Articles | Volume 12, issue 1
https://doi.org/10.5194/acp-12-591-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-12-591-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition
H. M. Amos
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
D. J. Jacob
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
C. D. Holmes
Department of Earth System Science, University of California, Irvine, CA, USA
J. A. Fisher
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
Q. Wang
School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
R. M. Yantosca
School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
E. S. Corbitt
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
E. Galarneau
Air Quality Research Division, Environment Canada, Toronto, Ont., Canada
A. P. Rutter
Civil and Environmental Engineering Department, Rice University, Houston, TX, USA
M. S. Gustin
Department of Natural Resources and Environmental Sciences, University of Nevada, Reno, NV, USA
A. Steffen
Air Quality Research Division, Environment Canada, Toronto, Ont., Canada
J. J. Schauer
Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI, USA
J. A. Graydon
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
V. L. St. Louis
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
R. W. Talbot
Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
E. S. Edgerton
Atmospheric Research & Analysis, Inc., Cary, NC, USA
Y. Zhang
Department of Atmospheric Sciences, University of Washington, Seattle, USA
E. M. Sunderland
School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
Department of Environmental Health, Harvard University, Boston, MA, USA
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Observational and model evidence for a prominent stratospheric influence on variability in tropospheric nitrous oxide
Estimation of Canada's methane emissions: inverse modelling analysis using the Environment and Climate Change Canada (ECCC) measurement network
Spatiotemporal source apportionment of ozone pollution over the Greater Bay Area
Potential of 14C-based vs. ΔCO-based ΔffCO2 observations to estimate urban fossil fuel CO2 (ffCO2) emissions
On the uncertainty of anthropogenic aromatic volatile organic compound emissions: model evaluation and sensitivity analysis
A mechanism of stratospheric O3 intrusion into the atmospheric environment: a case study of the North China Plain
Influence of atmospheric circulation on the interannual variability of transport from global and regional emissions into the Arctic
Surface networks in the Arctic may miss a future methane bomb
Flow-dependent observation errors for GHG inversions in an ensemble Kalman smoother
Potential of using CO2 observations over India in a regional carbon budget estimation by improving the modelling system
A bottom-up emission estimate for the 2022 Nord Stream gas leak: derivation, simulations, and evaluation
European CH4 inversions with ICON-ART coupled to the CarbonTracker Data Assimilation Shell
Extreme weather exacerbates ozone pollution in the Pearl River Delta, China: role of natural processes
Multidecadal ozone trends in China and implications for human health and crop yields: a hybrid approach combining a chemical transport model and machine learning
On the influence of vertical mixing, boundary layer schemes, and temporal emission profiles on tropospheric NO2 in WRF-Chem – comparisons to in situ, satellite, and MAX-DOAS observations
Decreasing trends of ammonia emissions over Europe seen from remote sensing and inverse modelling
The sensitivity of Southern Ocean atmospheric dimethyl sulfide (DMS) to modeled oceanic DMS concentrations and emissions
Impacts of maritime shipping on air pollution along the US East Coast
Understanding greenhouse gas (GHG) column concentrations in Munich using the Weather Research and Forecasting (WRF) model
Impact of transport model resolution and a priori assumptions on inverse modeling of Swiss F-gas emissions
Estimation of power plant SO2 emissions using the HYSPLIT dispersion model and airborne observations with plume rise ensemble runs
Can we use atmospheric CO2 measurements to verify emission trends reported by cities? Lessons from a 6-year atmospheric inversion over Paris
A new steady-state gas–particle partitioning model of polycyclic aromatic hydrocarbons: implication for the influence of the particulate proportion in emissions
An analysis of CMAQ gas-phase dry deposition over North America through grid-scale and land-use-specific diagnostics in the context of AQMEII4
Rethinking the role of transport and photochemistry in regional ozone pollution: insights from ozone concentration and mass budgets
Decreasing seasonal cycle amplitude of methane in the northern high latitudes being driven by lower-latitude changes in emissions and transport
The effect of anthropogenic emission, meteorological factors, and carbon dioxide on the surface ozone increase in China from 2008 to 2018 during the East Asia summer monsoon season
Development of a CMAQ–PMF-based composite index for prescribing an effective ozone abatement strategy: a case study of sensitivity of surface ozone to precursor volatile organic compound species in southern Taiwan
Comment on “Climate consequences of hydrogen emissions” by Ocko and Hamburg (2022)
Constraining emissions of volatile organic compounds from western US wildfires with WE-CAN and FIREX-AQ airborne observations
Satellite quantification of methane emissions and oil–gas methane intensities from individual countries in the Middle East and North Africa: implications for climate action
Coupled mesoscale–microscale modeling of air quality in a polluted city using WRF-LES-Chem
Impact of aerosol optics on vertical distribution of ozone in autumn over Yangtze River Delta
A view of the European carbon flux landscape through the lens of the ICOS atmospheric observation network
Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020
Evaluation of simulated CO2 power plant plumes from six high-resolution atmospheric transport models
Impacts of urbanization on air quality and the related health risks in a city with complex terrain
Optimizing 4 years of CO2 biospheric fluxes from OCO-2 and in situ data in TM5: fire emissions from GFED and inferred from MOPITT CO data
Development and application of a multi-scale modeling framework for urban high-resolution NO2 pollution mapping
Towards monitoring the CO2 source–sink distribution over India via inverse modelling: quantifying the fine-scale spatiotemporal variability in the atmospheric CO2 mole fraction
Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations
Estimated regional CO2 flux and uncertainty based on an ensemble of atmospheric CO2 inversions
Assessing the representativity of NH3 measurements influenced by boundary-layer dynamics and the turbulent dispersion of a nearby emission source
Analysis of CO2, CH4, and CO surface and column concentrations observed at Réunion Island by assessing WRF-Chem simulations
Technical note: Interpretation of field observations of point-source methane plume using observation-driven large-eddy simulations
Quantifying fossil fuel methane emissions using observations of atmospheric ethane and an uncertain emission ratio
The impact of peripheral circulation characteristics of typhoon on sustained ozone episodes over the Pearl River Delta region, China
Updated Global Fuel Exploitation Inventory (GFEI) for methane emissions from the oil, gas, and coal sectors: evaluation with inversions of atmospheric methane observations
High-resolution mapping of regional traffic emissions using land-use machine learning models
Land use and anthropogenic heat modulate ozone by meteorology: a perspective from the Yangtze River Delta region
Cynthia D. Nevison, Qing Liang, Paul A. Newman, Britton B. Stephens, Geoff Dutton, Xin Lan, Roisin Commane, Yenny Gonzalez, and Eric Kort
Atmos. Chem. Phys., 24, 10513–10529, https://doi.org/10.5194/acp-24-10513-2024, https://doi.org/10.5194/acp-24-10513-2024, 2024
Short summary
Short summary
This study examines the drivers of interannual variability in tropospheric N2O. New insights are obtained from aircraft data and a chemistry–climate model that explicitly simulates stratospheric N2O. The stratosphere is found to be the dominant driver of N2O variability in the Northern Hemisphere, while both the stratosphere and El Niño cycles are important in the Southern Hemisphere. These results are consistent with known atmospheric dynamics and differences between the hemispheres.
Misa Ishizawa, Douglas Chan, Doug Worthy, Elton Chan, Felix Vogel, Joe R. Melton, and Vivek K. Arora
Atmos. Chem. Phys., 24, 10013–10038, https://doi.org/10.5194/acp-24-10013-2024, https://doi.org/10.5194/acp-24-10013-2024, 2024
Short summary
Short summary
Methane (CH4) emissions in Canada for 2007–2017 were estimated using Canada’s surface greenhouse gas measurements. The estimated emissions show no significant trend, but emission uncertainty was reduced as more measurement sites became available. Notably for climate change, we find the wetland CH4 emissions show a positive correlation with surface air temperature in summer. Canada’s measurement network could monitor future CH4 emission changes and compliance with climate change mitigation goals.
Yiang Chen, Xingcheng Lu, and Jimmy C. H. Fung
Atmos. Chem. Phys., 24, 8847–8864, https://doi.org/10.5194/acp-24-8847-2024, https://doi.org/10.5194/acp-24-8847-2024, 2024
Short summary
Short summary
This study investigates the contribution of pollutants from different emitting periods to ozone episodes over the Greater Bay Area. The analysis reveals the variation in major spatiotemporal contributors to the O3 pollution under the influence of typhoons and subtropical high pressure. Through temporal contribution analysis, our work offers a new perspective on the evolution of O3 pollution and can aid in developing effective and timely control policies under unfavorable weather conditions.
