bias, we observe opposite d15N trends in the Holocene between these two areas, reflecting a special coupling of denitrification to the north and N2-fixation to the south.
L. K. Xue, T. Wang, J. Gao, A. J. Ding, X. H. Zhou, D. R. Blake, X. F. Wang, S. M. Saunders, S. J. Fan, H. C. Zuo, Q. Z. Zhang, and W. X. Wang
Atmos. Chem. Phys., 14, 13175–13188, https://doi.org/10.5194/acp-14-13175-2014, https://doi.org/10.5194/acp-14-13175-2014, 2014
C. Leng, Q. Zhang, D. Zhang, C. Xu, T. Cheng, R. Zhang, J. Tao, J. Chen, S. Zha, Y. Zhang, X. Li, L. Kong, and W. Gao
Atmos. Chem. Phys., 14, 12499–12512, https://doi.org/10.5194/acp-14-12499-2014, https://doi.org/10.5194/acp-14-12499-2014, 2014
G. H. Wang, C. L. Cheng, Y. Huang, J. Tao, Y. Q. Ren, F. Wu, J. J. Meng, J. J. Li, Y. T. Cheng, J. J. Cao, S. X. Liu, T. Zhang, R. Zhang, and Y. B. Chen
Atmos. Chem. Phys., 14, 11571–11585, https://doi.org/10.5194/acp-14-11571-2014, https://doi.org/10.5194/acp-14-11571-2014, 2014
C. Leng, Q. Zhang, J. Tao, H. Zhang, D. Zhang, C. Xu, X. Li, L. Kong, T. Cheng, R. Zhang, X. Yang, J. Chen, L. Qiao, S. Lou, H. Wang, and C. Chen
Atmos. Chem. Phys., 14, 11353–11365, https://doi.org/10.5194/acp-14-11353-2014, https://doi.org/10.5194/acp-14-11353-2014, 2014
B. Qu, J. Ming, S.-C. Kang, G.-S. Zhang, Y.-W. Li, C.-D. Li, S.-Y. Zhao, Z.-M. Ji, and J.-J. Cao
Atmos. Chem. Phys., 14, 11117–11128, https://doi.org/10.5194/acp-14-11117-2014, https://doi.org/10.5194/acp-14-11117-2014, 2014
X. Han, M. Zhang, J. Gao, S. Wang, and F. Chai
Atmos. Chem. Phys., 14, 10231–10248, https://doi.org/10.5194/acp-14-10231-2014, https://doi.org/10.5194/acp-14-10231-2014, 2014
S.-C. Hsu, G.-C. Gong, F.-K. Shiah, C.-C. Hung, S.-J. Kao, R. Zhang, W.-N. Chen, C.-C. Chen, C. C.-K. Chou, Y.-C. Lin, F.-J. Lin, and S.-H. Lin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-21433-2014, https://doi.org/10.5194/acpd-14-21433-2014, 2014
Revised manuscript has not been submitted
Z. J. Lin, Z. S. Zhang, L. Zhang, J. Tao, R. J. Zhang, J. J. Cao, S. J. Fan, and Y. H. Zhang
Atmos. Chem. Phys., 14, 7631–7644, https://doi.org/10.5194/acp-14-7631-2014, https://doi.org/10.5194/acp-14-7631-2014, 2014
R.-J. Huang, W.-B. Li, Y.-R. Wang, Q. Y. Wang, W. T. Jia, K.-F. Ho, J. J. Cao, G. H. Wang, X. Chen, I. EI Haddad, Z. X. Zhuang, X. R. Wang, A. S. H. Prévôt, C. D. O'Dowd, and T. Hoffmann
Atmos. Meas. Tech., 7, 2027–2035, https://doi.org/10.5194/amt-7-2027-2014, https://doi.org/10.5194/amt-7-2027-2014, 2014
D. Wen, L. Zhang, J. C. Lin, R. Vet, and M. D. Moran
Geosci. Model Dev., 7, 1037–1050, https://doi.org/10.5194/gmd-7-1037-2014, https://doi.org/10.5194/gmd-7-1037-2014, 2014
X. Wang, L. Zhang, and M. D. Moran
Geosci. Model Dev., 7, 799–819, https://doi.org/10.5194/gmd-7-799-2014, https://doi.org/10.5194/gmd-7-799-2014, 2014
S. S.-Y. Hsiao, T.-C. Hsu, J.-w. Liu, X. Xie, Y. Zhang, J. Lin, H. Wang, J.-Y. T. Yang, S.-C. Hsu, M. Dai, and S.-J. Kao
Biogeosciences, 11, 2083–2098, https://doi.org/10.5194/bg-11-2083-2014, https://doi.org/10.5194/bg-11-2083-2014, 2014
L. Zhang and Z. He
Atmos. Chem. Phys., 14, 3729–3737, https://doi.org/10.5194/acp-14-3729-2014, https://doi.org/10.5194/acp-14-3729-2014, 2014
J.-Y. T. Yang, S.-C. Hsu, M. H. Dai, S. S.-Y. Hsiao, and S.-J. Kao
Biogeosciences, 11, 1833–1846, https://doi.org/10.5194/bg-11-1833-2014, https://doi.org/10.5194/bg-11-1833-2014, 2014
S.-J. Kao, R. G. Hilton, K. Selvaraj, M. Dai, F. Zehetner, J.-C. Huang, S.-C. Hsu, R. Sparkes, J. T. Liu, T.-Y. Lee, J.-Y. T. Yang, A. Galy, X. Xu, and N. Hovius
Earth Surf. Dynam., 2, 127–139, https://doi.org/10.5194/esurf-2-127-2014, https://doi.org/10.5194/esurf-2-127-2014, 2014
H. Che, X. Xia, J. Zhu, Z. Li, O. Dubovik, B. Holben, P. Goloub, H. Chen, V. Estelles, E. Cuevas-Agulló, L. Blarel, H. Wang, H. Zhao, X. Zhang, Y. Wang, J. Sun, R. Tao, X. Zhang, and G. Shi
Atmos. Chem. Phys., 14, 2125–2138, https://doi.org/10.5194/acp-14-2125-2014, https://doi.org/10.5194/acp-14-2125-2014, 2014
X. H. Yao and L. Zhang
Biogeosciences, 10, 7913–7925, https://doi.org/10.5194/bg-10-7913-2013, https://doi.org/10.5194/bg-10-7913-2013, 2013
J. J. Li, G. H. Wang, J. J. Cao, X. M. Wang, and R. J. Zhang
Atmos. Chem. Phys., 13, 11535–11549, https://doi.org/10.5194/acp-13-11535-2013, https://doi.org/10.5194/acp-13-11535-2013, 2013
S. Chen, X. Qiu, L. Zhang, F. Yang, and P. Blanchard
Atmos. Chem. Phys., 13, 11287–11293, https://doi.org/10.5194/acp-13-11287-2013, https://doi.org/10.5194/acp-13-11287-2013, 2013
L. K. Xue, T. Wang, J. Gao, A. J. Ding, X. H. Zhou, D. R. Blake, X. F. Wang, S. M. Saunders, S. J. Fan, H. C. Zuo, Q. Z. Zhang, and W. X. Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-27243-2013, https://doi.org/10.5194/acpd-13-27243-2013, 2013
Revised manuscript not accepted
L. Zhang, X. Wang, M. D. Moran, and J. Feng
Atmos. Chem. Phys., 13, 10005–10025, https://doi.org/10.5194/acp-13-10005-2013, https://doi.org/10.5194/acp-13-10005-2013, 2013
R. Zhang, J. Jing, J. Tao, S.-C. Hsu, G. Wang, J. Cao, C. S. L. Lee, L. Zhu, Z. Chen, Y. Zhao, and Z. Shen
Atmos. Chem. Phys., 13, 7053–7074, https://doi.org/10.5194/acp-13-7053-2013, https://doi.org/10.5194/acp-13-7053-2013, 2013
I. Cheng, L. Zhang, P. Blanchard, J. Dalziel, and R. Tordon
Atmos. Chem. Phys., 13, 6031–6048, https://doi.org/10.5194/acp-13-6031-2013, https://doi.org/10.5194/acp-13-6031-2013, 2013
