Articles | Volume 14, issue 14
Atmos. Chem. Phys., 14, 7681–7692, 2014
https://doi.org/10.5194/acp-14-7681-2014
Atmos. Chem. Phys., 14, 7681–7692, 2014
https://doi.org/10.5194/acp-14-7681-2014
Research article
31 Jul 2014
Research article | 31 Jul 2014

Variability of NOx in the polar middle atmosphere from October 2003 to March 2004: vertical transport vs. local production by energetic particles

M. Sinnhuber et al.

Related authors

Exceptional middle latitude electron precipitation detected by balloon observations: implications for atmospheric composition
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, and Timofei Sukhodolov
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-737,https://doi.org/10.5194/acp-2021-737, 2021
Revised manuscript accepted for ACP
Short summary
Quantifying uncertainties of climate signals in chemistry climate models related to the 11-year solar cycle – Part 1: Annual mean response in heating rates, temperature, and ozone
Markus Kunze, Tim Kruschke, Ulrike Langematz, Miriam Sinnhuber, Thomas Reddmann, and Katja Matthes
Atmos. Chem. Phys., 20, 6991–7019, https://doi.org/10.5194/acp-20-6991-2020,https://doi.org/10.5194/acp-20-6991-2020, 2020
Short summary
Mesospheric nitric oxide model from SCIAMACHY data
Stefan Bender, Miriam Sinnhuber, Patrick J. Espy, and John P. Burrows
Atmos. Chem. Phys., 19, 2135–2147, https://doi.org/10.5194/acp-19-2135-2019,https://doi.org/10.5194/acp-19-2135-2019, 2019
Short summary
Model results of OH airglow considering four different wavelength regions to derive night-time atomic oxygen and atomic hydrogen in the mesopause region
Tilo Fytterer, Christian von Savigny, Martin Mlynczak, and Miriam Sinnhuber
Atmos. Chem. Phys., 19, 1835–1851, https://doi.org/10.5194/acp-19-1835-2019,https://doi.org/10.5194/acp-19-1835-2019, 2019
Short summary
NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010
Miriam Sinnhuber, Uwe Berger, Bernd Funke, Holger Nieder, Thomas Reddmann, Gabriele Stiller, Stefan Versick, Thomas von Clarmann, and Jan Maik Wissing
Atmos. Chem. Phys., 18, 1115–1147, https://doi.org/10.5194/acp-18-1115-2018,https://doi.org/10.5194/acp-18-1115-2018, 2018
Short summary

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Upper stratospheric ClO and HOCl trends (2005–2020): Aura Microwave Limb Sounder and model results
Lucien Froidevaux, Douglas E. Kinnison, Michelle L. Santee, Luis F. Millán, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, John J. Orlando, and Ryan A. Fuller
Atmos. Chem. Phys., 22, 4779–4799, https://doi.org/10.5194/acp-22-4779-2022,https://doi.org/10.5194/acp-22-4779-2022, 2022
Short summary
Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model
Sophie Godin-Beekmann, Niramson Azouz, Viktoria Sofieva, Daan Hubert, Irina Petropavlovskikh, Peter Effertz, Gérard Ancellet, Douglas Degenstein, Daniel Zawada, Lucien Froidevaux, Stacey Frith, Jeannette Wild, Sean Davis, Wolfgang Steinbrecht, Thierry Leblanc, Richard Querel, Kleareti Tourpali, Robert Damadeo, Eliane Maillard-Barras, René Stübi, Corinne Vigouroux, Carlo Arosio, Gerald Nedoluha, Ian Boyd, and Roeland van Malderen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-137,https://doi.org/10.5194/acp-2022-137, 2022
Revised manuscript accepted for ACP
Short summary
Challenge of modelling GLORIA observations of upper troposphere–lowermost stratosphere trace gas and cloud distributions at high latitudes: a case study with state-of-the-art models
Florian Haenel, Wolfgang Woiwode, Jennifer Buchmüller, Felix Friedl-Vallon, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Hermann Oelhaf, Johannes Orphal, Roland Ruhnke, Björn-Martin Sinnhuber, Jörn Ungermann, Michael Weimer, and Peter Braesicke
Atmos. Chem. Phys., 22, 2843–2870, https://doi.org/10.5194/acp-22-2843-2022,https://doi.org/10.5194/acp-22-2843-2022, 2022
Short summary
A single-peak-structured solar cycle signal in stratospheric ozone based on Microwave Limb Sounder observations and model simulations
Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Ryan Hossaini, Graham W. Mann, Michelle L. Santee, and Mark Weber
Atmos. Chem. Phys., 22, 903–916, https://doi.org/10.5194/acp-22-903-2022,https://doi.org/10.5194/acp-22-903-2022, 2022
Short summary
Global, regional and seasonal analysis of total ozone trends derived from the 1995–2020 GTO-ECV climate data record
Melanie Coldewey-Egbers, Diego G. Loyola, Christophe Lerot, and Michel Van Roozendael
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1047,https://doi.org/10.5194/acp-2021-1047, 2022
Revised manuscript accepted for ACP
Short summary

Cited articles

Butchart, N., and Remsberg, E. E.: The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface, J. Atmos. Sci, 43, 1219–1339, 1986.
Callis, L. B., Natarajan, M., Lambeth, J. D., and Baker, D. N.: Solar-atmospheric coupling by electrons (SOLACE) 2. Calculated stratospheric effects of precipitating electrons, 1979–1988, J. Geophys. Res., 103, 28.421–28.438, 1998.
Clilverd, M., Seppälä, A., Rodger, C., Mlynczak, M., and Kozyra, J.: Additional stratospheric NOx production by relativistic electron precipitation during the 2004 spring NOx descent event, J. Geophys. Res., 114, A04305, https://doi.org/10.1029/2008JA013472, 2009.
Crutzen, P. J., Isaksen, I. S., and Reid, G. C.: Solar proton events: stratospheric sources of nitric oxide, Science, 189, 457–458, 1975.
Download
Altmetrics
Final-revised paper
Preprint