Fabian Maier, Christian Rödenbeck, Ingeborg Levin, Christoph Gerbig, Maksym Gachkivskyi, and Samuel Hammer
Atmos. Chem. Phys., 24, 8183–8203, https://doi.org/10.5194/acp-24-8183-2024, https://doi.org/10.5194/acp-24-8183-2024, 2024
Short summary
Short summary
We investigate the usage of discrete radiocarbon (14C)-based fossil fuel carbon dioxide (ffCO2) concentration estimates vs. continuous carbon monoxide (CO)-based ffCO2 estimates to evaluate the seasonal cycle of ffCO2 emissions in an urban region with an inverse modeling framework. We find that the CO-based ffCO2 estimates allow us to reconstruct robust seasonal cycles, which show the distinct COVID-19 drawdown in 2020 and can be used to validate emission inventories.
Kevin Oliveira, Marc Guevara, Oriol Jorba, Hervé Petetin, Dene Bowdalo, Carles Tena, Gilbert Montané Pinto, Franco López, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7137–7177, https://doi.org/10.5194/acp-24-7137-2024, https://doi.org/10.5194/acp-24-7137-2024, 2024
Short summary
Short summary
In this work, we assess and evaluate benzene, toluene, and xylene primary emissions and air quality levels in Spain by combining observations, emission inventories, and air quality modelling techniques. The comparison between modelled and observed levels allows identifying uncertainty sources within the emission input. This contributes to improving air quality models' performance when simulating these compounds, leading to better support for the design of effective pollution control strategies.
Yuehan Luo, Tianliang Zhao, Kai Meng, Jun Hu, Qingjian Yang, Yongqing Bai, Kai Yang, Weikang Fu, Chenghao Tan, Yifan Zhang, Yanzhe Zhang, and Zhikuan Li
Atmos. Chem. Phys., 24, 7013–7026, https://doi.org/10.5194/acp-24-7013-2024, https://doi.org/10.5194/acp-24-7013-2024, 2024
Short summary
Short summary
We reveal a significant mechanism of stratospheric O3 intrusion (SI) into the atmospheric environment induced by an extratropical cyclone system. This system facilitates the downward transport of stratospheric O3 to the near-surface layer by vertical coupling, involving the upper westerly trough, the middle northeast cold vortex, and the lower extratropical cyclone in the troposphere. On average, stratospheric O3 contributed 26.77 % to near-surface O3 levels over the North China Plain.
Cheng Zheng, Yutian Wu, Mingfang Ting, and Clara Orbe
Atmos. Chem. Phys., 24, 6965–6985, https://doi.org/10.5194/acp-24-6965-2024, https://doi.org/10.5194/acp-24-6965-2024, 2024
Short summary
Short summary
Trace gases and aerosols in the Arctic, which typically originate from midlatitude and tropical emission regions, modulate the Arctic climate via their radiative and chemistry impacts. Thus, long-range transport of these substances is important for understanding the current and the future change of Arctic climate. By employing chemistry–climate models, we explore how year-to-year variations in the atmospheric circulation modulate atmospheric long-range transport into the Arctic.
Sophie Wittig, Antoine Berchet, Isabelle Pison, Marielle Saunois, and Jean-Daniel Paris
Atmos. Chem. Phys., 24, 6359–6373, https://doi.org/10.5194/acp-24-6359-2024, https://doi.org/10.5194/acp-24-6359-2024, 2024
Short summary
Short summary
The aim of this work is to analyse how accurately a methane bomb event could be detected with the current and a hypothetically extended stationary observation network in the Arctic. For this, we incorporate synthetically modelled possible future CH4 concentrations based on plausible emission scenarios into an inverse modelling framework. We analyse how well the increase is detected in different Arctic regions and evaluate the impact of additional observation sites in this respect.
Michael Steiner, Luca Cantarello, Stephan Henne, and Dominik Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1426, https://doi.org/10.5194/egusphere-2024-1426, 2024
Short summary
Short summary
Atmospheric GHG inversions have great potential to independently check reported bottom-up emissions, however they are still subject to large uncertainties. It is therefore paramount to address and reduce the largest source of uncertainty stemming from the representation of atmospheric transport in the models. In this study, we show that the use of a temporally varying, flow-dependent atmospheric transport uncertainty can enhance the accuracy of emission estimation through idealized experiment.
Vishnu Thilakan, Dhanyalekshmi Pillai, Jithin Sukumaran, Christoph Gerbig, Haseeb Hakkim, Vinayak Sinha, Yukio Terao, Manish Naja, and Monish Vijay Deshpande
Atmos. Chem. Phys., 24, 5315–5335, https://doi.org/10.5194/acp-24-5315-2024, https://doi.org/10.5194/acp-24-5315-2024, 2024
Short summary
Short summary
This study investigates the usability of CO2 mixing ratio observations over India to infer regional carbon sources and sinks. We demonstrate that a high-resolution modelling system can represent the observed CO2 variations reasonably well by improving the transport and flux variations at a fine scale. Future carbon data assimilation systems can thus benefit from these recently available CO2 observations when fine-scale variations are adequately represented in the models.
Rostislav Kouznetsov, Risto Hänninen, Andreas Uppstu, Evgeny Kadantsev, Yalda Fatahi, Marje Prank, Dmitrii Kouznetsov, Steffen Manfred Noe, Heikki Junninen, and Mikhail Sofiev
Atmos. Chem. Phys., 24, 4675–4691, https://doi.org/10.5194/acp-24-4675-2024, https://doi.org/10.5194/acp-24-4675-2024, 2024
Short summary
Short summary
By relying solely on publicly available media reports, we were able to infer the temporal evolution and the injection height for the Nord Stream gas leaks in September 2022. The inventory specifies locations, vertical distributions, and temporal evolution of the methane sources. The inventory can be used to simulate the event with atmospheric transport models. The inventory is supplemented with a set of observational data tailored to evaluate the results of the simulated atmospheric dispersion.
Michael Steiner, Wouter Peters, Ingrid Luijkx, Stephan Henne, Huilin Chen, Samuel Hammer, and Dominik Brunner
Atmos. Chem. Phys., 24, 2759–2782, https://doi.org/10.5194/acp-24-2759-2024, https://doi.org/10.5194/acp-24-2759-2024, 2024
Short summary
Short summary
The Paris Agreement increased interest in estimating greenhouse gas (GHG) emissions of individual countries, but top-down emission estimation is not yet considered policy-relevant. It is therefore paramount to reduce large errors and to build systems that are based on the newest atmospheric transport models. In this study, we present the first application of ICON-ART in the inverse modeling of GHG fluxes with an ensemble Kalman filter and present our results for European CH4 emissions.
Nan Wang, Hongyue Wang, Xin Huang, Xi Chen, Yu Zou, Tao Deng, Tingyuan Li, Xiaopu Lyu, and Fumo Yang
Atmos. Chem. Phys., 24, 1559–1570, https://doi.org/10.5194/acp-24-1559-2024, https://doi.org/10.5194/acp-24-1559-2024, 2024
Short summary
Short summary
This study explores the influence of extreme-weather-induced natural processes on ozone pollution, which is often overlooked. By analyzing meteorological factors, natural emissions, chemistry pathways and atmospheric transport, we discovered that these natural processes could substantially exacerbate ozone pollution. The findings contribute to a deeper understanding of ozone pollution and offer valuable insights for controlling ozone pollution in the context of global warming.
Jia Mao, Amos P. K. Tai, David H. Y. Yung, Tiangang Yuan, Kong T. Chau, and Zhaozhong Feng
Atmos. Chem. Phys., 24, 345–366, https://doi.org/10.5194/acp-24-345-2024, https://doi.org/10.5194/acp-24-345-2024, 2024
Short summary
Short summary
Surface ozone (O3) is well-known for posing great threats to both human health and agriculture worldwide. However, a multidecadal assessment of the impacts of O3 on public health and agriculture in China is lacking without sufficient O3 observations. We used a hybrid approach combining a chemical transport model and machine learning to provide a robust dataset of O3 concentrations over the past 4 decades in China, thereby filling the gap in the long-term O3 trend and impact assessment in China.
Leon Kuhn, Steffen Beirle, Vinod Kumar, Sergey Osipov, Andrea Pozzer, Tim Bösch, Rajesh Kumar, and Thomas Wagner
Atmos. Chem. Phys., 24, 185–217, https://doi.org/10.5194/acp-24-185-2024, https://doi.org/10.5194/acp-24-185-2024, 2024
Short summary
Short summary
NO₂ is an important air pollutant. It was observed that the WRF-Chem model shows significant deviations in NO₂ abundance when compared to measurements. We use a 1-month simulation over central Europe to show that these deviations can be mostly resolved by reparameterization of the vertical mixing routine. In order to validate our results, they are compared to in situ, satellite, and MAX-DOAS measurements.
Ondřej Tichý, Sabine Eckhardt, Yves Balkanski, Didier Hauglustaine, and Nikolaos Evangeliou
Atmos. Chem. Phys., 23, 15235–15252, https://doi.org/10.5194/acp-23-15235-2023, https://doi.org/10.5194/acp-23-15235-2023, 2023
Short summary
Short summary
We show declining trends in NH3 emissions over Europe for 2013–2020 using advanced dispersion and inverse modelling and satellite measurements from CrIS. Emissions decreased by −26% since 2013, showing that the abatement strategies adopted by the European Union have been very efficient. Ammonia emissions are low in winter and peak in summer due to temperature-dependent soil volatilization. The largest decreases were observed in central and western Europe in countries with high emissions.
