Articles | Volume 13, issue 21
https://doi.org/10.5194/acp-13-10769-2013
https://doi.org/10.5194/acp-13-10769-2013
Research article
 | Highlight paper
 | 
06 Nov 2013
Research article | Highlight paper |  | 06 Nov 2013

Heterogeneous formation of polar stratospheric clouds – Part 2: Nucleation of ice on synoptic scales

I. Engel, B. P. Luo, M. C. Pitts, L. R. Poole, C. R. Hoyle, J.-U. Grooß, A. Dörnbrack, and T. Peter

Related authors

Impact of mountain-wave-induced temperature fluctuations on the occurrence of polar stratospheric ice clouds: a statistical analysis based on MIPAS observations and ERA5 data
Ling Zou, Reinhold Spang, Sabine Griessbach, Lars Hoffmann, Farahnaz Khosrawi, Rolf Müller, and Ines Tritscher
Atmos. Chem. Phys., 24, 11759–11774, https://doi.org/10.5194/acp-24-11759-2024,https://doi.org/10.5194/acp-24-11759-2024, 2024
Short summary
Does the Asian summer monsoon play a role in the stratospheric aerosol budget of the Arctic?
Sandra Graßl, Christoph Ritter, Ines Tritscher, and Bärbel Vogel
Atmos. Chem. Phys., 24, 7535–7557, https://doi.org/10.5194/acp-24-7535-2024,https://doi.org/10.5194/acp-24-7535-2024, 2024
Short summary
Mountain-wave-induced polar stratospheric clouds and their representation in the global chemistry model ICON-ART
Michael Weimer, Jennifer Buchmüller, Lars Hoffmann, Ole Kirner, Beiping Luo, Roland Ruhnke, Michael Steiner, Ines Tritscher, and Peter Braesicke
Atmos. Chem. Phys., 21, 9515–9543, https://doi.org/10.5194/acp-21-9515-2021,https://doi.org/10.5194/acp-21-9515-2021, 2021
Short summary
Wildfire smoke in the lower stratosphere identified by in situ CO observations
Joram J. D. Hooghiem, Maria Elena Popa, Thomas Röckmann, Jens-Uwe Grooß, Ines Tritscher, Rolf Müller, Rigel Kivi, and Huilin Chen
Atmos. Chem. Phys., 20, 13985–14003, https://doi.org/10.5194/acp-20-13985-2020,https://doi.org/10.5194/acp-20-13985-2020, 2020
Short summary
Unusual chlorine partitioning in the 2015/16 Arctic winter lowermost stratosphere: observations and simulations
Sören Johansson, Michelle L. Santee, Jens-Uwe Grooß, Michael Höpfner, Marleen Braun, Felix Friedl-Vallon, Farahnaz Khosrawi, Oliver Kirner, Erik Kretschmer, Hermann Oelhaf, Johannes Orphal, Björn-Martin Sinnhuber, Ines Tritscher, Jörn Ungermann, Kaley A. Walker, and Wolfgang Woiwode
Atmos. Chem. Phys., 19, 8311–8338, https://doi.org/10.5194/acp-19-8311-2019,https://doi.org/10.5194/acp-19-8311-2019, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Projected future changes in extreme precipitation over China under stratospheric aerosol intervention in the UKESM1 climate model
Ou Wang, Ju Liang, Yuchen Gu, Jim M. Haywood, Ying Chen, Chenwei Fang, and Qin'geng Wang
Atmos. Chem. Phys., 24, 12355–12373, https://doi.org/10.5194/acp-24-12355-2024,https://doi.org/10.5194/acp-24-12355-2024, 2024
Short summary
Impact of mountain-wave-induced temperature fluctuations on the occurrence of polar stratospheric ice clouds: a statistical analysis based on MIPAS observations and ERA5 data
Ling Zou, Reinhold Spang, Sabine Griessbach, Lars Hoffmann, Farahnaz Khosrawi, Rolf Müller, and Ines Tritscher
Atmos. Chem. Phys., 24, 11759–11774, https://doi.org/10.5194/acp-24-11759-2024,https://doi.org/10.5194/acp-24-11759-2024, 2024
Short summary
Investigating long-term changes in polar stratospheric clouds above Antarctica during past decades: a temperature-based approach using spaceborne lidar detections
Mathilde Leroux and Vincent Noel
Atmos. Chem. Phys., 24, 6433–6454, https://doi.org/10.5194/acp-24-6433-2024,https://doi.org/10.5194/acp-24-6433-2024, 2024
Short summary
A simple model to assess the impact of gravity waves on ice-crystal populations in the tropical tropopause layer
Milena Corcos, Albert Hertzog, Riwal Plougonven, and Aurélien Podglajen
Atmos. Chem. Phys., 23, 6923–6939, https://doi.org/10.5194/acp-23-6923-2023,https://doi.org/10.5194/acp-23-6923-2023, 2023
Short summary
Simulation of convective moistening of the extratropical lower stratosphere using a numerical weather prediction model
Zhipeng Qu, Yi Huang, Paul A. Vaillancourt, Jason N. S. Cole, Jason A. Milbrandt, Man-Kong Yau, Kaley Walker, and Jean de Grandpré
Atmos. Chem. Phys., 20, 2143–2159, https://doi.org/10.5194/acp-20-2143-2020,https://doi.org/10.5194/acp-20-2143-2020, 2020
Short summary

Cited articles

Bacmeister, J. T., Eckermann, S. D., Tsias, A., Carslaw, K. S., and Peter, T.: Mesoscale temperature fluctuations induced by a spectrum of gravity waves: A comparison of parameterizations and their impact on stratospheric microphysics, J. Atmos. Sci., 56, 1913–1924, https://doi.org/10.1175/1520-0469(1999)056<1913:MTFIBA>2.0.CO;2, 1999.
Biele, J., Tsias, A., Luo, B. P., Carslaw, K. S., Neuber, R., Beyerle, G., and Peter, T.: Nonequilibrium coexistence of solid and liquid particles in Arctic stratospheric clouds, J. Geophys. Res., 106, 22991–23007, https://doi.org/10.1029/2001JD900188, 2001.
Biermann, U. M., Presper, T., Koop, T., Mossinger, J., Crutzen, P. J., and Peter, T.: The unsuitability of meteoritic and other nuclei for polar stratospheric cloud freezing, Geophys. Res. Lett., 23, 1693–1696, https://doi.org/10.1029/96GL01577, 1996.
Bogdan, A., Molina, M. J., Kulmala, M., MacKenzie, A. R., and Laaksonen, A.: Study of finely divided aqueous systems as an aid to understanding the formation mechanism of polar stratospheric clouds: Case of HNO3/H2O and H2SO4/H2O systems, J. Geophys. Res., 108, 4302, https://doi.org/10.1029/2002JD002605, 2003.
Brabec, M., Wienhold, F. G., Luo, B. P., Vömel, H., Immler, F., Steiner, P., Hausammann, E., Weers, U., and Peter, T.: Particle backscatter and relative humidity measured across cirrus clouds and comparison with microphysical cirrus modelling, Atmos. Chem. Phys., 12, 9135–9148, https://doi.org/10.5194/acp-12-9135-2012, 2012.
Download
Altmetrics
Final-revised paper
Preprint