G. Kos, A. Ryzhkov, A. Dastoor, J. Narayan, A. Steffen, P. A. Ariya, and L. Zhang
Atmos. Chem. Phys., 13, 4839–4863, https://doi.org/10.5194/acp-13-4839-2013, https://doi.org/10.5194/acp-13-4839-2013, 2013
L. Xing, T.-M. Fu, J. J. Cao, S. C. Lee, G. H. Wang, K. F. Ho, M.-C. Cheng, C.-F. You, and T. J. Wang
Atmos. Chem. Phys., 13, 4307–4318, https://doi.org/10.5194/acp-13-4307-2013, https://doi.org/10.5194/acp-13-4307-2013, 2013
D. Wen, J. C. Lin, L. Zhang, R. Vet, and M. D. Moran
Geosci. Model Dev., 6, 327–344, https://doi.org/10.5194/gmd-6-327-2013, https://doi.org/10.5194/gmd-6-327-2013, 2013
Y. H. Lee, J.-F. Lamarque, M. G. Flanner, C. Jiao, D. T. Shindell, T. Berntsen, M. M. Bisiaux, J. Cao, W. J. Collins, M. Curran, R. Edwards, G. Faluvegi, S. Ghan, L. W. Horowitz, J. R. McConnell, J. Ming, G. Myhre, T. Nagashima, V. Naik, S. T. Rumbold, R. B. Skeie, K. Sudo, T. Takemura, F. Thevenon, B. Xu, and J.-H. Yoon
Atmos. Chem. Phys., 13, 2607–2634, https://doi.org/10.5194/acp-13-2607-2013, https://doi.org/10.5194/acp-13-2607-2013, 2013
Z. J. Lin, J. Tao, F. H. Chai, S. J. Fan, J. H. Yue, L. H. Zhu, K. F. Ho, and R. J. Zhang
Atmos. Chem. Phys., 13, 1115–1128, https://doi.org/10.5194/acp-13-1115-2013, https://doi.org/10.5194/acp-13-1115-2013, 2013
J.-J. Cao, C.-S. Zhu, X.-X. Tie, F.-H. Geng, H.-M. Xu, S. S. H. Ho, G.-H. Wang, Y.-M. Han, and K.-F. Ho
Atmos. Chem. Phys., 13, 803–817, https://doi.org/10.5194/acp-13-803-2013, https://doi.org/10.5194/acp-13-803-2013, 2013
G. H. Wang, B. H. Zhou, C. L. Cheng, J. J. Cao, J. J. Li, J. J. Meng, J. Tao, R. J. Zhang, and P. Q. Fu
Atmos. Chem. Phys., 13, 819–835, https://doi.org/10.5194/acp-13-819-2013, https://doi.org/10.5194/acp-13-819-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Automated compound speciation, cluster analysis, and quantification of organic vapours and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Atmospheric evolution of environmentally persistent free radicals in rural North China Plain: insights into water solubility and effects on PM2.5 oxidative potential
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing
Simultaneous organic aerosol source apportionment at two Antarctic sites reveals large-scale and ecoregion-specific components
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations
Bayesian inference-based estimation of hourly primary and secondary organic carbon in suburban Hong Kong: multi-temporal-scale variations and evolution characteristics during PM2.5 episodes
Primary and secondary emissions from a modern fleet of city buses
Dominant Influence of Biomass Combustion and Cross-Border Transport on Nitrogen-Containing Organic Compound Levels in the Southeastern Tibetan Plateau
Measurement report: Characteristics of aminiums in PM2.5 during winter clean and polluted episodes in China: aminium outbreak and its constraint
Assessing the influence of long-range transport of aerosols on the PM2.5 chemical composition and concentration in the Aburrá Valley
Bridging Gas and Aerosol Properties between Northeast U.S. and Bermuda: Analysis of Eight Transit Flights
Measurement report: Characteristics of nitrogen-containing organics in PM2.5 in Ürümqi, northwestern China – differential impacts of combustion of fresh and aged biomass materials
Measurement report: Bio-physicochemistry of tropical clouds at Maïdo (Réunion, Indian Ocean): overview of results from the BIO-MAÏDO campaign
Impacts of elevated anthropogenic emissions on physicochemical characteristics of BC-containing particles over the Tibetan Plateau
Chemical properties and single-particle mixing state of soot aerosol in Houston during the TRACER campaign
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig (Germany)
Measurement report: Evaluation of the TOF-ACSM-CV for PM1.0 and PM2.5 measurements during the RITA-2021 field campaign
Sea salt reactivity over the northwest Atlantic: an in-depth look using the airborne ACTIVATE dataset
Measurement report: Atmospheric ice nuclei in the Changbai Mountains (2623 m a.s.l.) in northeastern Asia
Morphological and optical properties of carbonaceous aerosol particles from ship emissions and biomass burning during a summer cruise measurement in the South China Sea
Tropical tropospheric aerosol sources and chemical composition observed at high altitude in the Bolivian Andes
Chemical composition, sources and formation mechanism of urban PM2.5 in Southwest China: a case study at the beginning of 2023
Chemical characterization of atmospheric aerosols at a high-altitude mountain site: a study of source apportionment
Composition and sources of carbonaceous aerosol in the European Arctic at Zeppelin Observatory, Svalbard (2017 to 2020)
Variation in chemical composition and volatility of oxygenated organic aerosol in different rural, urban, and mountain environments
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1671, https://doi.org/10.5194/egusphere-2024-1671, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
EGUsphere, https://doi.org/10.5194/egusphere-2024-1622, https://doi.org/10.5194/egusphere-2024-1622, 2024
Short summary
Short summary
A study in rural North China Plain revealed Environmental persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs’ atmospheric evolution for climate and health impacts.
