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Abstract. Wastewater treatment plants (WWTPs) are substantial contributors of greenhouse gas (GHG) emis-
sions because of the high production of methane (CH4) and nitrous oxide (N2O). A typical WWTP complex
contains multiple functional areas that are potential sources of GHG emissions. Accurately quantifying GHG
emissions from these sources is challenging due to the inaccuracy of activity data, the ambiguity of emission
sources, and the absence of monitoring standards. Locating and quantifying WWTP emission sources using a
measurement-based GHG emission quantification method is crucial for evaluating and improving traditional
emission inventories. In this study, CH4 mobile measurements were conducted within a WWTP complex in the
summer and winter of 2023. We utilized a multi-source Gaussian plume model combined with a genetic algo-
rithm inversion framework, designed to locate major sources within the plant and quantify the corresponding
CH4 emission fluxes. We identified 13 main sources in the plant and estimated plant-scale CH4 emission fluxes
of 68.78±17.40kgh−1 (603.33±152.66 t a−1) for the summer and 47.76±21.39kgh−1 (418.95±187.59 t a−1)
for the winter. The predominant sources of CH4 emissions were the screen and primary clarifier, contributing
55 % and 67 % to the total emissions in summer and winter, respectively. The comparison revealed that summer
CH4 emissions were 2.8 times higher than inventory estimates, while winter emissions were twice the inventory
values. This study demonstrated that mobile measurements, combined with the multi-source Gaussian plume in-
version framework, are a powerful tool to locate and quantify GHG sources at a complex site, with the potential
for further refinement to accommodate different types of factories and gas species.
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1 Introduction

Methane (CH4) is the second-largest contributor to cli-
mate change, with a global warming potential 27.9 times
that of carbon dioxide (CO2). Thus, reducing CH4 emis-
sions is essential for mitigating climate change and progres-
sively achieving the global target of limiting warming to
1.5 °C (IPCC, 2023). The World Meteorological Organiza-
tion Global Atmospheric Watch network indicated that the
global annual average concentration of CH4 in 2022 was
1923± 2ppb, representing a 264 % increase from preindus-
trial levels (WMO, 2023). The International Energy Agency
(IEA) “Global Methane Tracker 2024” report suggested that
global CH4 emissions reached 580 Mt in 2023, with anthro-
pogenic CH4 emissions accounting for 60 % of this amount.
The complexity of CH4 emission processes, the lack of mon-
itoring systems, and the limitations of emission estimation
models present challenges with respect to accurately estimat-
ing anthropogenic CH4 emissions.

The quantification of CH4 emission fluxes is typically
achieved through a bottom-up inventory method. However,
due to the difficulties in obtaining activity data used for ac-
tual emission factors and the paucity of specific information
on different emission sources, there is considerable uncer-
tainty in assessments using the emission inventory method
(Lin et al., 2021). In contrast, a top-down method that es-
timates CH4 emissions by monitoring the atmospheric con-
centration has been increasingly applied in recent years (Sun
et al., 2019; Cusworth et al., 2024; Han et al., 2024; Maaza-
llahi et al., 2023; Riddick et al., 2017). The monitoring tech-
nology mainly includes satellite (Zhang et al., 2021; Liang
et al., 2023; Jacob et al., 2022) and airborne (Allen et al.,
2019; Abeywickrama et al., 2023; Cui et al., 2017) remote
sensing as well as ground-based monitoring, such as vehicle-
based mobile monitoring (Albertson et al., 2016; Al-Shalan
et al., 2022; Caulton et al., 2018), station monitoring (Di-
etrich et al., 2021; Hase et al., 2015; Heerah et al.,2021),
and tower monitoring (Richardson et al., 2017; Balashov
et al., 2020). Emission flux inversion methods also include
the isotope tracer method (Jackson et al., 2014; Zimnoch
et al., 2018), the cross-sectional flux method (Luther et al.,
2019; Makarova et al., 2021), and the atmospheric diffusion
model inversion method (Kumar et al., 2021; Yacovitch et al.,
2015). Atmospheric transport models with varied degrees
of complexity, including Gaussian diffusion models (Stadler
et al., 2021), Lagrangian models (McKain et al., 2015), and
Eulerian models (Bergamaschi et al., 2018), are used in the
inversion to relate greenhouse gas (GHG) concentrations to
emissions. Optimization methods, such as Bayesian opti-
mization (Karion et al., 2019) and linear regression models
(Kumar et al., 2021), are applied to achieve accurate inver-
sion results. Furthermore, some studies have incorporated
carbon isotope observations to better attribute the contribu-
tion of different CH4 emission sources (Maazallahi et al.,
2020). Numerous studies have used satellite remote sens-

