Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 15, issue 12
Atmos. Chem. Phys., 15, 6651–6665, 2015
https://doi.org/10.5194/acp-15-6651-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 6651–6665, 2015
https://doi.org/10.5194/acp-15-6651-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Jun 2015

Research article | 16 Jun 2015

Lagrangian analysis of microphysical and chemical processes in the Antarctic stratosphere: a case study

L. Di Liberto1, R. Lehmann2, I. Tritscher3,6, F. Fierli1, J. L. Mercer4, M. Snels1, G. Di Donfrancesco5, T. Deshler4, B. P. Luo3, J-U. Grooß6, E. Arnone1, B. M. Dinelli1, and F. Cairo1 L. Di Liberto et al.
  • 1Institute for Atmospheric Sciences and Climate, ISAC-CNR, Rome, Italy
  • 2Alfred Wegener Institute, Potsdam, Germany
  • 3Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
  • 4Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming, USA
  • 5Ente per le Nuove Tecnologie Energia e Ambiente, Santa Maria di Galeria, Rome, Italy
  • 6Institut für Energie und Klimaforschung - Stratosphäre (IEK-7), Forschungszentrum Jülich, Jülich, Germany

Abstract. We investigated chemical and microphysical processes in the late winter in the Antarctic lower stratosphere, after the first chlorine activation and initial ozone depletion. We focused on a time interval when both further chlorine activation and ozone loss, but also chlorine deactivation, occur.

We performed a comprehensive Lagrangian analysis to simulate the evolution of an air mass along a 10-day trajectory, coupling a detailed microphysical box model to a chemistry model. Model results have been compared with in situ and remote sensing measurements of particles and ozone at the start and end points of the trajectory, and satellite measurements of key chemical species and clouds along it.

Different model runs have been performed to understand the relative role of solid and liquid polar stratospheric cloud (PSC) particles for the heterogeneous chemistry, and for the denitrification caused by particle sedimentation. According to model results, under the conditions investigated, ozone depletion is not affected significantly by the presence of nitric acid trihydrate (NAT) particles, as the observed depletion rate can equally well be reproduced by heterogeneous chemistry on cold liquid aerosol, with a surface area density close to background values.

Under the conditions investigated, the impact of denitrification is important for the abundances of chlorine reservoirs after PSC evaporation, thus stressing the need to use appropriate microphysical models in the simulation of chlorine deactivation. We found that the effect of particle sedimentation and denitrification on the amount of ozone depletion is rather small in the case investigated. In the first part of the analyzed period, when a PSC was present in the air mass, sedimentation led to a smaller available particle surface area and less chlorine activation, and thus less ozone depletion. After the PSC evaporation, in the last 3 days of the simulation, denitrification increases ozone loss by hampering chlorine deactivation.

Publications Copernicus
Download
Short summary
We investigated chemical and microphysical processes in the late winter Antarctic stratosphere, for the first time (to our knowledge) coupling a detailed microphysical box model to a chemistry model. Model results have been compared with in situ and remote sensing measurements of particles along trajectories. Our goal is to contribute to the most recent discussion of the relative role of PSC and liquid (background) aerosol in the ozone depletion.
We investigated chemical and microphysical processes in the late winter Antarctic stratosphere,...
Citation
Final-revised paper
Preprint