Yusuf A. Bhatti, Laura E. Revell, Alex J. Schuddeboom, Adrian J. McDonald, Alex T. Archibald, Jonny Williams, Abhijith U. Venugopal, Catherine Hardacre, and Erik Behrens
Atmos. Chem. Phys., 23, 15181–15196, https://doi.org/10.5194/acp-23-15181-2023, https://doi.org/10.5194/acp-23-15181-2023, 2023
Short summary
Short summary
Aerosols are a large source of uncertainty over the Southern Ocean. A dominant source of sulfate aerosol in this region is dimethyl sulfide (DMS), which is poorly simulated by climate models. We show the sensitivity of simulated atmospheric DMS to the choice of oceanic DMS data set and emission scheme. We show that oceanic DMS has twice the influence on atmospheric DMS than the emission scheme. Simulating DMS more accurately in climate models will help to constrain aerosol uncertainty.
Maryam Golbazi and Cristina Archer
Atmos. Chem. Phys., 23, 15057–15075, https://doi.org/10.5194/acp-23-15057-2023, https://doi.org/10.5194/acp-23-15057-2023, 2023
Short summary
Short summary
We use scientific models to study the impact of ship emissions on air quality along the US East Coast. We find an increase in three major pollutants (PM2.5, NO2, and SO2) in coastal regions. However, we detect a reduction in ozone (O3) levels in major coastal cities. This reduction is linked to the significant emissions of nitrogen oxides (NOx) from ships, which scavenged O3, especially in highly polluted urban areas experiencing an NOx-limited regime.
Xinxu Zhao, Jia Chen, Julia Marshall, Michal Gałkowski, Stephan Hachinger, Florian Dietrich, Ankit Shekhar, Johannes Gensheimer, Adrian Wenzel, and Christoph Gerbig
Atmos. Chem. Phys., 23, 14325–14347, https://doi.org/10.5194/acp-23-14325-2023, https://doi.org/10.5194/acp-23-14325-2023, 2023
Short summary
Short summary
We develop a modeling framework using the Weather Research and Forecasting model at a high spatial resolution (up to 400 m) to simulate atmospheric transport of greenhouse gases and interpret column observations. Output is validated against weather stations and column measurements in August 2018. The differential column method is applied, aided by air-mass transport tracing with the Stochastic Time-Inverted Lagrangian Transport (STILT) model, also for an exploratory measurement interpretation.
Ioannis Katharopoulos, Dominique Rust, Martin K. Vollmer, Dominik Brunner, Stefan Reimann, Simon J. O'Doherty, Dickon Young, Kieran M. Stanley, Tanja Schuck, Jgor Arduini, Lukas Emmenegger, and Stephan Henne
Atmos. Chem. Phys., 23, 14159–14186, https://doi.org/10.5194/acp-23-14159-2023, https://doi.org/10.5194/acp-23-14159-2023, 2023
Short summary
Short summary
The effectiveness of climate change mitigation needs to be scrutinized by monitoring greenhouse gas (GHG) emissions. Countries report their emissions to the UN in a bottom-up manner. By combining atmospheric observations and transport models someone can independently validate emission estimates in a top-down fashion. We report Swiss emissions of synthetic GHGs based on kilometer-scale transport and inverse modeling, highlighting the role of appropriate resolution in complex terrain.
Tianfeng Chai, Xinrong Ren, Fong Ngan, Mark Cohen, and Alice Crawford
Atmos. Chem. Phys., 23, 12907–12933, https://doi.org/10.5194/acp-23-12907-2023, https://doi.org/10.5194/acp-23-12907-2023, 2023
Short summary
Short summary
The SO2 emissions of three power plants are estimated using aircraft observations and an ensemble of HYSPLIT dispersion simulations with different plume rise parameters. The emission estimates using the runs with the lowest root mean square errors (RMSEs) and the runs with the best correlation coefficients between the predicted and observed mixing ratios both agree well with the Continuous Emissions Monitoring Systems (CEMS) data. The RMSE-based plume rise appears to be more reasonable.
Jinghui Lian, Thomas Lauvaux, Hervé Utard, François-Marie Bréon, Grégoire Broquet, Michel Ramonet, Olivier Laurent, Ivonne Albarus, Mali Chariot, Simone Kotthaus, Martial Haeffelin, Olivier Sanchez, Olivier Perrussel, Hugo Anne Denier van der Gon, Stijn Nicolaas Camiel Dellaert, and Philippe Ciais
Atmos. Chem. Phys., 23, 8823–8835, https://doi.org/10.5194/acp-23-8823-2023, https://doi.org/10.5194/acp-23-8823-2023, 2023
Short summary
Short summary
This study quantifies urban CO2 emissions via an atmospheric inversion for the Paris metropolitan area over a 6-year period from 2016 to 2021. Results show a long-term decreasing trend of about 2 % ± 0.6 % per year in the annual CO2 emissions over Paris. We conclude that our current capacity can deliver near-real-time CO2 emission estimates at the city scale in under a month, and the results agree within 10 % with independent estimates from multiple city-scale inventories.
Fu-Jie Zhu, Peng-Tuan Hu, and Wan-Li Ma
Atmos. Chem. Phys., 23, 8583–8590, https://doi.org/10.5194/acp-23-8583-2023, https://doi.org/10.5194/acp-23-8583-2023, 2023
Short summary
Short summary
A new steady-state gas–particle partitioning model of polycyclic aromatic hydrocarbons was established based on the level-III multimedia fugacity model, which proved that the particulate proportion of PAHs in emissions was a crucial factor for G–P partitioning of PAHs. In addition, gaseous and particulate interference was also derived in the new steady-state model determined by the particulate proportion in emission that could derivate the G–P partitioning quotients from the equilibrium state.
Christian Hogrefe, Jesse O. Bash, Jonathan E. Pleim, Donna B. Schwede, Robert C. Gilliam, Kristen M. Foley, K. Wyat Appel, and Rohit Mathur
Atmos. Chem. Phys., 23, 8119–8147, https://doi.org/10.5194/acp-23-8119-2023, https://doi.org/10.5194/acp-23-8119-2023, 2023
Short summary
Short summary
Under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in the widely used CMAQ model. The results illustrate how these tools can provide insights into similarities and differences between the two CMAQ dry deposition options that affect simulated pollutant budgets and ecosystem impacts from atmospheric pollution.
Kun Qu, Xuesong Wang, Xuhui Cai, Yu Yan, Xipeng Jin, Mihalis Vrekoussis, Maria Kanakidou, Guy P. Brasseur, Jin Shen, Teng Xiao, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 7653–7671, https://doi.org/10.5194/acp-23-7653-2023, https://doi.org/10.5194/acp-23-7653-2023, 2023
Short summary
Short summary
Basic understandings of ozone processes, especially transport and chemistry, are essential to support ozone pollution control, but studies often have different views on their relative importance. We developed a method to quantify their contributions in the ozone mass and concentration budgets based on the WRF-CMAQ model. Results in a polluted region highlight the differences between two budgets. For future studies, two budgets are both needed to fully understand the effects of ozone processes.
Emily Dowd, Chris Wilson, Martyn P. Chipperfield, Emanuel Gloor, Alistair Manning, and Ruth Doherty
Atmos. Chem. Phys., 23, 7363–7382, https://doi.org/10.5194/acp-23-7363-2023, https://doi.org/10.5194/acp-23-7363-2023, 2023
Short summary
Short summary
Surface observations of methane show that the seasonal cycle amplitude (SCA) of methane is decreasing in the northern high latitudes (NHLs) but increased globally (1995–2020). The NHL decrease is counterintuitive, as we expect the SCA to increase with increasing concentrations. We use a chemical transport model to investigate changes in SCA in the NHLs. We find well-mixed methane and changes in emissions from Canada, the Middle East, and Europe are the largest contributors to the SCA in NHLs.
Danyang Ma, Tijian Wang, Hao Wu, Yawei Qu, Jian Liu, Jane Liu, Shu Li, Bingliang Zhuang, Mengmeng Li, and Min Xie
Atmos. Chem. Phys., 23, 6525–6544, https://doi.org/10.5194/acp-23-6525-2023, https://doi.org/10.5194/acp-23-6525-2023, 2023
Short summary
Short summary
Increasing surface ozone (O3) concentrations have long been a significant environmental issue in China, despite the Clean Air Action Plan launched in 2013. Most previous research ignores the contributions of CO2 variations. Our study comprehensively analyzed O3 variation across China from various perspectives and highlighted the importance of considering CO2 variations when designing long-term O3 control policies, especially in high-vegetation-coverage areas.
