Articles | Volume 25, issue 5
https://doi.org/10.5194/acp-25-2845-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-2845-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Machine learning for improvement of upper-tropospheric relative humidity in ERA5 weather model data
Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, 82234, Germany
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
Luca Bugliaro
Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, 82234, Germany
Klaus Gierens
Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, 82234, Germany
Michaela I. Hegglin
Institute of Climate and Energy Systems 4 – Stratosphere (ICE-4), Forschungszentrum Jülich, Jülich, 52428, Germany
Department of Meteorology, University of Reading, Reading, RG6 6ET, UK
Susanne Rohs
Institute of Climate and Energy Systems 3 – Troposphere (ICE-3), Forschungszentrum Jülich, Jülich, 52428, Germany
Andreas Petzold
Institute of Climate and Energy Systems 3 – Troposphere (ICE-3), Forschungszentrum Jülich, Jülich, 52428, Germany
Stefan Kaufmann
Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, 82234, Germany
Christiane Voigt
Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, 82234, Germany
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
Related authors
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024, https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Short summary
The supercooled liquid fraction (SLF) in mixed-phase clouds is retrieved for the first time using passive geostationary satellite observations based on differences in liquid droplet and ice particle radiative properties. The retrieved results are comparable to global distributions observed by active instruments, and the feasibility of the retrieval method to analyze the observed trends of the SLF has been validated.
Ziming Wang, Luca Bugliaro, Tina Jurkat-Witschas, Romy Heller, Ulrike Burkhardt, Helmut Ziereis, Georgios Dekoutsidis, Martin Wirth, Silke Groß, Simon Kirschler, Stefan Kaufmann, and Christiane Voigt
Atmos. Chem. Phys., 23, 1941–1961, https://doi.org/10.5194/acp-23-1941-2023, https://doi.org/10.5194/acp-23-1941-2023, 2023
Short summary
Short summary
Differences in the microphysical properties of contrail cirrus and natural cirrus in a contrail outbreak situation during the ML-CIRRUS campaign over the North Atlantic flight corridor can be observed from in situ measurements. The cirrus radiative effect in the area of the outbreak, derived from satellite observation-based radiative transfer modeling, is warming in the early morning and cooling during the day.
Dioumacor Faye, Felipe M. de Andrade, Roberto Suárez-Moreno, Dahirou Wane, Michaela I. Hegglin, Abdou L. Dieng, François Kaly, Redouane Lguensat, and Amadou T. Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2024-4040, https://doi.org/10.5194/egusphere-2024-4040, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study evaluates machine learning (ML) methods to improve subseasonal-to-seasonal (S2S) rainfall forecasts in Senegal during the West African monsoon. Using high-resolution precipitation data and atmospheric-oceanic reanalysis, we show that ML models like ridge regression outperform traditional climate models. These methods enhance prediction accuracy and efficiency, offering valuable tools for climate risk management and water resource planning.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 25, 2407–2422, https://doi.org/10.5194/acp-25-2407-2025, https://doi.org/10.5194/acp-25-2407-2025, 2025
Short summary
Short summary
In situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below-cloud-base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Nicolas Emig, Annette K. Miltenberger, Peter M. Hoor, and Andreas Petzold
EGUsphere, https://doi.org/10.5194/egusphere-2024-3919, https://doi.org/10.5194/egusphere-2024-3919, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study presents in situ observations of cirrus occurrence from aircraft measurements in the extra-tropical transition layer (ExTL) using simultaneous measurements from two platforms. Lagrangian diagnostics based on high-resolution ICON simulations show long residence times of the cirrus in stratospheric air allowing to separate different diabatic processes during transit. The findings suggest that radiative diabatic cloud processes significantly impact the tropopause thermodynamic structure.