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
Yanqin Ren, Zhenhai Wu, Yuanyuan Ji, Fang Bi, Junling Li, Haijie Zhang, Hao Zhang, Hong Li, and Gehui Wang
Atmos. Chem. Phys., 24, 6525–6538, https://doi.org/10.5194/acp-24-6525-2024, https://doi.org/10.5194/acp-24-6525-2024, 2024
Short summary
Short summary
Nitrated aromatic compounds (NACs) and oxygenated derivatives of polycyclic aromatic hydrocarbons (OPAHs) in PM2.5 were examined from an urban area in Beijing during the autumn and winter. The OPAH and NAC concentrations were much higher during heating than before heating. They majorly originated from the combustion of biomass and automobile emissions, and the secondary generation was the major contributor throughout the whole sampling period.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
EGUsphere, https://doi.org/10.5194/egusphere-2024-1262, https://doi.org/10.5194/egusphere-2024-1262, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterized: sulfate-rich plumes from use of heavy fuel oil with scrubbers and organic-rich plumes from use of low sulfur fuels. The latter were more frequent, emitting double the particle number, and having atypical V/Ni ratio for ship emission.
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024, https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary
Short summary
Comprehensive study of optical properties of brown carbon (BrC) in fine aerosols from Tianjin, China, implied that biological emissions are major sources of BrC in summer, whereas fossil fuel combustion and biomass burning emissions are in cold periods. The direct radiation absorption caused by BrC in short wavelengths contributed about 40 % to that caused by BrC in 300–700 nm. Water-insoluble but methanol-soluble BrC contains more protein-like chromophores (PLOM) than that of water-soluble BrC.
Shan Wang, Kezheng Liao, Zijing Zhang, Yuk Ying Cheng, Qiongqiong Wang, Hanzhe Chen, and Jian Zhen Yu
Atmos. Chem. Phys., 24, 5803–5821, https://doi.org/10.5194/acp-24-5803-2024, https://doi.org/10.5194/acp-24-5803-2024, 2024
Short summary
Short summary
In this work, hourly primary and secondary organic carbon were estimated by a novel Bayesian inference approach in suburban Hong Kong. Their multi-temporal-scale variations and evolution characteristics during PM2.5 episodes were examined. The methodology could serve as a guide for other locations with similar monitoring capabilities. The observation-based results are helpful for understanding the evolving nature of secondary organic aerosols and refining the accuracy of model simulations.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
EGUsphere, https://doi.org/10.5194/egusphere-2024-494, https://doi.org/10.5194/egusphere-2024-494, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1130, https://doi.org/10.5194/egusphere-2024-1130, 2024
Short summary
Short summary
This study explores nitrogen-containing organic compounds (NOCs) in PM2.5 particles on the Southeastern Tibetan Plateau. We discovered that biomass burning and transboundary transport are the primary sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they contribute to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-975, https://doi.org/10.5194/egusphere-2024-975, 2024
Short summary
Short summary
This study has explored the characteristics of aminiums, ammonium, and PM2.5 from the clean days to the polluted days according to the observational data from 11 different Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols, or the displacement of aminiums by ammonia under a high ammonia condition. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristic and formation in China.
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
EGUsphere, https://doi.org/10.5194/egusphere-2024-695, https://doi.org/10.5194/egusphere-2024-695, 2024
Short summary
Short summary
For the Aburrá Valley, Colombia, local emissions dominate aerosol concentrations, which degrade air quality (AQ) and impact human health. However, this can be exacerbated by the influx of external emissions from sources such as regional fires, Saharan dust, and volcanic degassing. While substantially increasing city-wide aerosols, these external sources can also degrade the aerosol chemical composition (i.e. their toxicity) and impact AQ, which we investigate in this study.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-926, https://doi.org/10.5194/egusphere-2024-926, 2024
Short summary
Short summary
Using aircraft measurements over the northwest Atlantic between the U.S. East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high resolution measurements of concentrations as well as particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Yi-Jia Ma, Yu Xu, Ting Yang, Hong-Wei Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 24, 4331–4346, https://doi.org/10.5194/acp-24-4331-2024, https://doi.org/10.5194/acp-24-4331-2024, 2024
Short summary
Short summary
This study provides field-based evidence about the differential impacts of combustion of fresh and aged biomass materials on aerosol nitrogen-containing organic compounds (NOCs) in different seasons in Ürümqi, bridging the linkages between the observations and previous laboratory studies showing the formation mechanisms of NOCs.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-879, https://doi.org/10.5194/egusphere-2024-879, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black carbon -containing aerosol in TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Ryan N. Farley, James E. Lee, Laura-Hélèna Rivellini, Alex K. Y. Lee, Rachael Dal Porto, Christopher D. Cappa, Kyle Gorkowski, Abu Sayeed Md Shawon, Katherine B. Benedict, Allison C. Aiken, Manvendra K. Dubey, and Qi Zhang
Atmos. Chem. Phys., 24, 3953–3971, https://doi.org/10.5194/acp-24-3953-2024, https://doi.org/10.5194/acp-24-3953-2024, 2024
Short summary
Short summary
The black carbon aerosol composition and mixing state were characterized using a soot particle aerosol mass spectrometer. Single-particle measurements revealed the major role of atmospheric processing in modulating the black carbon mixing state. A significant fraction of soot particles were internally mixed with oxidized organic aerosol and sulfate, with implications for activation as cloud nuclei.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
EGUsphere, https://doi.org/10.5194/egusphere-2024-742, https://doi.org/10.5194/egusphere-2024-742, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the earths radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Xinya Liu, Bas Henzing, Arjan Hensen, Jan Mulder, Peng Yao, Danielle van Dinther, Jerry van Bronckhorst, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 3405–3420, https://doi.org/10.5194/acp-24-3405-2024, https://doi.org/10.5194/acp-24-3405-2024, 2024
Short summary
Short summary
We evaluated the time-of-flight aerosol chemical speciation monitor (TOF-ACSM) following the implementation of the PM2.5 aerodynamic lens and a capture vaporizer (CV). The results showed that it significantly improved the accuracy and precision of ACSM in the field observations. The paper elucidates the measurement outcomes of various instruments and provides an analysis of their biases. This comprehensive evaluation is expected to benefit the ACSM community and other aerosol field measurements.
Eva-Lou Edwards, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Claire E. Robinson, Michael A. Shook, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 3349–3378, https://doi.org/10.5194/acp-24-3349-2024, https://doi.org/10.5194/acp-24-3349-2024, 2024
Short summary
Short summary
We investigate Cl− depletion in sea salt particles over the northwest Atlantic from December 2021 to June 2022 using an airborne dataset. Losses of Cl− are greatest in May and least in December–February and March. Inorganic acidic species can account for all depletion observed for December–February, March, and June near Bermuda but none in May. Quantifying Cl− depletion as a percentage captures seasonal trends in depletion but fails to convey the effects it may have on atmospheric oxidation.