Jackson Hian-Wui Chang, Stephen M. Griffith, Steven Soon-Kai Kong, Ming-Tung Chuang, and Neng-Huei Lin
Atmos. Chem. Phys., 23, 6357–6382, https://doi.org/10.5194/acp-23-6357-2023, https://doi.org/10.5194/acp-23-6357-2023, 2023
Short summary
Short summary
A novel CMAQ–PMF-based composite index is developed to identify the key VOC source species for an effective ozone abatement strategy. The index provides information as to which VOC species are key to ozone formation and where to reduce sources of these VOC species. Using the composite index, we recommended the VOC control measures in southern Taiwan should prioritize solvent usage, vehicle emissions, and the petrochemical industry.
Lei Duan and Ken Caldeira
Atmos. Chem. Phys., 23, 6011–6020, https://doi.org/10.5194/acp-23-6011-2023, https://doi.org/10.5194/acp-23-6011-2023, 2023
Short summary
Short summary
Ocko and Hamburg (2022) emphasize the short-term climate impact of hydrogen, and we present an analysis that places greater focus on long-term outcomes. We have derived equations that describe the time-evolving impact of hydrogen and show that higher methane leakage is primarily responsible for the warming potential of blue hydrogen, while hydrogen leakage plays a less critical role. Fossil fuels show more prominent longer-term climate impacts than clean hydrogen under all emission scenarios.
Lixu Jin, Wade Permar, Vanessa Selimovic, Damien Ketcherside, Robert J. Yokelson, Rebecca S. Hornbrook, Eric C. Apel, I-Ting Ku, Jeffrey L. Collett Jr., Amy P. Sullivan, Daniel A. Jaffe, Jeffrey R. Pierce, Alan Fried, Matthew M. Coggon, Georgios I. Gkatzelis, Carsten Warneke, Emily V. Fischer, and Lu Hu
Atmos. Chem. Phys., 23, 5969–5991, https://doi.org/10.5194/acp-23-5969-2023, https://doi.org/10.5194/acp-23-5969-2023, 2023
Short summary
Short summary
Air quality in the USA has been improving since 1970 due to anthropogenic emission reduction. Those gains have been partly offset by increased wildfire pollution in the western USA in the past 20 years. Still, we do not understand wildfire emissions well due to limited measurements. Here, we used a global transport model to evaluate and constrain current knowledge of wildfire emissions with recent observational constraints, showing the underestimation of wildfire emissions in the western USA.
Zichong Chen, Daniel J. Jacob, Ritesh Gautam, Mark Omara, Robert N. Stavins, Robert C. Stowe, Hannah Nesser, Melissa P. Sulprizio, Alba Lorente, Daniel J. Varon, Xiao Lu, Lu Shen, Zhen Qu, Drew C. Pendergrass, and Sarah Hancock
Atmos. Chem. Phys., 23, 5945–5967, https://doi.org/10.5194/acp-23-5945-2023, https://doi.org/10.5194/acp-23-5945-2023, 2023
Short summary
Short summary
We quantify methane emissions from individual countries in the Middle East and North Africa by inverse analysis of 2019 TROPOMI satellite observations of atmospheric methane. We show that the ability to simply relate oil/gas emissions to activity metrics is compromised by stochastic nature of local infrastructure and management practices. We find that the industry target for oil/gas methane intensity is achievable through associated gas capture, modern infrastructure, and centralized operations.
Yuting Wang, Yong-Feng Ma, Domingo Muñoz-Esparza, Jianing Dai, Cathy Wing Yi Li, Pablo Lichtig, Roy Chun-Wang Tsang, Chun-Ho Liu, Tao Wang, and Guy Pierre Brasseur
Atmos. Chem. Phys., 23, 5905–5927, https://doi.org/10.5194/acp-23-5905-2023, https://doi.org/10.5194/acp-23-5905-2023, 2023
Short summary
Short summary
Air quality in urban areas is difficult to simulate in coarse-resolution models. This work exploits the WRF (Weather Research and Forecasting) model coupled with a large-eddy simulation (LES) component and online chemistry to perform high-resolution (33.3 m) simulations of air quality in a large city. The evaluation of the simulations with observations shows that increased model resolution improves the representation of the chemical species near the pollution sources.
Shuqi Yan, Bin Zhu, Shuangshuang Shi, Wen Lu, Jinhui Gao, Hanqing Kang, and Duanyang Liu
Atmos. Chem. Phys., 23, 5177–5190, https://doi.org/10.5194/acp-23-5177-2023, https://doi.org/10.5194/acp-23-5177-2023, 2023
Short summary
Short summary
We analyze ozone response to aerosol mixing states in the vertical direction by WRF-Chem simulations. Aerosols generally lead to turbulent suppression, precursor accumulation, low-level photolysis reduction, and upper-level photolysis enhancement under different underlying surface and pollution conditions. Thus, ozone decreases within the entire boundary layer during the daytime, and the decrease is the least in aerosol external mixing states compared to internal and core shell mixing states.
Ida Storm, Ute Karstens, Claudio D'Onofrio, Alex Vermeulen, and Wouter Peters
Atmos. Chem. Phys., 23, 4993–5008, https://doi.org/10.5194/acp-23-4993-2023, https://doi.org/10.5194/acp-23-4993-2023, 2023
Short summary
Short summary
In this study, we evaluate what is in the influence regions of the ICOS atmospheric measurement stations to gain insight into what land cover types and land-cover-associated fluxes the network represents. Subsequently, insights about strengths, weaknesses, and potential gaps can assist in future network expansion decisions. The network is concentrated in central Europe, which leads to a general overrepresentation of coniferous forest and cropland and underrepresentation of grass and shrubland.
Anna Agustí-Panareda, Jérôme Barré, Sébastien Massart, Antje Inness, Ilse Aben, Melanie Ades, Bianca C. Baier, Gianpaolo Balsamo, Tobias Borsdorff, Nicolas Bousserez, Souhail Boussetta, Michael Buchwitz, Luca Cantarello, Cyril Crevoisier, Richard Engelen, Henk Eskes, Johannes Flemming, Sébastien Garrigues, Otto Hasekamp, Vincent Huijnen, Luke Jones, Zak Kipling, Bavo Langerock, Joe McNorton, Nicolas Meilhac, Stefan Noël, Mark Parrington, Vincent-Henri Peuch, Michel Ramonet, Miha Razinger, Maximilian Reuter, Roberto Ribas, Martin Suttie, Colm Sweeney, Jérôme Tarniewicz, and Lianghai Wu
Atmos. Chem. Phys., 23, 3829–3859, https://doi.org/10.5194/acp-23-3829-2023, https://doi.org/10.5194/acp-23-3829-2023, 2023
Short summary
Short summary
We present a global dataset of atmospheric CO2 and CH4, the two most important human-made greenhouse gases, which covers almost 2 decades (2003–2020). It is produced by combining satellite data of CO2 and CH4 with a weather and air composition prediction model, and it has been carefully evaluated against independent observations to ensure validity and point out deficiencies to the user. This dataset can be used for scientific studies in the field of climate change and the global carbon cycle.
Dominik Brunner, Gerrit Kuhlmann, Stephan Henne, Erik Koene, Bastian Kern, Sebastian Wolff, Christiane Voigt, Patrick Jöckel, Christoph Kiemle, Anke Roiger, Alina Fiehn, Sven Krautwurst, Konstantin Gerilowski, Heinrich Bovensmann, Jakob Borchardt, Michal Galkowski, Christoph Gerbig, Julia Marshall, Andrzej Klonecki, Pascal Prunet, Robert Hanfland, Margit Pattantyús-Ábrahám, Andrzej Wyszogrodzki, and Andreas Fix
Atmos. Chem. Phys., 23, 2699–2728, https://doi.org/10.5194/acp-23-2699-2023, https://doi.org/10.5194/acp-23-2699-2023, 2023
Short summary
Short summary
We evaluated six atmospheric transport models for their capability to simulate the CO2 plumes from two of the largest power plants in Europe by comparing the models against aircraft observations collected during the CoMet (Carbon Dioxide and Methane Mission) campaign in 2018. The study analyzed how realistically such plumes can be simulated at different model resolutions and how well the planned European satellite mission CO2M will be able to quantify emissions from power plants.
Chenchao Zhan, Min Xie, Hua Lu, Bojun Liu, Zheng Wu, Tijian Wang, Bingliang Zhuang, Mengmeng Li, and Shu Li
Atmos. Chem. Phys., 23, 771–788, https://doi.org/10.5194/acp-23-771-2023, https://doi.org/10.5194/acp-23-771-2023, 2023
Short summary
Short summary
With the development of urbanization, urban land use and anthropogenic
emissions increase, affecting urban air quality and, in turn, the health risks associated with air pollutants. In this study, we systematically evaluate the impacts of urbanization on air quality and the corresponding health risks in a highly urbanized city with severe air pollution and complex terrain. This work focuses on the health risks caused by urbanization and can provide valuable insight for air pollution strategies.