Marcus Klingebiel, André Ehrlich, Micha Gryschka, Nils Risse, Nina Maherndl, Imke Schirmacher, Sophie Rosenburg, Sabine Hörnig, Manuel Moser, Evelyn Jäkel, Michael Schäfer, Hartwig Deneke, Mario Mech, Christiane Voigt, and Manfred Wendisch
EGUsphere, https://doi.org/10.5194/egusphere-2025-201, https://doi.org/10.5194/egusphere-2025-201, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Our study is using aircraft measurements from the HALO-(𝒜𝒞)³ campaign to investigate the transition from organized Arctic cloud street structures to more scattered cloud shapes. We show that lower wind speeds cause this transition. In addition we look at the changes of the cloud coverage, the height of the clouds, the cloud particles and the radiative properties.
Xiaodan Ma, Jianping Huang, Michaela I. Hegglin, Patrick Jöckel, and Tianliang Zhao
Atmos. Chem. Phys., 25, 943–958, https://doi.org/10.5194/acp-25-943-2025, https://doi.org/10.5194/acp-25-943-2025, 2025
Short summary
Short summary
Our research explored changes in ozone levels in the northwest Pacific region over 30 years, revealing a significant increase in the middle-to-upper troposphere, especially during spring and summer. This rise is influenced by both stratospheric and tropospheric sources, which affect climate and air quality in East Asia. This work underscores the need for continued study to understand underlying mechanisms.
Kevin Wolf, Nicolas Bellouin, Olivier Boucher, Susanne Rohs, and Yun Li
Atmos. Chem. Phys., 25, 157–181, https://doi.org/10.5194/acp-25-157-2025, https://doi.org/10.5194/acp-25-157-2025, 2025
Short summary
Short summary
ERA5 atmospheric reanalysis and airborne in situ observations from IAGOS are compared in terms of the representation of the contrail formation potential and the presence of supersaturation. Differences are traced back to biases in ERA5 relative humidity fields. Those biases are addressed by applying a quantile mapping technique that significantly improved contrail estimation based on post-processed ERA5 data.
Herman G.J. Smit, Torben Galle, Romain Blot, Florian Obersteiner, Philippe Nédélec, Andreas Zahn, Jean-Marc Cousin, Ulrich Bundke, Andreas Petzold, Valerie Thouret, and Hannah Clark
EGUsphere, https://doi.org/10.5194/egusphere-2024-3760, https://doi.org/10.5194/egusphere-2024-3760, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The two ozone instruments of IAGOS (In-service Aircraft for a Global Observation System) have been compared with the Ozone PhotoMeter (OPM) of the World Calibration Center of Ozone Sondes (WCCOS) in an atmospheric simulation chamber under realistic flight conditions of pressure, temperature, and ozone concentrations. The two IAGOS-instruments showed good agreement with the OPM within 5–6 %. The observed differences are small but systematic and reproducible during the intercomparison.
Ewan Crosbie, Johnathan Hair, Amin Nehrir, Richard Ferrare, Chris Hostetler, Taylor Shingler, David Harper, Marta Fenn, James Collins, Rory Barton-Grimley, Brian Collister, K. Lee Thornhill, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3844, https://doi.org/10.5194/egusphere-2024-3844, 2024
Short summary
Short summary
A method was developed to extract information from airborne lidar observations about the distribution of ice and liquid water within clouds. The method specifically targets signatures of horizontal and vertical gradients in ice and water that appear in the polarization of the lidar signals. The method was tested against direct measurements of the cloud properties collected by a second aircraft.
Nina Maherndl, Manuel Moser, Imke Schirmacher, Aaron Bansemer, Johannes Lucke, Christiane Voigt, and Maximilian Maahn
Atmos. Chem. Phys., 24, 13935–13960, https://doi.org/10.5194/acp-24-13935-2024, https://doi.org/10.5194/acp-24-13935-2024, 2024
Short summary
Short summary
It is not clear why ice crystals in clouds occur in clusters. Here, airborne measurements of clouds in mid-latitudes and high latitudes are used to study the spatial variability of ice. Further, we investigate the influence of riming, which occurs when liquid droplets freeze onto ice crystals. We find that riming enhances the occurrence of ice clusters. In the Arctic, riming leads to ice clustering at spatial scales of 3–5 km. This is due to updrafts and not higher amounts of liquid water.