Yue Sun, Yujiao Zhu, Yanbin Qi, Lanxiadi Chen, Jiangshan Mu, Ye Shan, Yu Yang, Yanqiu Nie, Ping Liu, Can Cui, Ji Zhang, Mingxuan Liu, Lingli Zhang, Yufei Wang, Xinfeng Wang, Mingjin Tang, Wenxing Wang, and Likun Xue
Atmos. Chem. Phys., 24, 3241–3256, https://doi.org/10.5194/acp-24-3241-2024, https://doi.org/10.5194/acp-24-3241-2024, 2024
Short summary
Short summary
Field observations were conducted at the summit of Changbai Mountain in northeast Asia. The cumulative number concentration of ice-nucleating particles (INPs) varied from 1.6 × 10−3 to 78.3 L−1 over the temperature range of −5.5 to −29.0 ℃. Biological INPs (bio-INPs) accounted for the majority of INPs, and the proportion exceeded 90% above −13.0 ℃. Planetary boundary layer height, valley breezes, and long-distance transport of air mass influence the abundance of bio-INPs.
Cuizhi Sun, Yongyun Zhang, Baoling Liang, Min Gao, Xi Sun, Fei Li, Xue Ni, Qibin Sun, Hengjia Ou, Dexian Chen, Shengzhen Zhou, and Jun Zhao
Atmos. Chem. Phys., 24, 3043–3063, https://doi.org/10.5194/acp-24-3043-2024, https://doi.org/10.5194/acp-24-3043-2024, 2024
Short summary
Short summary
In a May–June 2021 expedition in the South China Sea, we analyzed black and brown carbon in marine aerosols, key to light absorption and climate impact. Using advanced in situ and microscope techniques, we observed particle size, structure, and tar balls mixed with various elements. Results showed biomass burning and fossil fuels majorly influence light absorption, especially during significant burning events. This research aids the understanding of carbonaceous aerosols' role in marine climate.
C. Isabel Moreno, Radovan Krejci, Jean-Luc Jaffrezo, Gaëlle Uzu, Andrés Alastuey, Marcos F. Andrade, Valeria Mardóñez, Alkuin Maximilian Koenig, Diego Aliaga, Claudia Mohr, Laura Ticona, Fernando Velarde, Luis Blacutt, Ricardo Forno, David N. Whiteman, Alfred Wiedensohler, Patrick Ginot, and Paolo Laj
Atmos. Chem. Phys., 24, 2837–2860, https://doi.org/10.5194/acp-24-2837-2024, https://doi.org/10.5194/acp-24-2837-2024, 2024
Short summary
Short summary
Aerosol chemical composition (ions, sugars, carbonaceous matter) from 2011 to 2020 was studied at Mt. Chacaltaya (5380 m a.s.l., Bolivian Andes). Minimum concentrations occur in the rainy season with maxima in the dry and transition seasons. The origins of the aerosol are located in a radius of hundreds of kilometers: nearby urban and rural areas, natural biogenic emissions, vegetation burning from Amazonia and Chaco, Pacific Ocean emissions, soil dust, and Peruvian volcanism.
Junke Zhang, Yunfei Su, Chunying Chen, Wenkai Guo, Qinwen Tan, Miao Feng, Danlin Song, Tao Jiang, Qiang Chen, Yuan Li, Wei Li, Yizhi Wang, Xiaojuan Huang, Lin Han, Wanqing Wu, and Gehui Wang
Atmos. Chem. Phys., 24, 2803–2820, https://doi.org/10.5194/acp-24-2803-2024, https://doi.org/10.5194/acp-24-2803-2024, 2024
Short summary
Short summary
Typical haze events in Chengdu at the beginning of 2023 were investigated with bulk-chemical and single-particle analyses along with numerical model simulations. By integrating the obtained chemical composition, source, mixing state and numerical simulation results, we infer that Haze-1 was mainly caused by pollutants related to fossil fuel combustion, especially local mobile sources, while Haze-2 was triggered by the secondary pollutants, which mainly came from regional transmission.
Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Clara Turetta, Marta Radaelli, Warren Cairns, Giulio Cozzi, Giovanna Mazzi, Marco Casula, Jacopo Gabrieli, Carlo Barbante, and Andrea Gambaro
Atmos. Chem. Phys., 24, 2821–2835, https://doi.org/10.5194/acp-24-2821-2024, https://doi.org/10.5194/acp-24-2821-2024, 2024
Short summary
Short summary
The study analyzed a year of atmospheric aerosol composition at Col Margherita in the Italian Alps. Over 100 chemical markers were identified, including major ions, organic compounds, and trace elements. It revealed sources of aerosol, highlighted impacts of Saharan dust events, and showed anthropogenic pollution's influence despite the site's remoteness. Enrichment factors emphasized non-natural sources of trace elements. Source apportionment identified four key factors affecting the area.
Karl Espen Yttri, Are Bäcklund, Franz Conen, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Anne Kasper-Giebl, Avram Gold, Hans Gundersen, Cathrine Lund Myhre, Stephen Matthew Platt, David Simpson, Jason D. Surratt, Sönke Szidat, Martin Rauber, Kjetil Tørseth, Martin Album Ytre-Eide, Zhenfa Zhang, and Wenche Aas
Atmos. Chem. Phys., 24, 2731–2758, https://doi.org/10.5194/acp-24-2731-2024, https://doi.org/10.5194/acp-24-2731-2024, 2024
Short summary
Short summary
We discuss carbonaceous aerosol (CA) observed at the high Arctic Zeppelin Observatory (2017 to 2020). We find that organic aerosol is a significant fraction of the Arctic aerosol, though less than sea salt aerosol and mineral dust, as well as non-sea-salt sulfate, originating mainly from anthropogenic sources in winter and from natural sources in summer, emphasizing the importance of wildfires for biogenic secondary organic aerosol and primary biological aerosol particles observed in the Arctic.
Wei Huang, Cheng Wu, Linyu Gao, Yvette Gramlich, Sophie L. Haslett, Joel Thornton, Felipe D. Lopez-Hilfiker, Ben H. Lee, Junwei Song, Harald Saathoff, Xiaoli Shen, Ramakrishna Ramisetty, Sachchida N. Tripathi, Dilip Ganguly, Feng Jiang, Magdalena Vallon, Siegfried Schobesberger, Taina Yli-Juuti, and Claudia Mohr
Atmos. Chem. Phys., 24, 2607–2624, https://doi.org/10.5194/acp-24-2607-2024, https://doi.org/10.5194/acp-24-2607-2024, 2024
Short summary
Short summary
We present distinct molecular composition and volatility of oxygenated organic aerosol particles in different rural, urban, and mountain environments. We do a comprehensive investigation of the relationship between the chemical composition and volatility of oxygenated organic aerosol particles across different systems and environments. This study provides implications for volatility descriptions of oxygenated organic aerosol particles in different model frameworks.