Hélène Peiro, Sean Crowell, and Berrien Moore III
Atmos. Chem. Phys., 22, 15817–15849, https://doi.org/10.5194/acp-22-15817-2022, https://doi.org/10.5194/acp-22-15817-2022, 2022
Short summary
Short summary
CO data can provide a powerful constraint on fire fluxes, supporting more accurate estimation of biospheric CO2 fluxes. We converted CO fire flux into CO2 fire prior, which is then used to adjust CO2 respiration. We applied this to two other fire flux products. CO2 inversions constrained by satellites or in situ data are then performed. Results show larger variations among the data assimilated than across the priors, but tropical flux from in situ inversions is sensitive to priors.
Zhaofeng Lv, Zhenyu Luo, Fanyuan Deng, Xiaotong Wang, Junchao Zhao, Lucheng Xu, Tingkun He, Yingzhi Zhang, Huan Liu, and Kebin He
Atmos. Chem. Phys., 22, 15685–15702, https://doi.org/10.5194/acp-22-15685-2022, https://doi.org/10.5194/acp-22-15685-2022, 2022
Short summary
Short summary
This study developed a hybrid model, CMAQ-RLINE_URBAN, to predict the urban NO2 concentrations at a high spatial resolution. To estimate the influence of various street canyons on the dispersion of air pollutants, a new parameterization scheme was established based on computational fluid dynamics and machine learning methods. This work created a new method to identify the characteristics of vehicle-related air pollution at both city and street scales simultaneously and accurately.
Vishnu Thilakan, Dhanyalekshmi Pillai, Christoph Gerbig, Michal Galkowski, Aparnna Ravi, and Thara Anna Mathew
Atmos. Chem. Phys., 22, 15287–15312, https://doi.org/10.5194/acp-22-15287-2022, https://doi.org/10.5194/acp-22-15287-2022, 2022
Short summary
Short summary
This paper demonstrates how we can use atmospheric observations to improve the CO2 flux estimates in India. This is achieved by improving the representation of terrain, mesoscale transport, and flux variations. We quantify the impact of the unresolved variations in the current models on optimally estimated fluxes via inverse modelling and quantify the associated flux uncertainty. We illustrate how a parameterization scheme captures this variability in the coarse models.
Zichong Chen, Daniel J. Jacob, Hannah Nesser, Melissa P. Sulprizio, Alba Lorente, Daniel J. Varon, Xiao Lu, Lu Shen, Zhen Qu, Elise Penn, and Xueying Yu
Atmos. Chem. Phys., 22, 10809–10826, https://doi.org/10.5194/acp-22-10809-2022, https://doi.org/10.5194/acp-22-10809-2022, 2022
Short summary
Short summary
We quantify methane emissions in China and contributions from different sectors by inverse analysis of 2019 TROPOMI satellite observations of atmospheric methane. We find that anthropogenic methane emissions for China are underestimated in the national inventory. Our estimate of emissions indicates a small life-cycle loss rate, implying net climate benefits from the current
coal-to-gasenergy transition in China. However, this small loss rate can be misleading given China's high gas imports.
Naveen Chandra, Prabir K. Patra, Yousuke Niwa, Akihiko Ito, Yosuke Iida, Daisuke Goto, Shinji Morimoto, Masayuki Kondo, Masayuki Takigawa, Tomohiro Hajima, and Michio Watanabe
Atmos. Chem. Phys., 22, 9215–9243, https://doi.org/10.5194/acp-22-9215-2022, https://doi.org/10.5194/acp-22-9215-2022, 2022
Short summary
Short summary
This paper is intended to accomplish two goals: (1) quantify mean and uncertainty in non-fossil-fuel CO2 fluxes estimated by inverse modeling and (2) provide in-depth analyses of regional CO2 fluxes in support of emission mitigation policymaking. CO2 flux variability and trends are discussed concerning natural climate variability and human disturbances using multiple lines of evidence.
Ruben B. Schulte, Margreet C. van Zanten, Bart J. H. van Stratum, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 22, 8241–8257, https://doi.org/10.5194/acp-22-8241-2022, https://doi.org/10.5194/acp-22-8241-2022, 2022
Short summary
Short summary
We present a fine-scale simulation framework, utilizing large-eddy simulations, to assess NH3 measurements influenced by boundary-layer dynamics and turbulent dispersion of a nearby emission source. The minimum required distance from an emission source differs for concentration and flux measurements, from 0.5–3.0 km and 0.75–4.5 km, respectively. The simulation framework presented here proves to be a powerful and versatile tool for future NH3 research at high spatio-temporal resolutions.
Sieglinde Callewaert, Jérôme Brioude, Bavo Langerock, Valentin Duflot, Dominique Fonteyn, Jean-François Müller, Jean-Marc Metzger, Christian Hermans, Nicolas Kumps, Michel Ramonet, Morgan Lopez, Emmanuel Mahieu, and Martine De Mazière
Atmos. Chem. Phys., 22, 7763–7792, https://doi.org/10.5194/acp-22-7763-2022, https://doi.org/10.5194/acp-22-7763-2022, 2022
Short summary
Short summary
A regional atmospheric transport model is used to analyze the factors contributing to CO2, CH4, and CO observations at Réunion Island. We show that the surface observations are dominated by local fluxes and dynamical processes, while the column data are influenced by larger-scale mechanisms such as biomass burning plumes. The model is able to capture the measured time series well; however, the results are highly dependent on accurate boundary conditions and high-resolution emission inventories.
Anja Ražnjević, Chiel van Heerwaarden, Bart van Stratum, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, and Maarten Krol
Atmos. Chem. Phys., 22, 6489–6505, https://doi.org/10.5194/acp-22-6489-2022, https://doi.org/10.5194/acp-22-6489-2022, 2022
Short summary
Short summary
Mobile measurement techniques (e.g., instruments placed in cars) are often employed to identify and quantify individual sources of greenhouse gases. Due to road restrictions, those observations are often sparse (temporally and spatially). We performed high-resolution simulations of plume dispersion, with realistic weather conditions encountered in the field, to reproduce the measurement process of a methane plume emitted from an oil well and provide additional information about the plume.
Alice E. Ramsden, Anita L. Ganesan, Luke M. Western, Matthew Rigby, Alistair J. Manning, Amy Foulds, James L. France, Patrick Barker, Peter Levy, Daniel Say, Adam Wisher, Tim Arnold, Chris Rennick, Kieran M. Stanley, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 22, 3911–3929, https://doi.org/10.5194/acp-22-3911-2022, https://doi.org/10.5194/acp-22-3911-2022, 2022
Short summary
Short summary
Quantifying methane emissions from different sources is a key focus of current research. We present a method for estimating sectoral methane emissions that uses ethane as a tracer for fossil fuel methane. By incorporating variable ethane : methane emission ratios into this model, we produce emissions estimates with improved uncertainty characterisation. This method will be particularly useful for studying methane emissions in areas with complex distributions of sources.
Ying Li, Xiangjun Zhao, Xuejiao Deng, and Jinhui Gao
Atmos. Chem. Phys., 22, 3861–3873, https://doi.org/10.5194/acp-22-3861-2022, https://doi.org/10.5194/acp-22-3861-2022, 2022
Short summary
Short summary
This study finds a new phenomenon of weak wind deepening (WWD) associated with the peripheral circulation of typhoon and gives the influence mechanism of WWD on its contribution to daily variation during sustained ozone episodes. The WWD provides the premise for pollution accumulation in the whole PBL and continued enhancement of ground-level ozone via vertical mixing processes. These findings could benefit the daily daytime ozone forecast in the PRD region and other areas.
Tia R. Scarpelli, Daniel J. Jacob, Shayna Grossman, Xiao Lu, Zhen Qu, Melissa P. Sulprizio, Yuzhong Zhang, Frances Reuland, Deborah Gordon, and John R. Worden
Atmos. Chem. Phys., 22, 3235–3249, https://doi.org/10.5194/acp-22-3235-2022, https://doi.org/10.5194/acp-22-3235-2022, 2022
Short summary
Short summary
We present a spatially explicit version of the national inventories of oil, gas, and coal methane emissions as submitted by individual countries to the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. We then use atmospheric modeling to compare our inventory emissions to atmospheric methane observations with the goal of identifying potential under- and overestimates of oil–gas methane emissions in the national inventories.
Xiaomeng Wu, Daoyuan Yang, Ruoxi Wu, Jiajun Gu, Yifan Wen, Shaojun Zhang, Rui Wu, Renjie Wang, Honglei Xu, K. Max Zhang, Ye Wu, and Jiming Hao
Atmos. Chem. Phys., 22, 1939–1950, https://doi.org/10.5194/acp-22-1939-2022, https://doi.org/10.5194/acp-22-1939-2022, 2022
Short summary
Short summary
Our work pioneered land-use machine learning methods for developing link-level emission inventories, utilizing hourly traffic profiles, including volume, speed, and fleet mix, obtained from the governmental intercity highway monitoring network in the "capital circles" of China. This research provides a platform to realize the near-real-time process of establishing high-resolution vehicle emission inventories for policy makers to engage in sophisticated traffic management.