Rodrigo J. Seguel, Charlie Opazo, Yann Cohen, Owen R. Cooper, Laura Gallardo, Björn-Martin Sinnhuber, Florian Obersteiner, Andreas Zahn, Peter Hoor, and Susanne Rohs
EGUsphere, https://doi.org/10.5194/egusphere-2024-3719, https://doi.org/10.5194/egusphere-2024-3719, 2024
Short summary
Short summary
We explored differences in ozone levels between the Northern and Southern Hemispheres in the Stratosphere-troposphere exchange region. Using unique data from a research aircraft, we found significantly lower ozone levels (with stratospheric character) in the Southern Hemisphere, especially during years of severe ozone depletion. A Sudden Stratospheric Warming event in 2019 increased Southern Hemisphere ozone levels, highlighting the relationship between atmospheric events and ozone distribution.
Sina Maria Hofer and Klaus Martin Gierens
EGUsphere, https://doi.org/10.5194/egusphere-2024-3520, https://doi.org/10.5194/egusphere-2024-3520, 2024
Short summary
Short summary
Ice supersaturation is an immaterial feature, which does not generally move with the wind that carries contrails and cirrus clouds. Here we analyse the different motions and show that ice supersaturated regions (ISSRs) on average move slower than the wind, the direction of movement is usually quite similar and the distributions of both velocities follow Weibull distributions. The almost identical direction of the movements is beneficial for contrail lifetimes.
Florian Tornow, Ann Fridlind, George Tselioudis, Brian Cairns, Andrew Ackerman, Seethala Chellappan, David Painemal, Paquita Zuidema, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3462, https://doi.org/10.5194/egusphere-2024-3462, 2024
Short summary
Short summary
The recent NASA campaign ACTIVATE (Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment) performed 71 tandem flights in mid-latitude marine cold-air outbreaks off the US Eastern seaboard. We provide meteorological and cloud transition stage context, allowing us to identify days that are most suitable for Lagrangian modeling and analysis. Surveyed cloud properties show signatures of cloud microphysical processes, such as cloud-top entrainment and secondary ice formation.
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Magdalena Pühl, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
Atmos. Chem. Phys., 24, 11807–11822, https://doi.org/10.5194/acp-24-11807-2024, https://doi.org/10.5194/acp-24-11807-2024, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground-based measurement data of nitrogen oxides that were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
Giulia Roccetti, Luca Bugliaro, Felix Gödde, Claudia Emde, Ulrich Hamann, Mihail Manev, Michael Fritz Sterzik, and Cedric Wehrum
Atmos. Meas. Tech., 17, 6025–6046, https://doi.org/10.5194/amt-17-6025-2024, https://doi.org/10.5194/amt-17-6025-2024, 2024
Short summary
Short summary
The amount of sunlight reflected by the Earth’s surface (albedo) is vital for the Earth's radiative system. While satellite instruments offer detailed spatial and temporal albedo maps, they only cover seven wavelength bands. We generate albedo maps that fully span the visible and near-infrared range using a machine learning algorithm. These maps reveal how the reflectivity of different land surfaces varies throughout the year. Our dataset enhances the understanding of the Earth's energy balance.
Soodabeh Namdari, Sanja Dmitrovic, Gao Chen, Yonghoon Choi, Ewan Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard A. Ferrare, Johnathan W. Hair, Simon Kirschler, John B. Nowak, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Xubin Zeng, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3024, https://doi.org/10.5194/egusphere-2024-3024, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We conducted this study to assess the accuracy of airborne measurements of wind, temperature, and humidity, essential for understanding atmospheric processes. Using data from NASA's ACTIVATE campaign, we compared measurements from the TAMMS and DLH aboard a Falcon aircraft with dropsondes from a King Air, matching data points based on location and time using statistical methods. The study showed strong agreement, confirming the reliability of these methods for advancing climate models.