ing, uncrewed aerial vehicle (UAV) monitoring, and vehicle-
based mobile monitoring techniques to measure CH4 emis-
sions (Sun et al., 2023). However, satellite spatiotemporal
resolution is limited and UAVs have short endurance, mak-
ing vehicle-based mobile monitoring a better choice for mea-
suring CH4 emissions. Vehicle-based mobile monitoring can
perform the continuous real-time monitoring and precise
identification of emission sources and, hence, has been ap-
plied for the urban (von Fischer et al., 2017; Defratyka et al.,
2021) and plant-scale (Zhao et al., 2021; Jin et al., 2010)
monitoring of GHG concentrations and emission fluxes. Vo-
gel et al. (2024) used high-precision, fast-response GHG ana-
lyzers to investigate CH4 leaks in 12 cities across eight coun-
tries. Chen et al. (2020) utilized the multiple-Gaussian-plume
model for mobile measurements of CH4 emissions during the
Munich Oktoberfest. Shi et al. (2023) conducted mobile mea-
surements with a vehicle-based monitoring system at chemi-
cal, coal washing, and waste incineration plants in two cities
and one industrial park in China.

As a significant source of GHG emissions, wastewater
treatment plants (WWTPs) generate substantial amounts of
CH4, N2O, and CO2 during the collection, treatment, and dis-
charge of sewage and sludge, contributing 3 % of the global
total GHG emissions (Bai et al., 2022). The estimation of
CH4 emission fluxes from WWTPs has increasingly attracted
widespread attention. Li et al. (2024) developed a plant-level
and technology-based CH4 emission inventory for municipal
WWTPs in China, estimating the CH4 emissions for 2020
to be 150.6 Gg. Delre et al. (2017) measured the CH4 con-
centrations downwind of five WWTPs in Scandinavia us-
ing tracer gas dispersion, obtaining a range of CH4 emission
fluxes from 1.1±0.1 to 18.1±6.3kgh−1. Moore et al. (2023)
employed CH4 mobile measurements from 63 WWTPs in the
USA, pointing to a significant underestimation in the CH4
emission inventories. However, most studies lack compar-
isons between measured and simulated concentrations, re-
sulting in significant uncertainty in the results. We present a
mobile measurement investigation of a WWTP in Hangzhou
in 2023. To analyze the mobile data, we constructed a multi-
source Gaussian plume model combined with a genetic algo-
rithm inversion framework, which assisted us in locating and
quantifying CH4 emission sources, based on the concentra-
tion distribution measured within the WWTP. Additionally,
we compared CH4 emission fluxes from the measurements
with the bottom-up estimates of emission inventories. A sen-
sitivity analysis was performed to elucidate the discrepancies
arising from variations in emission source locations. Our re-
sults provide insight into the formulation and evaluation of
emission reduction measures for WWTPs.
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2 Instruments and methods

2.1 Site selection

With respect to the monitoring site, a WWTP in Hangzhou, a
megacity in East China, was chosen. This WWTP is a large-
scale plant, processing up to 1.5×106 t of domestic wastewa-
ter daily. The chosen WWTP processes encompass mechani-
cal treatment, biological treatment, sedimentation, advanced
treatment, disinfection, and sludge treatment. As illustrated
in Fig. 1, we divide the WWTP into 14 functional areas ac-
cording to treatment processes. Areas associated with pri-
mary treatment were labeled as coarse screens and primary
sedimentation tanks, whereas those linked to secondary treat-
ment were indicated as aeration tanks and secondary sedi-
mentation tanks. We performed one monitoring experiment
per day, with each experiment entailing one to two rounds of
mobile measurements along external roads and along inter-
nal roads around the functional areas. Additionally, we con-
ducted repeated mobile measurements and fixed measure-
ments on roads with high concentrations to calculate average
concentration data. Over 10 d of experiments from June to
December 2023, we obtain 8 d of complete monitoring data,
including 3 d in summer and 5 d in winter. On the other 2 ex-
perimental days, internal facility maintenance restricted ac-
cess to certain roads, resulting in incomplete monitoring data.

2.2 Instrumentation

The monitoring instruments consisted of a vehicle-mounted
cavity ring-down spectrometer (CRDS) monitoring system
(Zhao et al., 2024) and a portable meteorological station. The
vehicle-mounted CRDS system was anchored by the CRDS
analyzer (Picarro G2201-i, Picarro 2010), accompanied by
GPS and meteorological instruments. The volume fraction
of CH4 is measured with an accuracy of 5ppb± 0.05%.
CRDS measurements have the advantages of strong inter-
ference resistance and high sensitivity and accuracy, mak-
ing them widely employed in research focused on monitoring
GHG emissions (Rella et al., 2015; Lopez et al., 2017).