Chenchao Zhan and Min Xie
Atmos. Chem. Phys., 22, 1351–1371, https://doi.org/10.5194/acp-22-1351-2022, https://doi.org/10.5194/acp-22-1351-2022, 2022
Short summary
Short summary
The changes of land use and anthropogenic heat (AH) derived from urbanization can affect meteorology and in turn O3 evolution. In this study, we briefly describe the general features of O3 pollution in the Yangtze River Delta (YRD) based on in situ observational data. Then, the impacts of land use and anthropogenic heat on O3 via changing the meteorological factors and local circulations are investigated in this region using the WRF-Chem model.
Cited articles
Alegría, N., Herranz, M., Idoeta, R., and Legarda, F.: Study of Be-7 activity concentration in the air of northern Spain, J. Radioanal. Nucl. Chem., 286, 347–351, https://doi.org/10.1007/s10967-010-0710-6, 2010.
AMAP/UNEP: Technical Background Report to the Global Atmospheric Mercury Assessment. Arctic Monitoring and Assessment Programme/UNEP Chemical Branch. 159 pp., 2008.
Arnott, W., Gyawali, M., and Arnold, I.: Aerosol extinction and single scattering albedo downwind of the summer 2008 California wildfires measured with photoacoustic spectrometers and sunphotometers from 355 nm to 1047 nm. Eos, 89, AGU Fall Meeting Supplement, Abstract A11D-0169, 2008.
Balkanski, Y. J., Jacob, D. J., and Gardner, G. M.: Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of Pb-210, J. Geophys. Res., 98, 20573–20586, 1993.
Bergan, T. and Rodhe, H.: Oxidation of elemental mercury in the atmosphere; constraints imposed by global scale modeling, J. Atmos. Chem., 40, 191–212, 2001.
Bullock, O. R. and Brehme, K. A.: Atmospheric mercury simulation using the CMAQ model: Formulation description and analysis of wet deposition results, Atmos. Environ., 36, 2135–2146, 2002.
Calvert, J. G., and Lindberg, S. E.: Mechanisms of mercury removal by O-3 and OH in the atmosphere, Atmos. Environ., 39, 3355–3367, https://doi.org/10.1016/j.atmosenv.2005.01.055, 2005.
Chung, S. H. and Seinfeld, J. H.: Global distribution and climate forcing of carbonaceous aerosols, J. Geophys. Res., 107, 4407, https://doi.org/10.1029/2001JD001397, 2002.
Clarkson, T. W. and Magos, L.: The toxicology of mercury and its chemical compounds, Crit. Rev. Toxic. , 36, 609–662, 2006.
Clever, H. L., Johnson, S. A., and Derrick, M. E.: The solubility of mercury and some sparingly soluble mercury salts in water and aqueous-electrolyte solutions, J. Phys. Chem. Ref. Data, 14, 631–681, 1985.
Dastoor, A. P. and Larocque, Y.: Global circulation of atmospheric mercury: A modeling study, Atmos. Environ., 38, 147–161, https://doi.org/10.1016/j.atmosenv.2003.08.037, 2004.
Edgerton, E. S., Hartsell, B. E., and Jansen, J. J.: Mercury speciation in coal-fired power plant plumes observed at three surface sites in the southeastern US, Environ. Sci. Technol., 40, 4563–4570, https://doi.org/10.1021/es0515607, 2006.
Engle, M. A., Tate, M. T., Krabbenhoft, D. P., Schauer, J. J., Kolker, A., Shanley, J. B., and Bothner, M. H.: Comparison of atmospheric mercury speciation and deposition at nine sites across central and eastern North America, J. Geophys. Res., 115, D18306, https://doi.org/10.1029/2010jd014064, 2010.
Faïn, X., Obrist, D., Hallar, A. G., McCubbin, I., and Rahn, T.: High levels of reactive gaseous mercury observed at a high elevation research laboratory in the Rocky Mountains, Atmos. Chem. Phys., 9, 8049–8060, https://doi.org/10.5194/acp-9-8049-2009, 2009.
Faïn, X., Obrist, D., Pierce, A., Barth, C., Gustin, M. S., and Boyle, D. P.: Whole-watershed mercury balance at Sagehen Creek, Sierra Nevada, CA, Geochim. Cosmochim. Acta, 75, 2379–2392, https://doi.org/10.1016/j.gca.2011.01.041, 2011.
Finley, B. D., Swartzendruber, P. C., and Jaffe, D. A.: Particulate mercury emissions in regional wildfire plumes observed at the Mount Bachelor Observatory, Atmos. Environ., 43, 6074–6083, https://doi.org/10.1016/j.atmosenv.2009.08.046, 2009.
Friedli, H. R., Radke, L. F., Lu, J. Y., Banic, C. M., Leaitch, W. R., and MacPherson, J. I.: Mercury emissions from burning of biomass from temperate North American forests: Laboratory and airborne measurements, Atmos. Environ., 37, 253–267, https://doi.org/10.1016/s1352-2310(02)00819-1, 2003a.
Friedli, H. R., Radke, L. F., Prescott, R., Hobbs, P. V., and Sinha, P.: Mercury emissions from the August 2001 wildfires in Washington State and an agricultural waste fire in Oregon and atmospheric mercury budget estimates, Glob. Biogeochem. Cy, 17, 1039, https://doi.org/10.1029/2002GB001972, 2003b.
Galarneau, E., Bidleman, T. F., and Blanchard, P.: Seasonality and interspecies differences in particle/gas partitioning of PAHs observed by the Integrated Atmospheric Deposition Network (IADN), Atmos. Environ., 40, 182–197, https://doi.org/10.1016/j.atmosenv.2005.09.034, 2006.
Graydon, J. A., Louis, V. L. S., Hintelmann, H., Lindberg, S. E., Sandilands, K. A., Rudd, J. W. M., Kelly, C. A., Hall, B. D., and Mowat, L. D.: Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada, Environ. Sci. Technol., 42, 8345–8351, https://doi.org/10.1021/es801056j, 2008.
Gustin, M. and Jaffe, D.: Reducing the uncertainty in measurement and understanding of mercury in the atmosphere, Environ. Sci. Technol., 44, 2222–2227, https://doi.org/10.1021/es902736k, 2010.
Hall, B.: The gas-phase oxidation of elemental mercury by ozone, Water Air Soil Pollut., 80, 301–315, https://doi.org/10.1007/bf01189680, 1995.
Hedgecock, I. M. and Pirrone, N.: Mercury and photochemistry in the marine boundary layer-modeling studies suggest the in situ production of reactive gas phase mercury, Atmos. Environ., 35, 3055–3062, https://doi.org/10.1016/s1352-2310(01)00109-1, 2001.
Holmes, C. D., Jacob, D. J., Mason, R. P., and Jaffe, D. A.: Sources and deposition of reactive gaseous mercury in the marine atmosphere, Atmos. Environ., 43, 2278–2285, https://doi.org/10.1016/j.atmosenv.2009.01.051, 2009.
Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., and Slemr, F.: Global atmospheric model for mercury including oxidation by bromine atoms, Atmos. Chem. Phys., 10, 12037–12057, https://doi.org/10.5194/acp-10-12037-2010, 2010.
Hynes, A., Donohoue, D., Goodsite, M., Hedgecock, I., Pirrone, N., and Mason, R.: Our current understanding of major chemical and physical processes affecting mercury dynamics in the atmosphere and at air-water/terrestrial interfaces, in: Mercury Fate and Transport in the Global Atmosphere, edited by: Pirrone, N. and Mason, R. P., chap. 14, Springer, 322–344, 2009.
Keeler, G., Glinsorn, G., and Pirrone, N.: Particulate mercury in the atmosphere – its significance, transport, transformation and sources, Water Air Soil Pollut., 80, 159–168, https://doi.org/10.1007/bf01189664, 1995.
Keeler, G. J., Gratz, L. E., and Al-Wali, K.: Long-term atmospheric mercury wet deposition at Underhill, Vermont, Ecotoxicology, 14, 71–83, https://doi.org/10.1007/s10646-004-6260-3, 2005.
Koch, D. M., Jacob, D. J., and Graustein, W. C.: Vertical transport of tropospheric aerosols as indicated by Be-7 and Pb-210 in a chemical tracer model, J. Geophys. Res., 101, 18651–18666, https://doi.org/10.1029/96jd01176, 1996.
Kos, G., Ryzhkov, A., and Dastoor, A.: Analysis of uncertainties in measurements and mode for oxidised and particle-bound mercury, 10th International Conference on Mercury as a Global Pollutant, Halifax, Nova Scotia, Canada, 2011.
Lamborg, C. H., Fitzgerald, W. F., Vandal, G. M., and Rolfhus, K. R.: Atmospheric mercury in northern Wisconsin – sources and species, Water Air Soil Pollut., 80, 189–198, https://doi.org/10.1007/bf01189667, 1995.
Landis, M. S., Stevens, R. K., Schaedlich, F., and Prestbo, E. M.: Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air, Environ. Sci. Technol., 36, 3000–3009, https://doi.org/10.1021/es015887t, 2002.