Rebecca Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 11255–11273, https://doi.org/10.5194/acp-24-11255-2024, https://doi.org/10.5194/acp-24-11255-2024, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude, and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Patrick Peter, Sigrun Matthes, Christine Frömming, Patrick Jöckel, Luca Bugliaro, Andreas Giez, Martina Krämer, and Volker Grewe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2142, https://doi.org/10.5194/egusphere-2024-2142, 2024
Short summary
Short summary
Our study examines how temperature and humidity representations influence contrail (-cirrus) formation criteria. Using various model setups, we identified biases that lead to overestimation of contrail formation areas. By comparing simulations with in-flight and satellite observations, we confirmed that humidity threshold choices greatly affect contrail predictions. These findings can help develop strategies for climate-optimized flight routes, potentially reducing aviation's climate effect.
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024, https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
Short summary
We examined marine boundary layer clouds and their interactions with aerosols in the E3SM single-column model (SCM) for a case study. The SCM shows good agreement when simulating the clouds with high-resolution models. It reproduces the relationship between cloud droplet and aerosol particle number concentrations as produced in global models. However, the relationship between cloud liquid water and droplet number concentration is different, warranting further investigation.
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024, https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
Short summary
This study uses radiative transfer calculations to characterize the relation of two satellite channel combinations (namely infrared window brightness temperature differences – BTDs – of SEVIRI) to the thermodynamic cloud phase. A sensitivity analysis reveals the complex interplay of cloud parameters and their contribution to the observed phase dependence of BTDs. This knowledge helps to design optimal cloud-phase retrievals and to understand their potential and limitations.
Florian Voet, Felix Plöger, Johannes Laube, Peter Preusse, Paul Konopka, Jens-Uwe Grooß, Jörn Ungermann, Björn-Martin Sinnhuber, Michael Hoepfner, Bernd Funke, Gerald Wetzel, Sören Johansson, Gabriele Stiller, Eric Ray, and Michaela Imelda Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2624, https://doi.org/10.5194/egusphere-2024-2624, 2024
Short summary
Short summary
This study refines estimates of the stratospheric “age of air,” a measure of how long air circulates in the stratosphere. By analyzing correlations between trace gases measurable by satellites, the research introduces a method that reduces uncertainties and detects small-scale atmospheric features. This improved understanding of stratospheric circulation is crucial for better climate models and predictions, enhancing our ability to assess the impacts of climate change on the atmosphere.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kuo-Ying Wang, Philippe Nedelec, Valerie Thouret, Hannah Clark, Andreas Wahner, and Andreas Petzold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2414, https://doi.org/10.5194/egusphere-2024-2414, 2024
Short summary
Short summary
We use routine in-service commercial passenger airplanes Airbus A340 and A330 to collect air pollutants in the upper troposphere. The beauty in using commercial airplanes is that these commercial airplanes, like taxi on the ground, keep flying all the time. We find that short-lived air pollutants are very sensitive to ground-level emissions. Effective regulation in ground-level emissions can help to reduce air pollution in the upper troposphere.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Patrick Konjari, Christian Rolf, Michaela Imelda Hegglin, Susanne Rohs, Yun Li, Andreas Zahn, Harald Bönisch, Martina Krämer, and Andreas Petzold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2360, https://doi.org/10.5194/egusphere-2024-2360, 2024
Short summary
Short summary
This study introduces a new method to deriving adjusted water vapor (H2O) climatologies for the upper tropopshere and lower statosphere (UT/LS) using data from 60,000 flights under the IAGOS program. Biases in the IAGOS water vapor dataset are adjusted, based on the more accurate IAGOS-CARIBIC data. The resulting highly resolved H2O climatologies will contribute to a better understanding of the H2O variability in the UT/LS and its connection to various transport and mixing processes.
Yann Cohen, Didier Hauglustaine, Nicolas Bellouin, Marianne Tronstad Lund, Sigrun Matthes, Agnieszka Skowron, Robin Thor, Ulrich Bundke, Andreas Petzold, Susanne Rohs, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
EGUsphere, https://doi.org/10.5194/egusphere-2024-2208, https://doi.org/10.5194/egusphere-2024-2208, 2024
Short summary
Short summary
The chemical composition of the atmosphere near the tropopause is a key parameter for evaluating the climate impact of subsonic aviation pollutants. This study uses in-situ data on board passenger aircraft to assess the ability of 5 chemistry-climate models to reproduce (bi-)decadal climatologies in ozone, carbon monoxide, water vapour, and reactive nitrogen in this region. The models reproduce well the very distinct ozone seasonality in the upper troposphere and in the lower stratosphere.