In this study, the CRDS analyzer was placed inside the
monitoring vehicle to measure CH4 concentrations in the
WWTP. The sampling probe was placed near the roof along
the window of the car to avoid interference from vehicle ex-
haust due to the low position. The mobile meteorological in-
strument was placed on the roof of the vehicle to gather me-
teorological data. In addition, the GPS unit was integrated to
record the location of sampling points during the measure-
ment period. Two portable meteorological stations (SWS-
500, Hangzhou Pengpu Technology), capable of measuring
meteorological parameters (wind speed, direction, tempera-
ture, humidity, and atmospheric pressure), were positioned
adjacent to the main entrance and atop the filter tank at the
WWTP.

2.3 Inventory accounting method

We used the methods suggested by the Intergovernmental
Panel on Climate Change (IPCC, 2006) to calculate the CH4
emissions from wastewater. The formula for calculating the
CH4 emissions from wastewater is described as follows:

ECH4 = (TOW− S · a) ·EFCH4 −RCH4 , (1)

where ECH4 denotes the direct CH4 emissions from the
wastewater treatment plant (tCH4 a−1), total organic waste
(TOW) is defined as the total organic pollutant load in the
influent wastewater (tCODa−1 – chemical oxygen demand
per year), S refers to the annual production total of dry sludge
(t a−1), the parameter a signifies the organic matter content in
the dry sludge (tCODt−1), EFCH4 is the CH4 emission factor
(tCH4 tCOD−1), and RCH4 quantifies the annual recovery of
CH4 from anaerobic treatment processes (t a−1).

Operational data for the WWTP examined in this study
were derived from the “Urban Drainage Statistical Year-
book”, an annual publication of the urban water supply and
drainage systems in China. This dataset includes details such
as the water treatment volume, sludge production, and the
concentrations of six pollutants (CODCr, biochemical oxy-
gen demand (BOD), suspended solid (SS), NH3–N, total ni-
trogen (TN), and total phosphorus (TP)) in both influent and
effluent. TOW is calculated using the amount of treated wa-
ter and the COD influent concentration of the WWTP pro-
vided in the yearbook, while the annual sludge production
(S) is extracted directly from the yearbook. The organic mat-
ter content in dry sludge is estimated at an empirical 40 %,
assuming a sludge moisture content of 75 %, leading to a
value of 0.1 (Guo et al., 2019). EFCH4 is selected based on
the recommended value of 0.0046 for Zhejiang Province (Cai
et al., 2015). Given the infrequency of anaerobic treatment in
wastewater, RCH4 is set to zero.

2.4 Inversion method

We developed an inversion framework for emission fluxes
designed for plant-level applications. The framework used
mobile measurement data, the locations of emission sources,
and initial emission estimates, alongside wind speed and di-
rection data, as inputs to the multi-source Gaussian diffusion
models. The preliminary localization of the emission sources
was chiefly contingent upon the concentration distribution
along the roads within the internal functional areas. Mean-
while, the initial emission estimates for each source were
determined by integrating the concentration data from these
areas with an improved empirical equation (Weller et al.,
2019). Based on the comparison of measurements and model
simulation results (Fig. S1 in the Supplement), it is deter-
mined that the plant exhibits multiple point sources and line
source diffusion patterns. Figure S1 illustrates that the CH4
concentration curve presents distinct peak distributions in
point source diffusion patterns, while the CH4 concentra-
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Figure 1. Distribution of the WWTP functional areas. The yellow mark represents the simulated location of the line source. Solid lines show
the roads measured by the mobile vehicle. Map data are from Esri.

tion distribution in line source diffusion patterns consistently
maintains higher levels. We then used a genetic algorithm
to iteratively optimize source emission fluxes and their loca-
tions. The inversion framework simulation dictated the place-
ment of 12 main point sources throughout the WWTP, specif-
ically within Aeration Tank 1©, 2©, 3©, 4©, and 5©; Primary
Clarifier 3©, 4©, and 5©; Screen 1©; Secondary Clarifier 1©

and 2©; and Sludge Treatment 2© (Fig. 1). Within this study,
a uniform line source was established, with the assumed loca-
tion along the road between Screen 1© and Primary Clarifier
1© (yellow mark in Fig. 1). This assumption was grounded

in the CH4 concentration distribution observed within this
road segment and was substantiated through model valida-
tion. The remaining emission flux inversion processes fol-
lowed the same procedure as the point source simulation.
Adjustments to the source locations within the model nar-
row the gap between simulated and measured concentrations,
thus enhancing the accuracy of inversion. This section delin-
eates each model incorporated into the inversion framework.

2.4.1 Empirical equation for estimating initial emissions

We used the improved empirical equation to estimate the ini-
tial emissions of emission sources (von Fischer et al., 2017;
Weller et al.,2019). This method has primarily been uti-
lized for urban CH4 leakage source emission estimation (De-
fratyka et al., 2021; Maazallahi et al., 2020). The empirical
equation is as follows:

ln(MCH4 )=−0.988+ 0.817× ln(CH4 emission rate). (2)

Here, MCH4 is the maximum enhancement value of the CH4
concentration (ppm) and CH4 emission rate represents the
CH4 emission flux (Lmin−1).