Cited articles
Alleman, L. Y., Lamaison, L., Perdrix, E., Robache, A., and Galloo, J.-C.: PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone, Atmos. Res., 96, 612–625, https://doi.org/10.1016/j.atmosres.2010.02.008, 2010.
Almeida, S., Pio, C., Freitas, M., Reis, M., and Trancoso, M.: Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast, Atmos. Environ., 39, 3127–3138, https://doi.org/10.1016/j.atmosenv.2005.01.048, 2005.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001.
Andreae, M. O. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
Cao, G., Zhang, X., and Zheng, F.: Inventory of black carbon and organic carbon emissions from China, Atmos. Environ., 40, 6516–6527, https://doi.org/10.1016/j.atmosenv.2006.05.070, 2006.
Cao, J., Lee, S., Ho, K., Zhang, X., Zou, S., Fung, K., Chow, J. C., and Watson, J. G.: Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period, Atmos. Environ., 37, 1451–1460, https://doi.org/10.1016/S1352-2310(02)01002-6, 2003.
Cao, J., Lee, S., Chow, J. C., Watson, J. G., Ho, K., Zhang, R., Jin, Z., Shen, Z., Chen, G., and Kang, Y.: Spatial and seasonal distributions of carbonaceous aerosols over China, J. Geophys. Res.-Atmos., 112, D22S11, https://doi.org/10.1029/2006JD008205, 2007.
Chen, L.-W. A., Lowenthal, D. H., Watson, J. G., Koracin, D., Kumar, N., Knipping, E. M., Wheeler, N., Craig, K., and Reid, S.: Toward effective source apportionment using positive matrix factorization: experiments with simulated PM2.5 data, J. Air Waste Manage. Assoc., 60, 43–54, https://doi.org/10.3155/1047-3289.60.1.43, 2010.
Chow, J. C., Watson, J. G., Chen, L.-W. A., Chang, M. O., Robinson, N. F., Trimble, D., and Kohl, S.: The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database, J. Air Waste Manage. Assoc., 57, 1014–1023, https://doi.org/10.3155/1047-3289.57.9.1014, 2007.
Dall'Osto, M., Booth, M., Smith, W., Fisher, R., and Harrison, R. M.: A study of the size distributions and the chemical characterization of airborne particles in the vicinity of a large integrated steelworks, Aerosol Sci. Technol., 42, 981–991, https://doi.org/10.1080/02786820802339587, 2008.
Dan, M., Zhuang, G., Li, X., Tao, H., and Zhuang, Y.: The characteristics of carbonaceous species and their sources in PM2.5 in Beijing, Atmos. Environ., 38, 3443–3452, https://doi.org/10.1016/j.atmosenv.2004.02.052, 2004.
Dongarrà, G., Manno, E., Varrica, D., and Vultaggio, M.: Mass levels, crustal component and trace elements in PM10 in Palermo, Italy, Atmos. Environ., 41, 7977–7986, https://doi.org/10.1016/j.atmosenv.2007.09.015, 2007.
Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website, available at: http://www.arl.noaa.gov/HYSPLIT.php, NOAA Air Resources Laboratory, College Park, MD.
Duan, F., Liu, X., Yu, T., and Cachier, H.: Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing, Atmos. Environ., 38, 1275–1282, https://doi.org/10.1016/j.atmosenv.2003.11.037, 2004.
Eder, B. and Yu, S.: A performance evaluation of the 2004 release of Models-3 CMAQ. Atmos. Environ., 40, 4811–4824, https://doi.org/10.1016/j.atmosenv.2005.08.045, 2006.
Edwards, R. D., Smith, K. R., Zhang, J., and Ma, Y.: Implications of changes in household stoves and fuel use in China, Energ. Policy, 32, 395–411, https://doi.org/10.1016/S0301-4215(02)00309-9, 2004.
Engling, G., Carrico, C. M., Kreidenweis, S. M., Collett Jr., J. L., Day, D. E., Malm, W. C., Lincoln, E., Min Hao, W., Iinuma, Y., and Herrmann, H.: Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection, Atmos. Environ., 40, 299–311, https://doi.org/10.1016/j.atmosenv.2005.12.069, 2006.
Engling, G., Lee, J. J., Tsai, Y.-W., Lung, S.-C. C., Chou, C. C.-K., and Chan, C.-Y.: Size-resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw, Aerosol Sci. Technol., 43, 662–672, https://doi.org/10.1080/02786820902825113, 2009.
Feng, Y., Chen, Y., Guo, H., Zhi, G., Xiong, S., Li, J., Sheng, G., and Fu, J.: Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China, Atmos. Res., 92, 434–442, https://doi.org/10.1016/j.atmosres.2009.01.003, 2009.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+ − Ca2+ − Mg2+ − H4+ − Na+ − SO42- − NO3- − Cl- − H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
Gómez, D. R., Giné, M. F., Bellato, A. C. S., and Smichowski, P.: Antimony: a traffic-related element in the atmosphere of Buenos Aires, Argentina, J. Environ. Monit., 7, 1162–1168, https://doi.org/10.1039/B508609D, 2005.
Gregg, J. S., Andres, R. J., and Marland, G.: China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production, Geophys. Res. Lett., 35, L08806, https://doi.org/10.1029/2007GL032887, 2008.
Gu, J., Bai, Z., Liu, A., Wu, L., Xie, Y., Li, W., Dong, H., and Zhang, X.: Characterization of Atmospheric Organic Carbon and Element Carbon of PM2. 5 and PM10 at Tianjin, China, Aerosol Air Qual. Res, 10, 167–176, https://doi.org/10.4209/aaqr.2009.12.0080, 2010.
Hans Wedepohl, K.: The composition of the continental crust, Geochim. Cosmochim. Acta, 59, 1217–1232, https://doi.org/10.1016/0016-7037(95)00038-2, 1995.
He, K., Yang, F., Ma, Y., Zhang, Q., Yao, X., Chan, C. K., Cadle, S., Chan, T., and Mulawa, P.: The characteristics of PM2.5 in Beijing, China, Atmos. Environ., 35, 4959–4970, https://doi.org/10.1016/S1352-2310(01)00301-6, 2001.
Heo, J. B., Hopke, P. K., and Yi, S. M.: Source apportionment of PM2.5 in Seoul, Korea, Atmos. Chem. Phys., 9, 4957–4971, https://doi.org/10.5194/acp-9-4957-2009, 2009.
Hsu, S.-C., Liu, S. C., Kao, S.-J., Jeng, W.-L., Huang, Y.-T., Tseng, C.-M., Tsai, F., Tu, J.-Y., and Yang, Y.: Water-soluble species in the marine aerosol from the northern South China Sea: High chloride depletion related to air pollution, J. Geophys. Res., 112, D19304, https://doi.org/10.1029/2007JD008844, 2007.