André Ehrlich, Susanne Crewell, Andreas Herber, Marcus Klingebiel, Christof Lüpkes, Mario Mech, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Matthias Buschmann, Hans-Christian Clemen, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Andreas Giez, Sarah Grawe, Christophe Gourbeyre, Jörg Hartmann, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsófia Jurányi, Benjamin Kirbus, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Christian Mallaun, Johanna Mayer, Stephan Mertes, Guillaume Mioche, Manuel Moser, Hanno Müller, Veronika Pörtge, Nils Risse, Greg Roberts, Sophie Rosenburg, Johannes Röttenbacher, Michael Schäfer, Jonas Schaefer, Andreas Schäfler, Imke Schirmacher, Johannes Schneider, Sabrina Schnitt, Frank Stratmann, Christian Tatzelt, Christiane Voigt, Andreas Walbröl, Anna Weber, Bruno Wetzel, Martin Wirth, and Manfred Wendisch
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-281, https://doi.org/10.5194/essd-2024-281, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper provides an overview of the HALO–(AC)3 aircraft campaign data sets, the campaign specific instrument operation, data processing, and data quality. The data set comprises in-situ and remote sensing observations from three research aircraft, HALO, Polar 5, and Polar 6. All data are published in the PANGAEA database by instrument-separated data subsets. It is highlighted how the scientific analysis of the HALO–(AC)3 data benefits from the coordinated operation of three aircraft.
Luis F. Millán, Peter Hoor, Michaela I. Hegglin, Gloria L. Manney, Harald Boenisch, Paul Jeffery, Daniel Kunkel, Irina Petropavlovskikh, Hao Ye, Thierry Leblanc, and Kaley Walker
Atmos. Chem. Phys., 24, 7927–7959, https://doi.org/10.5194/acp-24-7927-2024, https://doi.org/10.5194/acp-24-7927-2024, 2024
Short summary
Short summary
In the Observed Composition Trends And Variability in the UTLS (OCTAV-UTLS) Stratosphere-troposphere Processes And their Role in Climate (SPARC) activity, we have mapped multiplatform ozone datasets into coordinate systems to systematically evaluate the influence of these coordinates on binned climatological variability. This effort unifies the work of studies that focused on individual coordinate system variability. Our goal was to create the most comprehensive assessment of this topic.
Sina Hofer, Klaus Gierens, and Susanne Rohs
Atmos. Chem. Phys., 24, 7911–7925, https://doi.org/10.5194/acp-24-7911-2024, https://doi.org/10.5194/acp-24-7911-2024, 2024
Short summary
Short summary
We try to improve the forecast of ice supersaturation (ISS) and potential persistent contrails using data on dynamical quantities in addition to temperature and relative humidity in a modern kind of regression model. Although the results are improved, they are not good enough for flight routing. The origin of the problem is the strong overlap of probability densities conditioned on cases with and without ice-supersaturated regions (ISSRs) in the important range of 70–100 %.
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024, https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary
Short summary
ProPS (PRObabilistic cloud top Phase retrieval for SEVIRI) is a method to detect clouds and their thermodynamic phase with a geostationary satellite, distinguishing between clear sky and ice, mixed-phase, supercooled and warm liquid clouds. It uses a Bayesian approach based on the lidar–radar product DARDAR. The method allows studying cloud phases, especially mixed-phase and supercooled clouds, rarely observed from geostationary satellites. This can be used for comparison with climate models.
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024, https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Short summary
The supercooled liquid fraction (SLF) in mixed-phase clouds is retrieved for the first time using passive geostationary satellite observations based on differences in liquid droplet and ice particle radiative properties. The retrieved results are comparable to global distributions observed by active instruments, and the feasibility of the retrieval method to analyze the observed trends of the SLF has been validated.