2.4.2 Multiple-point-source Gaussian plume model

We developed a multiple-point-source Gaussian plume
model to relate the CH4 concentration enhancement to CH4
emissions. This method approximates the atmospheric dis-
persion of CH4 from an individual source as a Gaussian
plume under uniform and stable wind conditions (Nassar
et al., 2017), which is usually good for describing average
atmospheric transport tens to hundreds of meters downwind
of the source, making the Gaussian plume model a useful
tool to study emissions from industrial and traffic sources.

The mass concentration enhancement (C, mgm−3) is
computed as a superposition of Gaussian plumes from mul-
tiple point sources.

C(x,y,z)=
∑n

i=1

Qi

2πuσi,yσi,z
exp

(
−

(y− yi)2

2σ 2
i,y

)

·

{
exp

[
−(z− zi)2

2σ 2
i,Z

]
+ exp

[
−(z+ zi)2

2σ 2
i,Z

]}
(3)

Here, the variables x, y, and z denote the downwind distance
(m), crosswind distance (m), and the height above the ground
(m) from the source, respectively; Qi signifies the emission
rate from the ith point source (mgs−1), for i = 1,2,3. . .N ,
where N represents the total count of point sources; the av-
erage wind speed is indicated by u (ms−1); xi , yi , and zi
are represented as the spatial position of the ith point source
(m); and σi,y and σi,Z are the horizontal and vertical disper-
sion parameters of the ith point source, respectively, which
are given by the formula below:

σi,y = γ1 · (x− xi)α1 , when x > xi; (4)
σi,z = γ2 · (x− xi)α2 , when x > xi . (5)
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The power functions, known as the Pasquill’s curves, are
associated with the downwind distance x and the prevailing
atmospheric stability (Briggs, 1973). Atmospheric stability
is determined based on the Pasquill stability classes recom-
mended in the “Technical Principles and Methods for For-
mulating Local Air Pollutant Emission Standards” (GB3840-
83). During the observation, the CH4 concentrations were
obtained via the vehicle-mounted CRDS monitoring system.
The portable meteorological stations collected data on wind
speed and direction, while GPS tracked the mobile paths to
pinpoint emission source locations.

2.4.3 General Finite Line Source Model

Our analysis of measurements at WWTPs indicates that a
multiple-point-source Gaussian plume model is insufficient
to capture the observed CH4 concentrations. The entire road
between the Screen 1© and the Primary Clarifier 1© shows a
high distribution of CH4 concentrations. The contribution of
a line source to the CH4 concentration is given by the General
Finite Line Source Model (GFLSM; Luhar and Patil, 1989;
Venkatram and Horst, 2006), which represents the line source
as an ensemble of point sources:

C=
Q

2πuσyσz

{
exp

[
−(z−H )2

2σ 2
z

]
+ exp
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−(z+H )2

2σ 2
z
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2σy

)

+ erf

(
sinθ

(
L
2 + y

)
+ x cosθ

√
2σy

)]
, (6)

where x, y, and z correspond to the downwind distance (m),
crosswind distance (m), and the altitude above ground level
(m) from the source; Qi is the emission fluxes of the unit
source (mgs−1); u is the average wind speed (ms−1); Hi
is the effective emission height of the line source, with the
length of the line source represented by L (m); the angle
between the line source and the wind direction is given by
θ ; and the horizontal and vertical dispersion parameters are
characterized by σy and σz, respectively.

2.4.4 Genetic algorithm

Genetic algorithms, which mimic the evolutionary process of
biological systems, serve as optimization search algorithms.
The algorithms encode practical problems into binary ge-
netic coding. Through the simulation of natural selection,
crossover, and mutation processes, these algorithms are in
a constant state of evolution and iteration, all in the pursuit
of the optimal solution (Katoch et al., 2021). We deployed
genetic algorithms to enhance the source emission flux out-
comes modeled by the Gaussian plume model.

The process of inverting multi-source CH4 emission fluxes
utilizing genetic algorithms involves a series of steps. Ini-
tially, the emission flux of each source is treated as a gene,

with binary-encoded gene sequences randomly assigned to a
set number of individuals within the predefined range of a
priori emission fluxes. Subsequently, the formulation of a fit-
ness function is based on the defined optimization goals and
constraints. This function serves as a critical tool for assess-
ing the relative merits of each individual within the popula-
tion. In this study, the objective of the optimization is cen-
tered on minimizing the aggregate absolute discrepancy be-
tween the values predicted by the model and those obtained
from measurements. Ultimately, the population is subjected
to the processes of selection, crossover, and mutation. Indi-
viduals with elevated fitness values, as determined by the
fitness function, are chosen for the generation of new indi-
viduals. Through an iterative process, the optimal solution
is refined, representing the emission fluxes for each source.
Genetic algorithms are distinguished by the parallel compu-
tation capabilities, the propensity for identifying global op-
tima, and the commendable stability and reliability (Harada
and Alba, 2020).