Hsu, S.-C., Liu, S. C., Huang, Y.-T., Lung, S.-C. C., Tsai, F., Tu, J.-Y., and Kao, S.-J.: A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007, J. Geophys. Res., 113, D18306, https://doi.org/10.1029/2007JD009574, 2008.
Hsu, S. C., Liu, S. C., Huang, Y. T., Chou, C. C. K., Lung, S. C. C., Liu, T. H., Tu, J. Y., and Tsai, F.: Long-range southeastward transport of Asian biosmoke pollution: signature detected by aerosol potassium in Northern Taiwan, J. Geophys. Res., 114, D14301, https://doi.org/10.1029/2009JD011725, 2009.
Hsu, S., Liu, S., Tsai, F., Engling, G., Lin, I., Chou, C., Kao, S., Lung, S., Chan, C., and Lin, S.: High wintertime particulate matter pollution over an offshore island (Kinmen) off southeastern China: An overview, J. Geophys. Res.-Atmos., 115, D17309, https://doi.org/10.1029/2009JD013641, 2010.
Hsu, S. C., Tsai, F., Lin, F. J., Chen, W. N., Shiah, F. K., Huang Jr, C., Chan, C. Y., Chen, C. C., Liu, T. H., and Chen, H. Y.: A super Asian dust storm over the East and South China Seas: Disproportionate dust deposition, J. Geophys. Res.-Atmos., 118, 7169–7181, https://doi.org/10.1002/jgrd.50405, 2013.
Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., and Vonmont, H.: Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland, Atmos. Environ., 39, 637–651, https://doi.org/10.1016/j.atmosenv.2004.10.027, 2005.
Iinuma, Y., Engling, G., Puxbaum, H., and Herrmann, H.: A highly resolved anion-exchange chromatographic method for determination of saccharidic tracers for biomass combustion and primary bio-particles in atmospheric aerosol, Atmos. Environ., 43, 1367–1371, https://doi.org/10.1016/j.atmosenv.2008.11.020, 2009.
Khan, M. F., Shirasuna, Y., Hirano, K., and Masunaga, S.: Characterization of PM2.5, PM2.5–10 and PM10 in ambient air, Yokohama, Japan, Atmos. Res., 96, 159–172, https://doi.org/10.1016/j.atmosres.2009.12.009, 2010.
Laden, F., Neas, L. M., Dockery, D. W., and Schwartz, J.: Association of fine particulate matter from different sources with daily mortality in six US cities, Environ. Health Perspect., 108, 941–947, 2000.
Lee, H. S. and Kang, B.-W.: Chemical characteristics of principal PM2.5 species in Chongju, South Korea, Atmos. Environ., 35, 739–746, https://doi.org/10.1016/S1352-2310(00)00267-3, 2001.
Lei, Y., Zhang, Q., He, K., and Streets, D.: Primary anthropogenic aerosol emission trends for China, 1990–2005, Atmos. Chem. Phys., 11, 931–954, https://doi.org/10.5194/acp-11-931-2011, 2011.
Liu, X., Zhu, J., Van Espen, P., Adams, F., Xiao, R., Dong, S., and Li, Y.: Single particle characterization of spring and summer aerosols in Beijing: Formation of composite sulfate of calcium andpotassium. Atmos. Environ., 39, 6909–6918, https://doi.org/10.1016/j.atmosenv.2005.08.007, 2005.
Lonati, G., Giugliano, M., Butelli, P., Romele, L., and Tardivo, R.: Major chemical components of PM2.5 in Milan (Italy), Atmos. Environ., 39, 1925–1934, https://doi.org/10.1016/j.atmosenv.2004.12.012, 2005.
Louie, P. K., Watson, J. G., Chow, J. C., Chen, A., Sin, D. W., and Lau, A. K.: Seasonal characteristics and regional transport of PM2.5 in Hong Kong, Atmos. Environ., 39, 1695–1710, https://doi.org/10.1016/j.atmosenv.2004.11.017, 2005.
Ma, Y., Chen, R., Pan, G., Xu, X., Song, W., Chen, B., and Kan, H.: Fine particulate air pollution and daily mortality in Shenyang, China, Sci. Total Environ. 409, 2473–2477, https://doi.org/10.1016/j.scitotenv.2011.03.017, 2011.
Machemer, S. D.: Characterization of airborne and bulk particulate from iron and steel manufacturing facilities, Environ. Sci. Technol., 38, 381–389, https://doi.org/10.1021/es020897v, 2004.
Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., and Cahill, T. A.: Spatial and seasonal trends in particle concentration and optical extinction in the United States, J. Geophys. Res., 99, 1347–1370, https://doi.org/10.1029/93JD02916, 1994.
Mamane, Y., Perrino, C., Yossef, O., and Catrambone, M.: Source characterization of fine and coarse particles at the East Mediterranean coast, Atmos. Environ. 42, 6114–6130, https://doi.org/10.1016/j.atmosenv.2008.02.045, 2008.
Mooibroek, D., Schaap, M., Weijers, E., and Hoogerbrugge, R.: Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands, Atmos. Environ., 45, 4180–4191, https://doi.org/10.1016/j.atmosenv.2011.05.017, 2011.
Mukai, H., Tanaka, A., Fujii, T., Zeng, Y., Hong, Y., Tang, J., Guo, S., Xue, H., Sun, Z., and Zhou, J.: Regional characteristics of sulfur and lead isotope ratios in the atmosphere at several Chinese urban sites, Environ. Sci. Technol., 35, 1064–1071, https://doi.org/10.1021/es001399u, 2001.
Negral, L., Moreno-Grau, S., Moreno, J., Querol, X., Viana, M., and Alastuey, A.: Natural and anthropogenic contributions to PM10 and PM2.5 in an urban area in the western Mediterranean coast, Water Air Soil Pollut., 192, 227–238, https://doi.org/10.1007/s11270-008-9650-y, 2008.
Ni, Z.-Y., Chen, Y.-J., Li, N., and Zhang, H.: Pb–Sr–Nd isotope constraints on the fluid source of the Dahu Au–Mo deposit in Qinling Orogen, central China, and implication for Triassic tectonic setting, Ore Geol. Rev., 46, 60–67, https://doi.org/10.1016/j.oregeorev.2012.01.004, 2012.
Norris, G., Vedantham, R., Wade, K., Brown, S., Prouty, J., and Foley, C.: EPA positive matrix factorization (PMF) 3.0 fundamentals & user guide, US Environmental Protection Agency, Office of Research and Development, Washington, DC, 2008.
Oliveira, C., Pio, C., Alves, C., Evtyugina, M., Santos, P., Gonçalves, V., Nunes, T., Silvestre, A. J., Palmgren, F., and Wåhlin, P.: Seasonal distribution of polar organic compounds in the urban atmosphere of two large cities from the North and South of Europe, Atmos. Environ., 41, 5555–5570, https://doi.org/10.1016/j.atmosenv.2007.03.001, 2007.