Philipp Joppe, Johannes Schneider, Katharina Kaiser, Horst Fischer, Peter Hoor, Daniel Kunkel, Hans-Christoph Lachnitt, Andreas Marsing, Lenard Röder, Hans Schlager, Laura Tomsche, Christiane Voigt, Andreas Zahn, and Stephan Borrmann
Atmos. Chem. Phys., 24, 7499–7522, https://doi.org/10.5194/acp-24-7499-2024, https://doi.org/10.5194/acp-24-7499-2024, 2024
Short summary
Short summary
From aircraft measurements in the upper troposphere/lower stratosphere, we find a correlation between the ozone and particulate sulfate in the lower stratosphere. The correlation exhibits some variability over the measurement period exceeding the background sulfate-to-ozone correlation. From our analysis, we conclude that gas-to-particle conversion of volcanic sulfur dioxide leads to observed enhanced sulfate aerosol mixing ratios.
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Taylor Shingler, Johnathan W. Hair, Armin Sorooshian, Richard A. Ferrare, Brian Cairns, Yonghoon Choi, Joshua DiGangi, Glenn S. Diskin, Chris Hostetler, Simon Kirschler, Richard H. Moore, David Painemal, Claire Robinson, Shane T. Seaman, K. Lee Thornhill, Christiane Voigt, and Edward Winstead
Atmos. Chem. Phys., 24, 6123–6152, https://doi.org/10.5194/acp-24-6123-2024, https://doi.org/10.5194/acp-24-6123-2024, 2024
Short summary
Short summary
Marine clouds are found to clump together in regions or lines, readily discernible from satellite images of the ocean. While clustering is also a feature of deep storm clouds, we focus on smaller cloud systems associated with fair weather and brief localized showers. Two aircraft sampled the region around these shallow systems: one incorporated measurements taken within, adjacent to, and below the clouds, while the other provided a survey from above using remote sensing techniques.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Short summary
The radiative forcing (RF) due to aviation contrails is comparable to that caused by CO2. We estimate that global contrail net RF in 2019 was 62.1 mW m−2. This is ~1/2 the previous best estimate for 2018. Contrail RF varies regionally due to differences in conditions required for persistent contrails. COVID-19 reduced contrail RF by 54% in 2020 relative to 2019. Globally, 2 % of all flights account for 80 % of the annual contrail energy forcing, suggesting a opportunity to mitigate contrail RF.
Sidiki Sanogo, Olivier Boucher, Nicolas Bellouin, Audran Borella, Kevin Wolf, and Susanne Rohs
Atmos. Chem. Phys., 24, 5495–5511, https://doi.org/10.5194/acp-24-5495-2024, https://doi.org/10.5194/acp-24-5495-2024, 2024
Short summary
Short summary
Relative humidity relative to ice (RHi) is a key variable in the formation of cirrus clouds and contrails. This study shows that the properties of the probability density function of RHi differ between the tropics and higher latitudes. In line with RHi and temperature variability, aircraft are likely to produce more contrails with bioethanol and liquid hydrogen as fuel. The impact of this fuel change decreases with decreasing pressure levels but increases from high latitudes to the tropics.
Andreas Petzold, Ulrich Bundke, Anca Hienola, Paolo Laj, Cathrine Lund Myhre, Alex Vermeulen, Angeliki Adamaki, Werner Kutsch, Valerie Thouret, Damien Boulanger, Markus Fiebig, Markus Stocker, Zhiming Zhao, and Ari Asmi
Atmos. Chem. Phys., 24, 5369–5388, https://doi.org/10.5194/acp-24-5369-2024, https://doi.org/10.5194/acp-24-5369-2024, 2024
Short summary
Short summary
Easy and fast access to long-term and high-quality observational data is recognised as fundamental to environmental research and the development of climate forecasting and assessment services. We discuss the potential new directions in atmospheric sciences offered by the atmosphere-centric European research infrastructures ACTRIS, IAGOS, and ICOS, building on their capabilities for standardised provision of data through open access combined with tools and methods of data-intensive science.