2.4.5 Uncertainty analysis

To quantify the uncertainty in the inversion results, we have
considered the uncertainties associated with the input param-
eters of the inversion model, including wind speed, wind di-
rection, and instrument measurements. The uncertainty in the
CH4 emission fluxes (εt ) is derived using the error propaga-
tion formula as follows:

εt =

√
ε2

s + ε
2
d + ε

2
m, (7)

where εs and εd denote the uncertainties in the respective
wind speed and direction, which are determined by the stan-
dard deviation of the wind speed and direction measurements
from two fixed meteorological stations during the observa-
tion period, and εm represents the uncertainty in instrumen-
tal measurements. This latter uncertainty is derived from data
provided by the manufacturer (Picarro) and indicates a con-
centration measurement uncertainty of approximately 1 ppb
for a 10 s integration time (Picarro, 2010).

3 Results and discussion

3.1 Concentration mapping

The closed-path mobile measurements were conducted by
a vehicle-mounted CRDS monitoring system along the ex-
ternal roads encircling the WWTP, with further monitoring
conducted along the internal roads. This strategy depicts the
distribution of CH4 concentrations within a WWTP, allow-
ing for the identification of specific CH4 emission sources.
Based on 8 d of CH4 experimental monitoring data, the CH4
concentration range on the overall roads was determined to
be 1.98–17.13 ppm. The CH4 concentration distribution in-
dicated higher levels downwind, with the highest concentra-
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tions consistently recorded at Screen 1© throughout the mo-
bile experiments.

Due to the consistency of the concentration measurement
methods, we chose 29 June and 13 December as typical ex-
amples. Figure 2 illustrates the measured CH4 concentration
enhancement distributions on 29 June (summer) and 13 De-
cember (winter) 2023 (other days are shown in Figs. S3–S8).
The CH4 concentration enhancements depicted were calcu-
lated by subtracting the background concentrations from the
measured values, with the background determined as the
mean of the bottom 10 % of the concentration data. Specif-
ically, the background concentrations register at 1.98 ppm
on 29 June and at a slightly elevated 2.11 ppm on 13 De-
cember. The analysis indicates that the shallower bound-
ary layer in winter causes CH4 to accumulate near the sur-
face, resulting in a higher background concentration. More-
over, increased concentrations are detected in the regions
surrounding Screen 1©, Primary Clarifier 4©, and Aeration
Tank 3© during these 2 d. The complete concentration maps,
which include the internal roads, reveal that the experiment
on 29 June exhibits heightened concentrations at Screen 1©,
Secondary Clarifier 2©, and Primary Clarifier 2© and 4©.
Screen 1© exhibits the highest CH4 concentration, with an
enhancement of 14.83 ppm. On 13 December, the concentra-
tion enhancements are noted in proximity to Secondary Clar-
ifier 1© and Primary Clarifier 2©, with Primary Clarifier 2©

showing the highest CH4 concentration at 4.79 ppm.
The CH4 concentrations in summer surpass those ob-

served in winter, consistent with a previous study on WWTPs
(Masuda et al., 2015). The screen, primary clarifier, and
aeration tank are identified as sources with notably higher
concentrations. Analysis of concentration distributions re-
veals that Screen 1© shows a peak concentration reaching
14.83 ppm, which is 7.5 times the background concentra-
tion. The four primary clarifiers record high concentrations
of between 4.79 and 10.88 ppm. The high value of 4.60 ppm
measured around the aeration tanks is mainly detected at
Aeration Tank 3© . The screen in this study includes coarse
and fine screens and a grit chamber, constituting preliminary
wastewater treatment to capture larger suspended solids and
particulates. The anaerobic environment of the sewer net-
work promotes the production of CH4 from organic com-
pounds in municipal wastewater. As this wastewater en-
ters the WWTP, the influent contains dissolved CH4 that
originated in the sewer network. During primary treatment,
wastewater is elevated through riser mains, facilitating the
release of CH4 into the atmosphere (Guisasola et al., 2008;
Bao et al., 2016). The flow velocity, hydraulic design, and
detention times in these facilities may affect CH4 produc-
tion and release (Alshboul et al., 2016; Yin et al., 2024).
The primary clarifier physically removes suspended solids
from wastewater through sedimentation, while organic mat-
ter undergoes anaerobic microbial degradation, resulting in
the substantial production of CH4 (Masuda et al., 2017). In
the aeration tank, operated under anaerobic and anoxic con-

ditions, complex organic compounds are converted to CH4
by facultative and anaerobic bacteria through biological pro-
cesses (Yoshida et al., 2014). In contrast, Kupper et al. (2018)
identified sludge storage tanks as the primary source of CH4
emissions in Swiss WWTPs, accounting for 70 % or more of
the total emissions. Stadler et al. (2022) monitored CH4 con-
centrations inside and around wastewater treatment facilities
that ranged from 2.04 to 32.78 ppm, with elevated CH4 lev-
els predominantly measured near a sludge treatment tank, the
digesters, and secondary clarifiers. The CH4 emissions from
various WWTPs are affected by a range of factors, includ-
ing specific processes, pipeline design, and equipment aging,
and mobile monitoring can better reflect the actual emission
distribution.