Levine, S. Z. and Schwartz, S. E.: In-cloud and below-cloud scavenging of nitric acid vapor, Atmos. Environ., 16, 1725–1734, 1982.
Lin, C. J., Pongprueksa, P., Lindberg, S. E., Pehkonen, S. O., Byun, D., and Jang, C.: Scientific uncertainties in atmospheric mercury models I: Model science evaluation, Atmos. Environ., 40, 2911–2928, https://doi.org/10.1016/j.atmosenv.2006.01.009, 2006.
Lindberg, S. E. and Stratton, W. J.: Atmospheric mercury speciation: Concentrations and behavior of reactive gaseous mercury in ambient air, Environ. Sci. Technol., 32, 49–57, https://doi.org/10.1021/es970546u, 1998.
Lindqvist, O. and Rodhe, H.: Atmospheric mercury - a review, Tellus B-Chem. Phys. Meteorol., 37, 136–159, 1985.
Liu, H. Y., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from Pb-210 and Be-7 on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields, J. Geophys. Res., 106, 12109–12128, https://doi.org/10.1029/2000jd900839, 2001.
Lohman, K., Seigneur, C., Edgerton, E., and Jansen, J.: Modeling mercury in power plant plumes, Environ. Sci. Technol., 40, 3848–3854, https://doi.org/10.1021/es051556v, 2006.
Lombard, M. A. S., Bryce, J. G., Mao, H., and Talbot, R.: Mercury deposition in southern New Hampshire, 2006–2009, Atmos. Chem. Phys., 11, 7657–7668, https://doi.org/10.5194/acp-11-7657-2011, 2011.
Lyman, S. N., Gustin, M. S., Prestbo, E. M., and Marsik, F. J.: Estimation of dry deposition of atmospheric mercury in Nevada by direct and indirect methods, Environ. Sci. Technol., 41, 1970–1976, https://doi.org/10.1021/es062323m, 2007.
Lyman, S. N., Gustin, M. S., Prestbo, E. M., Kilner, P. I., Edgerton, E., and Hartsell, B.: Testing and application of surrogate surfaces for understanding potential gaseous oxidized mercury dry deposition, Environ. Sci. Technol., 43, 6235–6241, https://doi.org/10.1021/es901192e, 2009.
Lyman, S. N. and Gustin, M. S.: Determinants of atmospheric mercury concentrations in Reno, Nevada, USA, Sci. Total Environ., 408, 431–438, https://doi.org/10.1016/j.scitotenv.2009.09.045, 2009.
Lyman, S. N., Jaffe, D. A., and Gustin, M. S.: Release of mercury halides from KCl denuders in the presence of ozone, Atmos. Chem. Phys., 10, 8197–8204, 10.5194/acp-10-8197-2010, 2010.
Lynam, M. M. and Keeler, G. J.: Artifacts associated with the measurement of particulate mercury in an urban environment: The influence of elevated ozone concentrations, Atmos. Environ., 39, 3081–3088, https://doi.org/10.1016/j.atmosenv.2005.01.036, 2005
Mahaffey, K. R., Clickner, R. P., and Bodurow, C. C.: Blood organic mercury and dietary mercury intake: National health and nutrition examination survey, 1999 and 2000, Environ. Health Persp., 112, 562–570, 2004.
Mahaffey, K. R., Clickner, R. P., and Jeffries, R. A.: Adult women's blood mercury concentrations vary regionally in the United States: Association with patterns of fish consumption (NHANES 1999–2004), Environ. Health Persp., 117, 47–53, 10.1289/ehp.11674, 2009.
Malcolm, E. G. and Keeler, G. J.: Evidence for a sampling artifact for particulate-phase mercury in the marine atmosphere, Atmos. Environ., 41, 3352–3359, https://doi.org/10.1016/j.atmosenv.2006.12.024, 2007.
Mao, H., Talbot, R., Hegarty, J., and Koermer, J.: Speciated mercury at marine, coastal, and inland sites in New England - Part 2: Relationships with atmospheric physical parameters, Atmos. Chem. Phys. Discuss., 11, 28395–28443, http://dx.doi.org/10.5194/acpd-11-28395-2011https://doi.org/10.5194/acpd-11-28395-2011, 2011.
Mason, R. P. and Sheu, G. R.: Role of the ocean in the global mercury cycle, Global Biogeochem. Cy., 16, 1093, https://doi.org/10.1029/2001gb001440, 2002.
Mergler, D., Anderson, H. A., Chan, L. H. M., Mahaffey, K. R., Murray, M., Sakamoto, M., and Stern, A. H.: Methylmercury exposure and health effects in humans: A worldwide concern, Ambio, 36, 3–11, 2007.
Muramatsu, H., Yoshizawa, S., Abe, T., Ishii, T., Wada, M., Horiuchi, Y., and Kanekatsu, R.: Variation of Be-7 concentration in surface air at Nagano, Japan, J. Radioanal. Nucl. Chem., 275, 299–307, https://doi.org/10.1007/s10967-007-7056-8, 2008.
National Atmospheric Deposition Program: Mercury Deposition Network (MDN): A NADP Network, available online at: http://nadp.sws.uiuc.edu/MDN/, 2011.
Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.: Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol., 30, 2580–2585, https://doi.org/10.1021/es950943, 1996.
Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., and Maxson, P.: Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020, Atmos. Environ., 44, 2487–2499, https://doi.org/10.1016/j.atmosenv.2009.06.009, 2010.
Pankow, J. F.: Review and comparative-analysis if the theories on partitioning between the gas and aerosol particulate phases in the atmosphere, Atmos. Environ., 21, 2275–2283, https://doi.org/10.1016/0004-6981(87)90363-5, 1987.
Pankow, J. F., Storey, J. M. E., and Yamasaki, H.: Effects of relative-humidity on gas-particle partitioning of semivolatile organic-compounds to urban particulate matter, Environ. Sci. Technol., 27, 2220–2226, https://doi.org/10.1021/es00047a032, 1993.
Pankow, J. F.: An absorption-model of the gas aerosol partitioning involved in the formation of secondary organic aerosol, Atmos. Environ., 28, 189–193, https://doi.org/10.1016/1352-2310(94)90094-9, 1994.
Petersen, G., Munthe, J., Pleijel, K., Bloxam, R., and Kumar, A. V.: A comprehensive Eulerian modeling framework for airborne mercury species: Development and testing of the tropospheric chemistry module (TCM), Atmos. Environ., 32, 829–843, https://doi.org/10.1016/s1352-2310(97)00049-6, 1998.
Petersen, G., Iverfeldt, A., and Munthe, J.: Atmospheric mercury species over central and northern Europe – model-calculations and comparison with observations from the Nordic Air and Precipitation Network for 1987 and 1988, Atmos. Environ., 29, 47–67, https://doi.org/10.1016/1352-2310(94)00223-8, 1995.
Poissant, L., Pilote, M., Xu, X. H., Zhang, H., and Beauvais, C.: Atmospheric mercury speciation and deposition in the Bay St. Francois wetlands, J. Geophys. Res., 109, D11301, 10.1029/2003jd004364, 2004.
Pongprueksa, P., Lin, C. J., Lindberg, S. E., Jang, C., Braverman, T., Bullock, O. R., Ho, T. C., and Chu, H. W.: Scientific uncertainties in atmospheric mercury models III: Boundary and initial conditions, model grid resolution, and Hg(II) reduction mechanism, Atmos. Environ., 42, 1828–1845, https://doi.org/10.1016/j.atmosenv.2007.11.020, 2008.
Rutter, A. P. and Schauer, J. J.: The impact of aerosol composition on the particle to gas partitioning of reactive mercury, Environ. Sci. Technol., 41, 3934–3939, https://doi.org/10.1021/es062439i, 2007a.
Rutter, A. P. and Schauer, J. J.: The effect of temperature on the gas-particle partitioning of reactive mercury in atmospheric aerosols, Atmos. Environ., 41, 8647–8657, https://doi.org/10.1016/j.atmosenv.2007.07.024, 2007b.
Rutter, A. P., Hanford, K. L., Zwers, J. T., Perillo-Nicholas, A. L., Schauer, J. J., and Olson, M. L.: Evaluation of an offline method for the analysis of atmospheric reactive gaseous mercury and particulate mercury, J. Air Waste Manage. Assoc., 58, 377–383, 10.3155/1047-3289.58.3.377, 2008a.
Rutter, A. P., Schauer, J. J., Lough, G. C., Snyder, D. C., Kolb, C. J., Von Klooster, S., Rudolf, T., Manolopoulos, H., and Olson, M. L.: A comparison of speciated atmospheric mercury at an urban center and an upwind rural location, J. Environ. Monit., 10, 102–108, https://doi.org/10.1039/b710247j, 2008b.