Raphael Satoru Märkl, Christiane Voigt, Daniel Sauer, Rebecca Katharina Dischl, Stefan Kaufmann, Theresa Harlaß, Valerian Hahn, Anke Roiger, Cornelius Weiß-Rehm, Ulrike Burkhardt, Ulrich Schumann, Andreas Marsing, Monika Scheibe, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Reetu Sallinen, Tobias Schripp, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 3813–3837, https://doi.org/10.5194/acp-24-3813-2024, https://doi.org/10.5194/acp-24-3813-2024, 2024
Short summary
Short summary
In situ measurements of contrails from a large passenger aircraft burning 100 % sustainable aviation fuel (SAF) show a 56 % reduction in contrail ice crystal numbers compared to conventional Jet A-1. Results from a climate model initialized with the observations suggest a significant decrease in radiative forcing from contrails. Our study confirms that future increased use of low aromatic SAF can reduce the climate impact from aviation.
Robert Hanfland, Dominik Brunner, Christiane Voigt, Alina Fiehn, Anke Roiger, and Margit Pattantyús-Ábrahám
Atmos. Chem. Phys., 24, 2511–2534, https://doi.org/10.5194/acp-24-2511-2024, https://doi.org/10.5194/acp-24-2511-2024, 2024
Short summary
Short summary
To show that the three-dimensional dispersion of plumes simulated by the Atmospheric Radionuclide Transport Model within the planetary boundary layer agrees with real plumes, we identify the most important input parameters and analyse the turbulence properties of five different turbulence models in very unstable stratification conditions using their deviation from the well-mixed state. Simulations show that one model agrees slightly better in unstable stratification conditions.
Dario Sperber and Klaus Gierens
Atmos. Chem. Phys., 23, 15609–15627, https://doi.org/10.5194/acp-23-15609-2023, https://doi.org/10.5194/acp-23-15609-2023, 2023
Short summary
Short summary
A significant share of aviation's climate impact is due to persistent contrails. Avoiding their creation is a step toward sustainable air transportation. For this purpose, a reliable forecast of so-called ice-supersaturated regions is needed, which then allows one to plan aircraft routes without persistent contrails. Here, we propose a method that leads to the better prediction of ice-supersaturated regions.
Marcus Klingebiel, André Ehrlich, Elena Ruiz-Donoso, Nils Risse, Imke Schirmacher, Evelyn Jäkel, Michael Schäfer, Kevin Wolf, Mario Mech, Manuel Moser, Christiane Voigt, and Manfred Wendisch
Atmos. Chem. Phys., 23, 15289–15304, https://doi.org/10.5194/acp-23-15289-2023, https://doi.org/10.5194/acp-23-15289-2023, 2023
Short summary
Short summary
In this study we explain how we use aircraft measurements from two Arctic research campaigns to identify cloud properties (like droplet size) over sea-ice and ice-free ocean. To make sure that our measurements make sense, we compare them with other observations. Our results show, e.g., larger cloud droplets in early summer than in spring. Moreover, the cloud droplets are also larger over ice-free ocean than compared to sea ice. In the future, our data can be used to improve climate models.
Yann Cohen, Didier Hauglustaine, Bastien Sauvage, Susanne Rohs, Patrick Konjari, Ulrich Bundke, Andreas Petzold, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 23, 14973–15009, https://doi.org/10.5194/acp-23-14973-2023, https://doi.org/10.5194/acp-23-14973-2023, 2023
Short summary
Short summary
The upper troposphere–lower stratosphere (UTLS) is a key region regarding the lower atmospheric composition. This study consists of a comprehensive evaluation of an up-to-date chemistry–climate model in this layer, using regular in situ measurements based on passenger aircraft. For this purpose, a specific software (Interpol-IAGOS) has been updated and made publicly available. The model reproduces the carbon monoxide peaks due to biomass burning over the continental tropics particularly well.