3.2 Emission quantification

The CH4 concentrations measured via mobile monitoring
were employed in combination with the inversion framework
to achieve the quantification of CH4 emissions and localiza-
tion of the emission sources within the WWTP. Figures 3
and 4 show the locations of identified point sources and the
comparison between the measured and simulated concentra-
tion distribution. The experiment conducted on 29 June finds
Screen 1© to be the most significant contributor to CH4 point
source emissions at 18.26 kgh−1, whereas Secondary Clar-
ifier 2© is classified as the least significant at 1.23 kgh−1.
The correlation coefficient R2 for the measured and sim-
ulated concentrations is 0.63, with a root-mean-square er-
ror (RMSE) of 0.70 mgm−3. On 13 December, Aeration
Tank 5© is the largest point source of CH4 emissions at
3.93 kgh−1, whereas Primary Clarifier 5© is the smallest
source at 0.55 kgh−1, with a correlation coefficient R2 of
0.70 and an RMSE of 0.28 mgm−3. The enhanced correla-
tion between the winter measurement and simulation data, as
well as the improved fit of the measurement and simulation
value curves, is attributed to the shorter monitoring cycle and
more stable meteorological conditions.

In addition, when employing the multi-source Gaussian
diffusion model combined with a genetic algorithm frame-
work for iterative optimization to pinpoint point sources, we
were able to locate external sources. As shown in Fig. S2a
and c, external sources are primarily located along the main
roadway to the south of the WWTP. Moreover, the estimated
emissions vary across different days, which indicates that ex-
ternal source emissions are influenced by vehicle traffic. Fig-
ure S2b and d compare measured and simulated CH4 con-
centrations before and after accounting for external sources,
demonstrating that simulations are significantly closer to the
measurements when external sources are included.

Table 1 displays the CH4 emission fluxes (Q), wind speed
and direction data (Ws and Wd, respectively), the horizontal
diffusion coefficient (γ1, α1), and the vertical diffusion co-
efficient (γ2, α2) from the 8 d monitoring experiment. Wind
speed and direction data are the average wind speed and di-
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Figure 2. CH4 concentration maps in the WWTP. The concentration maps for the external roads for 29 June (a) and 13 December (c). The
corresponding complete concentration maps that include the internal roads for 29 June (b) and 13 December (d). Map data are from Esri.

Figure 3. The emission distribution for the source locations (a) and the comparison between measured and simulated CH4 concentrations (b)
at the WWTP on 29 June. Map data are from Esri.

rection during the monitoring time, and the CH4 emission
fluxes are obtained by the inversion of the average concentra-
tion and wind speed and direction data as input to the inver-
sion framework. The emission flux values of CH4 emission
sources (12 point sources and 1 line source) for all exper-
imental days are detailed in Tables S1 and S2 in the Sup-
plement. It is observed that the summer average CH4 emis-
sion flux (68.78± 17.40kgh−1) surpasses the winter aver-

age CH4 emission flux (47.76±21.39kgh−1). This seasonal
disparity in emissions is primarily attributed to the aeration
tank, followed by the screen and primary clarifier. The acti-
vated sludge in the aeration tank contains a higher population
of methanogens, whose CH4 production capability intensi-
fies with rising temperatures (Vítěz et al., 2020). Notably,
the seasonal variance in the aeration tank is predominantly
driven by the performance of Aeration Tank 4©. However, the
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Figure 4. The emission distribution for the source locations (a) and the comparison between measured and simulated CH4 concentra-
tions (b) at the WWTP on 13 December. Map data are from Esri.

substantial variation in the emissions from the three summer
experiments of Aeration Tank 4© suggests a degree of emis-
sion instability. Conversely, the uniformity in the low emis-
sions from the five winter experiments might be associated
with the meteorological conditions and the actual operational
status of the plant on those days. At lower wind speeds, the
CH4 emissions show only slight differences when compared
to emissions on days with higher wind speeds. This suggests
that the inversion results are less influenced by wind speed
and are primarily associated with seasonal variations.

