Articles | Volume 25, issue 8
https://doi.org/10.5194/acp-25-4571-2025
https://doi.org/10.5194/acp-25-4571-2025
Research article
 | 
25 Apr 2025
Research article |  | 25 Apr 2025

Locating and quantifying CH4 sources within a wastewater treatment plant based on mobile measurements

Junyue Yang, Zhengning Xu, Zheng Xia, Xiangyu Pei, Yunye Yang, Botian Qiu, Shuang Zhao, Yuzhong Zhang, and Zhibin Wang

Related authors

Unveiling the organic contribution to the initial particle growth in 3–10 nm size range
Kewei Zhang, Zhengning Xu, Fei Zhang, and Zhibin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4421,https://doi.org/10.5194/egusphere-2025-4421, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Contributions of lightning to long-term trends and inter-annual variability in global atmospheric chemistry constrained by Schumann resonance observations
Xiaobo Wang, Yuzhong Zhang, Tamás Bozóki, Ruosi Liang, Xinchun Xie, Shutao Zhao, Rui Wang, Yujia Zhao, and Shuai Sun
Atmos. Chem. Phys., 25, 8929–8942, https://doi.org/10.5194/acp-25-8929-2025,https://doi.org/10.5194/acp-25-8929-2025, 2025
Short summary
Unraveling the Impact of Heterogeneity and Morphology on Light Absorption Enhancement of Black Carbon-Containing Particles
Jing Wei, Jin-Mei Ding, Yao Song, Xiao-Yuan Wang, Xiang-Yu Pei, Sheng-Chen Xu, Fei Zhang, Zheng-Ning Xu, Xu-Dong Tian, Bing-Ye Xu, and Zhi-Bin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2844,https://doi.org/10.5194/egusphere-2025-2844, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Global modeling of brown carbon: impact of temperature- and humidity-dependent bleaching
Xinchun Xie, Yuzhong Zhang, Ruosi Liang, and Xuan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2305,https://doi.org/10.5194/egusphere-2025-2305, 2025
Short summary
Spatiotemporal variations in atmospheric CH4 concentrations and enhancements in northern China based on a comprehensive dataset: ground-based observations, TROPOMI data, inventory data, and inversions
Pengfei Han, Ning Zeng, Bo Yao, Wen Zhang, Weijun Quan, Pucai Wang, Ting Wang, Minqiang Zhou, Qixiang Cai, Yuzhong Zhang, Ruosi Liang, Wanqi Sun, and Shengxiang Liu
Atmos. Chem. Phys., 25, 4965–4988, https://doi.org/10.5194/acp-25-4965-2025,https://doi.org/10.5194/acp-25-4965-2025, 2025
Short summary

Cited articles

Abeywickrama, H. G. K., Bajón-Fernández, Y., Srinamasivayam, B., Turner, D., and Rivas Casado, M.: Development of a UAV based framework for CH4 monitoring in sludge treatment centres, Remote Sens.-Basel, 15, 3704, https://doi.org/10.3390/rs15153704, 2023. 
Albertson, J. D., Harvey, T., Foderaro, G., Zhu, P., Zhou, X., Ferrari, S., Amin, M. S., Modrak, M., Brantley, H., and Thoma, E. D.: A Mobile Sensing Approach for regional surveillance of fugitive methane emissions in oil and gas production, Environ. Sci. Technol., 50, 2487–2497, https://doi.org/10.1021/acs.est.5b05059, 2016. 
Allen, G., Hollingsworth, P., Kabbabe, K., Pitt, J. R., Mead, M. I., Illingworth, S., Roberts, G., Bourn, M., Shallcross, D. E., and Percival, C. J.: The development and trial of an unmanned aerial system for the measurement of methane flux from landfill and greenhouse gas emission hotspots, Waste Manage., 87, 883–892, https://doi.org/10.1016/j.wasman.2017.12.024, 2019. 
Al-Shalan, A., Lowry, D., Fisher, R. E., Nisbet, E. G., Zazzeri, G., Al-Sarawi, M., and France, J. L.: Methane emissions in Kuwait: Plume identification, isotopic characterisation and inventory verification, Atmos. Environ., 268, 118763, https://doi.org/10.1016/j.atmosenv.2021.118763, 2022. 
Alshboul, Z., Encinas-Fernández, J., Hofmann, H., and Lorke, A.: Export of dissolved methane and carbon dioxide with effluents from municipal wastewater treatment plants, Environ. Sci. Technol., 50, 5555–5563, https://doi.org/10.1021/acs.est.5b04923, 2016. 
Download
Short summary
Mobile CH4 measurements were conducted at a wastewater treatment plant in Hangzhou in the summer and winter of 2023. A multi-source Gaussian plume model, combined with a genetic algorithm inversion framework, was used to locate major CH4 sources at the plant and quantify emissions. Results indicate that the summer CH4 emissions (603.33 ± 152.66 t a-1) were 2.8 times as high as inventory values, and winter values (418.95 ± 187.59 t a-1) were twice as high. The main sources were the screen and primary clarifier.
Share
Altmetrics
Final-revised paper
Preprint