Pacyna, J. M. and Pacyna, E. G.: An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide, Environ. Rev., 9, 269–298, https://doi.org/10.1139/a01-012, 2001.
Pekney, N. J., Davidson, C. I., Robinson, A., Zhou, L., Hopke, P., Eatough, D., and Rogge, W. F.: Major source categories for PM2.5 in Pittsburgh using PMF and UNMIX, Aerosol Sci. Technol., 40, 910–924, https://doi.org/10.1080/02786820500380271, 2006.
Pinto, J. P., Lefohn, A. S., and Shadwick, D. S.: Spatial Variability of PM2.5 in Urban Areas in the United States, J. Air Waste Manage. Assoc., 54, 440–449, https://doi.org/10.1080/10473289.2004.10470919, 2004.
Pio, C., Legrand, M., Alves, C., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sánchez-Ochoa, A., and Gelencsér, A.: Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period, Atmos. Environ., 42, 7530–7543, https://doi.org/10.1016/j.atmosenv.2008.05.032, 2008.
Pope III, C. A., and Dockery, D. W.: Health effects of fine particulate air pollution: lines that connect, J. Air Waste Manage. Assoc., 56, 709–742, https://doi.org/10.1080/10473289.2006.10464485, 2006.
Putaud, J.-P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M., Decesari, S., Fuzzi, S., Gehrig, R., Hüglin, C., and Laj, P.: A European aerosol phenomenology – 2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38, 2579–2595, https://doi.org/10.1016/j.atmosenv.2004.01.041, 2004.
Qin, Y. and Xie, S.: Spatial and temporal variation of anthropogenic black carbon emissions in China for the period 1980–2009, Atmos. Chem. Phys., 12, 4825–4841, https://doi.org/10.5194/acp-12-4825-2012, 2012.
Querol, X., Alastuey, A., Ruiz, C., Artinano, B., Hansson, H., Harrison, R., Buringh, E. t., Ten Brink, H., Lutz, M., and Bruckmann, P.: Speciation and origin of PM10 and PM2.5 in selected European cities, Atmos. Environ., 38, 6547–6555, https://doi.org/10.1016/j.atmosenv.2004.08.037, 2004.
Querol, X., Zhuang, X., Alastuey, A., Viana, M., Lv, W., Wang, Y., López, A., Zhu, Z., Wei, H., and Xu, S.: Speciation and sources of atmospheric aerosols in a highly industrialised emerging mega-city in Central China, J. Environ. Monit., 8, 1049–1059, https://doi.org/10.1039/B608768J, 2006.
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R.-R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T. F., Vermote, E., and Holben, B. N.: The MODIS Aerosol Algorithm, Products, and Validation, J. Atmos. Sci., 62, 947–973, https://doi.org/10.1175/JAS3385.1, 2005.
Rolph, G. D.: Real-time Environmental Applications and Display system (READY) Website, available at: http://www.ready.noaa.gov, NOAA Air Resources Laboratory, College Park, MD, 2013.
Seinfeld, J. H., Carmichael, G. R., Arimoto, R., Conant, W. C., Brechtel, F. J., Bates, T. S., Cahill, T. A., Clarke, A .D., Doherty, S. J., and Flatau, P. J.: ACE-ASIA-Regional climatic and atmospheric chemical effects of Asian dust and pollution, B. Am. Meteorol.Soc., 85, 367–380, https://doi.org/10.1175/BAMS-85-3-367, 2004.
Sheesley, R. J., Schauer, J. J., Chowdhury, Z., Cass, G. R., and Simoneit, B. R.: Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia, J. Geophys. Res., 108, 4285, https://doi.org/10.1029/2002JD002981, 2003.
Simon, H., Bhave, P., Swall, J., Frank, N., and Malm, W.: Determining the spatial and seasonal variability in OM / OC ratios across the US using multiple regression, Atmos. Chem. Phys., 11, 2933–2949, https://doi.org/10.5194/acp-11-2933-2011, 2011.
Sternbeck, J., Sjödin, Å., and Andréasson, K.: Metal emissions from road traffic and the influence of resuspension – results from two tunnel studies, Atmos. Environ. 36, 4735–4744, https://doi.org/10.1016/S1352-2310(02)00561-7, 2002.
Sweet, C. W., Vermette, S. J., and Landsberger, S.: Sources of toxic trace elements in urban air in Illinois, Environ. Sci. Technol., 27, 2502–2510, https://doi.org/10.1021/es00048a030, 1993.
Szidat, S., Jenk, T. M., Synal, H. A., Kalberer, M., Wacker, L., Hajdas, I., Kasper-Giebl, A., and Baltensperger, U.: Contributions of fossil fuel, biomass burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C, J. Geophys. Res.-Atmos., 111, D07206, https://doi.org/10.1029/2005JD006590, 2006.
Szidat, S., Ruff, M., Perron, N., Wacker, L., Synal, H.-A., Hallquist, M., Shannigrahi, A. S., Yttri, K., Dye, C., and Simpson, D.: Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Göteborg, Sweden, Atmos. Chem. Phys., 9, 1521–1535, https://doi.org/10.5194/acp-9-1521-2009, 2009.
Tao, J., Shen, Z., Zhu, C., Yue, J., Cao, J., Liu, S., Zhu, L., and Zhang, R.: Seasonal variations and chemical characteristics of sub-micrometer particles (PM1) in Guangzhou, China, Atmos. Res., 115, 222–231, https://doi.org/10.1016/j.atmosres.2012.06.025, 2012.
Tao, J., Zhang, L., Engling, G., Zhang, R., Yang, Y., Cao, J., Zhu, C., Wang, Q., and Luo, L.: Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning, Atmos. Res., 122, 270–283, https://doi.org/10.1016/j.atmosres.2012.11.004, 2013.
Tao, J., Zhang, L., Ho, K., Zhang, R., Lin, Z., Zhang, Z., Lin, M., Cao, J., Liu, S., and Wang, G.: Impact of PM2.5 chemical compositions on aerosol light scattering in Guangzhou – the largest megacity in South China, Atmos. Res., 135–136, 48–58, https://doi.org/10.1016/j.atmosres.2013.08.015, 2014.
Taylor, S. R.: Trace element abundances and the chondritic Earth model, Geochim. Cosmochim. Ac., 28, 1989–1998, https://doi.org/10.1016/0016-7037(64)90142-5, 1964.
Tian, H., Wang, Y., Xue, Z., Cheng, K., Qu, Y., Chai, F., and Hao, J.: Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007, Atmos. Chem. Phys., 10, 11905–11919, https://doi.org/10.5194/acp-10-11905-2010, 2010.
Tian, H., Zhao, D., Cheng, K., Lu, L., He, M., and Hao, J.: Anthropogenic atmospheric emissions of antimony and its spatial distribution characteristics in China, Environ. Sci. Technol., 46, 3973–3980, https://doi.org/10.1021/es2041465, 2012.