The screen and primary clarifier are the predominant emis-
sion sources at the WWTP. Specifically, these sources emit
37.50 kgh−1 in the summer and 31.92 kgh−1 in the winter,
accounting for 55 % and 67 % of the total emissions. Pipeline
leaks near the screen and primary clarifier led to the CH4 re-
lease. Previous research has similarly examined major emis-
sion sources at WWTPs. Yin et al. (2024) conducted offline
monitoring of WWTPs in Beijing and Guiyang, identifying
the primary treatment zone as the primary source of CH4, ac-
counting for 60.1 % and 35.8 % of the respective total emis-
sions. Masuda et al. (2017) analyzed CH4 emissions from
different processes at three WWTPs in Japan, concluding
that primary clarifiers are one of the major sources of CH4
emissions. He et al. (2023) compiled CH4 emission propor-
tions for different processes in WWTPs based on reported
data, finding percentages of 7 %–12 % for the grit chamber,
8.2 %–68.1 % for the primary clarifier, and 18.3 %–86.4 %
for the aeration tank.

An alternative top-down approach, known as the tracer gas
dispersion method (TDM), has been applied to estimate CH4
emissions from city streets (von Fischer et al., 2017; Weller
et al., 2018), WWTPs (Yoshida et al., 2014; Delre et al.,
2017, 2018), biogas plants (Reinelt et al., 2017; Scheutz
and Kjeldsen, 2019; Fredenslund et al., 2023), and landfills
(Rees-White et al., 2019; Kissas et al., 2022). TDM involves

releasing tracer gases like nitrous oxide and acetylene near
the source and measuring their concentrations along with
CH4 downwind using a mobile platform. The similar dif-
fusion patterns of CH4 and the tracer gases result in a sta-
ble concentration ratio after atmospheric mixing, enabling
the calculation of CH4 emission rates with a better accuracy
(Mønster et al., 2014).

Moreover, TDM was employed to validate and compare
other model inversion methods. Moore et al. (2023) proposed
that Gaussian dispersion modeling demands less experimen-
tal equipment, site access, and personnel than TDM, thereby
allowing for swifter data gathering. Yacovitch et al. (2015)
utilized a 5 d dataset of tracer gas release in the Barnett Shale
region to evaluate the Gaussian dispersion flux quantifica-
tion method. The results indicated a 95 % confidence inter-
val, with a lower-bound factor of 0.334 and an upper-bound
factor of 3.34.The work of von Fischer et al. (2017) presented
three controlled release experiments to validate the reliabil-
ity of a leak rate algorithm in Fort Collins, CO, which indi-
cated a very significant correlation between known and es-
timated leak rates (p < 0.0001, r2

= 0.43). Compared with
the method employed in the study, TDM offers advantages
such as simpler formula calculations. Nonetheless, it also
presents several drawbacks, including complex experimen-
tal procedures and safety hazards associated with the release
of tracer gases, which requires access permits from industrial
facilities.

3.3 Comparison with the IPCC method

The CH4 emissions were also calculated using the IPCC
method, with data sourced from the Urban Drainage Sta-
tistical Yearbook of 2017. The emission flux of 213.95±
128.37 t a−1 was determined, with the uncertainty (60 %) de-
rived from the data summarized in the research (Lin et al.,
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Table 1. CH4 emission fluxes (Q), wind speed and direction data (Ws and Wd, respectively), the horizontal diffusion coefficient (γ1, α1),
and the vertical diffusion coefficient (γ2, α2) from the 8 d monitoring experiment.

Date Q Ws Wd γ1 α1 γ2 α2
(MMDD) (kgh−1) (ms−1) (°)

0601 61.85± 20.41 2.3 248.5 0.28 0.91 0.13 0.94
0629 74.92± 35.21 1.9 238.3 0.28 0.91 0.13 0.94
0711 69.58± 32.70 0.9 225.8 0.28 0.91 0.13 0.94
1213 49.19± 21.15 1.6 175.7 0.28 0.91 0.13 0.94
1214 43.29± 27.28 1.2 209.9 0.28 0.91 0.13 0.94
1220 49.99± 25.00 3.8 342.3 0.18 0.92 0.11 0.92
1221 48.17± 17.34 2.7 342.6 0.43 1.10 0.08 1.12
1222 48.15± 21.67 3.0 342.5 0.43 1.10 0.08 1.12

Figure 5. Comparison of CH4 emission fluxes from the monitoring
experiment and emission inventory in the WWTP.

2021). Figure 5 shows the contrast between the emission
inversion results from the monitoring experiment and the
emission inventory. The uncertainty in the inversion results
was determined by accounting for the uncertainties in wind
speed, wind direction, and instrument measurements, follow-
ing the method presented in Sect. 2.4.5. The uncertainties in
the emission flux inversion ranged from 33 % to 63 % on in-
dividual days. Notably, the uncertainty associated with wind
speed contributes approximately 44 %–94 % of the uncer-
tainty range. The summer average inversion emission flux
(603.33±152.66 t a−1) was calculated to be 2.8 times that of
the inventory, and the winter average (418.95±187.59 t a−1)
was twice as much. It is posited that the discrepancy may
stem from significant uncertainties in the emission factors
associated with the WWTPs or the lack of updated activity
level data, as the statistical yearbook provided data only up
to 2017; therefore, the emission inventory might have under-
estimated the actual emissions.