Sanei, H., Outridge, P. M., Goodarzi, F., Wang, F., Armstrong, D., Warren, K., and Fishback, L.: Wet deposition mercury fluxes in the Canadian sub-Arctic and southern Alberta, measured using an automated precipitation collector adapted to cold regions, Atmos. Environ., 44, 1672–1681, https://doi.org/10.1016/j.atmosenv.2010.01.030, 2010.
Scheuhammer, A. M., Meyer, M. W., Sandheinrich, M. B., and Murray, M. W.: Effects of environmental methylmercury on the health of wild birds, mammals, and fish, Ambio, 36, 12–18, https://doi.org/10.1579/0044-7447(2007)36[12:eoemot]2.0.co;2, 2007.
Schroeder, W. H. and Munthe, J.: Atmospheric mercury – an overview, Atmos. Environ., 32, 809–822, https://doi.org/10.1016/s1352-2310(97)00293-8, 1998.
Seigneur, C., Abeck, H., Chia, G., Reinhard, M., Bloom, N. S., Prestbo, E., and Saxena, P.: Mercury adsorption to elemental carbon (soot) particles and atmospheric particulate matter, Atmos. Environ., 32, 2649–2657, https://doi.org/10.1016/s1352-2310(97)00415-9, 1998.
Seigneur, C., Karamchandani, P., Lohman, K., Vijayaraghavan, K., and Shia, R. L.: Multiscale modeling of the atmospheric fate and transport of mercury, J. Geophys. Res., 106, 27795–27809, https://doi.org/10.1029/2000jd000273, 2001.
Seigneur, C., Karamchandani, P., Vijayaraghavan, K., Lohman, K., Shia, R. L., and Levin, L.: On the effect of spatial resolution on atmospheric mercury modeling, Sci. Total Environ., 304, 73–81, https://doi.org/10.1016/s0048-9697(02)00558-2, 2003.
Seigneur, C., Vijayaraghavan, K., and Lohman, K.: Atmospheric mercury chemistry: Sensitivity of global model simulations to chemical reactions, J. Geophys. Res., 111, D22306, https://doi.org/10.1029/2005jd006780, 2006.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: From air pollution to climate change, 2nd ed., John Wiley & Sons, Inc., 1203 pp., 2006.
Selin, N. E., Jacob, D. J., Park, R. J., Yantosca, R. M., Strode, S., Jaegle, L., and Jaffe, D.: Chemical cycling and deposition of atmospheric mercury: Global constraints from observations, J. Geophys. Res., 112, D02308, https://doi.org/10.1029/2006jd007450, 2007.
Selin, N. E. and Jacob, D. J.: Seasonal and spatial patterns of mercury wet deposition in the United States: Constraints on the contribution from North American anthropogenic sources, Atmos. Environ., 42, 5193–5204, 2008.
Selin, N. E., Jacob, D. J., Yantosca, R. M., Strode, S., Jaegle, L., and Sunderland, E. M.: Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition, Global Biogeochem. Cycles, 22, GB3099, https://doi.org/10.1029/2008gb003282, 2008.
Sigler, J. M., Mao, H., and Talbot, R.: Gaseous elemental and reactive mercury in southern New Hampshire, Atmos. Chem. Phys., 9, 1929–1942, https://doi.org/10.5194/acp-9-1929-2009, 2009.
Skov, H., Brooks, S. B., Goodsite, M. E., Lindberg, S. E., Meyers, T. P., Landis, M. S., Larsen, M. R. B., Jensen, B., McConville, G., and Christensen, J.: Fluxes of reactive gaseous mercury measured with a newly developed method using relaxed eddy accumulation, Atmos. Environ., 40, 5452–5463, https://doi.org/10.1016/j.atmosenv.2006.04.061, 2006.
Soerensen, A. L., Sunderland, E. M., Holmes, C. D., Jacob, D. J., Yantosca, R. M., Skov, H., Christensen, J. H., Strode, S. A., and Mason, R. P.: An improved global model for air-sea exchange of mercury: High concentrations over the North Atlantic, Environ. Sci. Technol., 44, 8574–8580, https://doi.org/10.1021/es102032g, 2010.
Sommar, J., Gardfeldt, K., Stromberg, D., and Feng, X. B.: A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury, Atmos. Environ., 35, 3049–3054, https://doi.org/10.1016/s1352-2310(01)00108-x, 2001.
Subir, M., Ariya, P. A., and Dastoor, A. P.: A review of uncertainties in atmospheric modeling of mercury chemistry I. Uncertainties in existing kinetic parameters - fundamental limitations and the importance of heterogeneous chemistry, Atmos. Environ., 45, 5664–5676, https://doi.org/10.1016/j.atmosenv.2011.04.046, 2011.
Sunderland, E. M., and Mason, R. P.: Human impacts on open ocean mercury concentrations, Global Biogeochem. Cy., 21, GB4022, 10.1029/2006GB002876, 2007.
Swartzendruber, P. C., Jaffe, D. A., Prestbo, E. M., Weiss-Penzias, P., Selin, N. E., Park, R., Jacob, D. J., Strode, S., and Jaegle, L.: Observations of reactive gaseous mercury in the free troposphere at the Mount Bachelor Observatory, J. Geophys. Res., 111, D24302, https://doi.org/10.1029/2006jd007415, 2006.
Talbot, R., Mao, H., Feddersen, D., Smith, M., Kim, S. Y., Sive, B. C., Haase, K., Ambrose, J., Zhou, Y., and Russo, R.: Comparison of particulate mercury measured with manual and automated methods, Atmosphere, 2, 1–20, https://doi.org/10.3390/atmos2010001, 2011.
ter Schure, A., Caffrey, J., Gustin, M. S., Holmes, C. D., Hynes, A., Landing, B., Landis, M. S., Laudel, D., Levin, L., Nair, U., Jansen, J., Ryan, J., Walters, J., Schauer, J. J., Volkamer, R., Waters, D., and Weiss, P.: An integrated approach to assess elevated mercury wet deposition and concentrations in the southeastern United States, 10th International Conference on Mercury as a Global Pollutant, Halifax, Nova Scotia, Canada, 2011.
Vijayaraghavan, K., Karamchandani, P., Seigneur, C., Balmori, R., and Chen, S. Y.: Plume-in-grid modeling of atmospheric mercury, J. Geophys. Res., 113, D24305, https://doi.org/10.1029/2008jd010580, 2008.
Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: Implications for radiative forcing, Atmos. Chem. Phys., 11, 12453–12473, https://doi.org/10.5194/acp-11-12453-2011, 2011.
Wang, Y. H., Jacob, D. J., and Logan, J. A.: Global simulation of tropospheric O3-NOx-hydrocarbon chemistry 1. Model formulation, J. Geophys. Res., 103, 10713–10725, https://doi.org/10.1029/98jd00158, 1998.
Weiss-Penzias, P., Gustin, M. S., and Lyman, S. N.: Observations of speciated atmospheric mercury at three sites in Nevada: Evidence for a free tropospheric source of reactive gaseous mercury, J. Geophys. Res., 114, D14302, https://doi.org/10.1029/2008jd011607, 2009.
Weiss-Penzias, P. S., Gustin, M. S., and Lyman, S. N.: Sources of gaseous oxidized mercury and mercury dry deposition at two southeastern US sites, Atmos. Environ., 45, 4569–4579, https://doi.org/10.1016/j.atmosenv.2011.05.069, 2011.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical-models, Atmos. Environ., 23, 1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
Yamasaki, H., Kuwata, K., and Miyamoto, H.: Effects of ambient temperature on aspects of airborne polycyclic aromatic hydrocarbons, Environ. Sci. Technol., 16, 189–194, https://doi.org/10.1021/es00098a003, 1982.
Yoshimori, M.: Beryllium 7 radionucleide as a tracer of vertical air mass transport in the troposphere, Atmos. Remote Sens., 828–832, 2005.
Zhang, L., Jacob, D. J., Downey, N. V., Wood, D. A., Blewitt, D., Carouge, C. C., van Donkelaar, A., Jones, D. B. A., Murray, L. T., and Wang, Y.: Improved estimate of the policy-relevant background ozone in the United States using the GEOS-Chem global model with 1/2$^{\circ}{\times}$2/3° horizontal resolution over North America, Atmos. Environ., 45, 6769–6776, 2011a.
Zhang, L. Jacob, D. J., Knipping, E. M., Kumar, N., Munger, J. W., Carouge, C. C., van Donkelaar, A., Wang, Y., and D. Chen: Nitrogen deposition to the United States: distribution, sources, and processes, Atmos. Chem. Phys., submitted, 2011b.
Zhang, Y., Jaeglé, L., van Donkelaar, A., Martin, R. V., Holmes, C. D., Amos, H. M., Wang, Q., Jacob, D. J., Talbot, R., Artz, R., Holson, T. M., Felton, D., Miller, E. K., Perry, K. D., Schmeltz, D., Steffen, A., and Tordon, R.: Nested-grid simulation of mercury over North America, Atmos. Chem. Phys., submitted, 2011.
Altmetrics
Final-revised paper
Preprint