Tsukuda, S., Sugiyama, M., Harita, Y., and Nishimura, K.: Atmospheric bulk deposition of soluble phosphorus in Ashiu Experimental Forest, Central Japan: source apportionment and sample contamination problem, Atmos. Environ. 39, 823–836, https://doi.org/10.1016/j.atmosenv.2004.10.028, 2005.
Turpin, B. J. and Huntzicker, J. J.: Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS, Atmos. Environ., 29, 3527–3544, https://doi.org/10.1016/1352-2310(94)00276-Q, 1995.
Turpin, B. J. and Lim, H.-J.: Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass, Aerosol Sci. Technol., 35, 602–610, https://doi.org/10.1080/02786820119445, 2001.
Varrica, D., Bardelli, F., Dongarrà, G., and Tamburo, E.: Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues. Atmos. Environ., 64, 18–24, https://doi.org/10.1016/j.atmosenv.2012.08.067, 2013.
Wang, X., Zhang, L., and Moran, M.: Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain, Atmos. Chem. Phys., 10, 5685–5705, https://doi.org/10.5194/acp-10-5685-2010, 2010.
Watson, J. G.: Visibility: Science and regulation, J. Air Waste Manage. Assoc., 52, 628–713, https://doi.org/10.1080/10473289.2002.10470813, 2002.
Watson, J. G., Chow, J. C., and Houck, J. E.: PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995, Chemosphere, 43, 1141–1151, https://doi.org/10.1016/S0045-6535(00)00171-5, 2001.
World Health Organization: Regional Office for Europe, Air quality guidelines for Europe, No. 91, WHO Regional Office Europe, 2000.
Xing, L., Fu, T.-M., Cao, J., Lee, S., Wang, G., Ho, K., Cheng, M.-C., You, C.-F., and Wang, T.: Seasonal and spatial variability of the OM / OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols, Atmos. Chem. Phys., 13, 4307–4318, https://doi.org/10.5194/acp-13-4307-2013, 2013.
Xu, H., Cao, J., Ho, K., Ding, H., Han, Y., Wang, G., Chow, J., Watson, J., Khol, S., and Qiang, J.: Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi'an, China, Atmos. Environ., 46, 217–224, https://doi.org/10.1016/j.atmosenv.2011.09.078, 2012a.
Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J., and Yin, L.: Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China, Atmos. Res., 104, 264–272, https://doi.org/10.1016/j.atmosres.2011.10.017, 2012b.
Yan, X., Ohara, T., and Akimoto H.: Bottom-up estimate of biomass burning in mainland China. Atmos. Environ., 40, 5262–5273, https://doi.org/10.1016/j.atmosenv.2006.04.040, 2006.
Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., Duan, F., and Chen, G.: Characteristics of PM2.5 speciation in representative megacities and across China, Atmos. Chem. Phys., 11, 5207–5219, https://doi.org/10.5194/acp-11-5207-2011, 2011.
Yang, H.-H., Lai, S.-O., Hsieh, L.-T., Hsueh, H.-J., and Chi, T.-W.: Profiles of PAH emission from steel and iron industries, Chemosphere, 48, 1061–1074, https://doi.org/10.1016/S0045-6535(02)00175-3, 2002.
Ye, B., Ji, X., Yang, H., Yao, X., Chan, C. K., Cadle, S. H., Chan, T., and Mulawa, P. A.: Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period, Atmos. Environ., 37, 499–510, https://doi.org/10.1016/S1352-2310(02)00918-4, 2003.
Yttri, K., Dye, C., Braathen, O.-A., Simpson, D., and Steinnes, E.: Carbonaceous aerosols in Norwegian urban areas, Atmos. Chem. Phys., 8, 2007–2020, https://doi.org/10.5194/acp-9-2007-2009, 2009.
Zdráhal, Z., Oliveira, J., Vermeylen, R., Claeys, M., and Maenhaut, W.: Improved method for quantifying levoglucosan and related monosaccharide anhydrides in atmospheric aerosols and application to samples from urban and tropical locations, Environ. Sci. Technol., 36, 747–753, https://doi.org/10.1021/es015619v, 2002.
Zhang, D., Shi, G., Iwasaka, Y., Hu, M., and Zang, J.: Anthropogenic calcium particles observed in Beijing and Qingdao, China, Water Air Soil Pollut., 5, 261–276, https://doi.org/10.1007/s11267-005-0743-y, 2005.
Zhang, F., Xu, L., Chen, J., Yu, Y., Niu, Z., and Yin, L.: Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009–May 2010, Atmos. Res., 106, 150–158, https://doi.org/10.1016/j.atmosres.2011.12.005, 2012.
Zhang, R., Jing, J., Tao, J., Hsu, S. C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y., and Shen, Z.: Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective, Atmos. Chem. Phys., 13, 7053–7074, https://doi.org/10.5194/acp-13-7053-2013, 2013.
Zhang, T., Cao, J., Tie, X., Shen, Z., Liu, S., Ding, H., Han, Y., Wang, G., Ho, K., and Qiang, J.: Water-soluble ions in atmospheric aerosols measured in Xi'an, China: seasonal variations and sources, Atmos. Res., 102, 110–119, https://doi.org/10.1016/j.atmosres.2011.06.014, 2011.
Zhang, X. Y., Gong, S. L., Shen, Z. X., Mei, F. M., Xi, X. X., Liu, L. C., Zhou, Z. J., Wang, D., Wang, Y. Q., and Cheng, Y.: Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations. J. Geophys. Res., 108, 4261, https://doi.org/10.1029/2002JD002632, 2003.
Zhang, X. Y., Wang, Y. Q., Zhang, X. C., Guo, W., and Gong, S. L.: Carbonaceous aerosol composition over various regions of China during 2006, J. Geophys. Res., 113, D14111, https://doi.org/10.1029/2007JD009525, 2008a.
Zhang, Y., Schauer, J. J., Zhang, Y., Zeng, L., Wei, Y., Liu, Y., and Shao, M.: Characteristics of particulate carbon emissions from real-world Chinese coal combustion, Environ. Sci. Technol., 42, 5068–5073, https://doi.org/10.1021/es7022576, 2008b.
Zhao, B., Wang, P., Ma, J. Z., Zhu, S., Pozzer, A., and Li, W.: A high-resolution emission inventory of primary pollutants for the Huabei region, China, Atmos. Chem. Phys., 12, 481–501, https://doi.org/https://doi.org/10.5194/acp-12-481-2012, 2012.
Zhao, Q., He, K., Rahn, K., Ma, Y., Jia, Y., Yang, F., Duan, F., Lei, Y., Cheng, Y., and Wang, S.: Dust storms come to Central and Southwestern China, too: implications from a major dust event in Chongqing, Atmos. Chem. Phys., 10, 2615–2630, https://doi.org/10.5194/acp-10-2615-2010, 2010.
Special issue
Altmetrics
Final-revised paper
Preprint