Furthermore, other studies have also investigated the com-
parison between CH4 emissions obtained from different mea-
surement methods at WWTPs and the IPCC inventory esti-
mates. The majority of these studies have indicated that the
measured values exceed the inventory values. Wang et al.
(2021) conducted a measurement-based assessment of CH4
emissions (46.58 t a−1) in Wuhu City, revealing emission val-

ues 46.71 % higher than those calculated using the IPCC
method. Moore et al. (2023) employed mobile monitoring
to evaluate CH4 emissions at 63 WWTPs across the USA.
Specifically, CH4 emissions from centrally treated domestic
wastewater in the USA amount to 4.64× 105 t a−1, which is
1.9 times greater than the Environmental Protection Agency
inventory. Song et al. (2023) investigated CH4 emissions
from municipal wastewater treatment in the USA and re-
ported a value of (4.36± 2.8)× 105 t a−1. This value was
approximately twice the estimates provided by the IPCC.
Our estimated results are generally consistent with previous
studies. The lower estimated results provided by the IPCC
method can be attributed to the neglect of certain potential
emission sources from the emission inventories, including
emissions from equipment in sludge treatment facilities and
leaks from pressure relief valves.

3.4 Sensitivity analysis

In this section, we evaluate the stability of the inversion
framework through sensitivity analysis and explore the im-
pact of different point source locations on the inversion of
emission concentrations. The precise identification of emis-
sion sources can enhance the accuracy of emission flux in-
version, making a sensitivity analysis of the source location
essential. We applied the method of controlling variables to
perform a sensitivity analysis on the location of a single point
source. The central position of the plant was taken as the ref-
erence origin, and the positions of 12 emission sources were
determined to analyze the variation in error between mea-
sured and simulated concentrations within a 200m× 200m
range around each emission source. We sequentially modi-
fied the source position parameters in the model input to an-
alyze the congruence between the simulated concentrations
and the observed measurements, quantifying the fit using the
RMSE. The change in concentration error serves as an indi-
cator of the accuracy of the emission source localization.

Figures 6 and 7 describe the error variation between mon-
itored and simulated concentrations when the point source
location is subject to change within a 200m× 200m range
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Figure 6. The root-mean-square error (RMSE) of the simulated concentration changes with the location of the WWTP source on 29 June.
The x and y axes denote the respective horizontal and vertical distances of the simulated point source from the central point of the WWTP.
The variation in color signifies the alteration in the RMSE between the actual monitored and simulated concentrations, with the red star
symbolizing the simulated point source location.

from the monitoring experiment on 29 June and 13 Decem-
ber. The error variation in the remaining days can be seen in
Figs. S9–S14. The point source locations simulated based on
the inversion framework are mostly in areas with minor rel-
ative concentration errors, which can be considered to have
a high reliability in simulating point source locations. The
emission source location errors for the two experiments are
within the ranges of 0.7–1.3 and 0.2–0.3 mgm−3. The winter
emission source locations exhibit greater stability and accu-
racy in the inversion results than the summer ones.

4 Conclusions and outlook

This study carried out mobile measurements at a WWTP in
Hangzhou across the summer and winter seasons of 2023.
By employing a multi-source Gaussian plume model com-
bined with a genetic algorithm inversion framework, the in-
version of CH4 emission fluxes and their source locations
was achieved. The results showed that 12 distinct CH4 emis-
sion sources were pinpointed. The average CH4 emission
flux during the summer was 68.78± 17.40kgh−1 (603.33±

Atmos. Chem. Phys., 25, 4571–4585, 2025 https://doi.org/10.5194/acp-25-4571-2025



J. Yang et al.: Locating and quantifying CH4 sources within a WWTP based on mobile measurements 4581

Figure 7. The RMSE of monitoring simulated concentration changes with the location of the WWTP source on 13 December.

152.66 t a−1), whereas this value was 47.76± 21.39kgh−1

(418.95± 187.59 t a−1) during winter. The screen and pri-
mary clarifier were the main sources, accounting for 55 %
of summer and 67 % of winter emissions. The summer CH4
inversion emissions were found to be 2.8 times higher, and
the winter inversion emissions were twice as high as the
inventory-based estimation.

The inversion framework is capable of validating emission
coefficients in the inventory, identifying emission sources
within the plant, and monitoring abnormal emissions. It can
be applied to various monitoring systems, such as UAV sys-
tems and networks of fixed monitoring stations. We believe

that this collaborative monitoring offers significant improve-
ments with respect to the accuracy of emission fluxes and
source inversion. Future efforts should aim to refine the in-
version framework for broader applicability to various pollu-
tant gases, enhancing the inversion efficiency, and extending
the validation of the framework through monitoring experi-
ments in a diverse range of industrial facilities.

Data availability. The raw data in this paper can be obtained from
the corresponding author upon request.
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