Elena De La Torre Castro, Tina Jurkat-Witschas, Armin Afchine, Volker Grewe, Valerian Hahn, Simon Kirschler, Martina Krämer, Johannes Lucke, Nicole Spelten, Heini Wernli, Martin Zöger, and Christiane Voigt
Atmos. Chem. Phys., 23, 13167–13189, https://doi.org/10.5194/acp-23-13167-2023, https://doi.org/10.5194/acp-23-13167-2023, 2023
Short summary
Short summary
In this study, we show the differences in the microphysical properties between high-latitude (HL) cirrus and mid-latitude (ML) cirrus over the Arctic, North Atlantic, and central Europe during summer. The in situ measurements are combined with backward trajectories to investigate the influence of the region on cloud formation. We show that HL cirrus are characterized by a lower concentration of larger ice crystals when compared to ML cirrus.
Simon Kirschler, Christiane Voigt, Bruce E. Anderson, Gao Chen, Ewan C. Crosbie, Richard A. Ferrare, Valerian Hahn, Johnathan W. Hair, Stefan Kaufmann, Richard H. Moore, David Painemal, Claire E. Robinson, Kevin J. Sanchez, Amy J. Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10731–10750, https://doi.org/10.5194/acp-23-10731-2023, https://doi.org/10.5194/acp-23-10731-2023, 2023
Short summary
Short summary
In this study we present an overview of liquid and mixed-phase clouds and precipitation in the marine boundary layer over the western North Atlantic Ocean. We compare microphysical properties of pure liquid clouds to mixed-phase clouds and show that the initiation of the ice phase in mixed-phase clouds promotes precipitation. The observational data presented in this study are well suited for investigating the processes that give rise to liquid and mixed-phase clouds, ice, and precipitation.
Armin Sorooshian, Mikhail D. Alexandrov, Adam D. Bell, Ryan Bennett, Grace Betito, Sharon P. Burton, Megan E. Buzanowicz, Brian Cairns, Eduard V. Chemyakin, Gao Chen, Yonghoon Choi, Brian L. Collister, Anthony L. Cook, Andrea F. Corral, Ewan C. Crosbie, Bastiaan van Diedenhoven, Joshua P. DiGangi, Glenn S. Diskin, Sanja Dmitrovic, Eva-Lou Edwards, Marta A. Fenn, Richard A. Ferrare, David van Gilst, Johnathan W. Hair, David B. Harper, Miguel Ricardo A. Hilario, Chris A. Hostetler, Nathan Jester, Michael Jones, Simon Kirschler, Mary M. Kleb, John M. Kusterer, Sean Leavor, Joseph W. Lee, Hongyu Liu, Kayla McCauley, Richard H. Moore, Joseph Nied, Anthony Notari, John B. Nowak, David Painemal, Kasey E. Phillips, Claire E. Robinson, Amy Jo Scarino, Joseph S. Schlosser, Shane T. Seaman, Chellappan Seethala, Taylor J. Shingler, Michael A. Shook, Kenneth A. Sinclair, William L. Smith Jr., Douglas A. Spangenberg, Snorre A. Stamnes, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Andrzej P. Wasilewski, Hailong Wang, Edward L. Winstead, Kira Zeider, Xubin Zeng, Bo Zhang, Luke D. Ziemba, and Paquita Zuidema
Earth Syst. Sci. Data, 15, 3419–3472, https://doi.org/10.5194/essd-15-3419-2023, https://doi.org/10.5194/essd-15-3419-2023, 2023
Short summary
Short summary
The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol–cloud–meteorology interactions. HU-25 Falcon and King Air aircraft conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes.
Valerian Hahn, Ralf Meerkötter, Christiane Voigt, Sonja Gisinger, Daniel Sauer, Valéry Catoire, Volker Dreiling, Hugh Coe, Cyrille Flamant, Stefan Kaufmann, Jonas Kleine, Peter Knippertz, Manuel Moser, Philip Rosenberg, Hans Schlager, Alfons Schwarzenboeck, and Jonathan Taylor
Atmos. Chem. Phys., 23, 8515–8530, https://doi.org/10.5194/acp-23-8515-2023, https://doi.org/10.5194/acp-23-8515-2023, 2023
Short summary
Short summary
During the DACCIWA campaign in West Africa, we found a 35 % increase in the cloud droplet concentration that formed in a polluted compared with a less polluted environment and a decrease of 17 % in effective droplet diameter. Radiative transfer simulations, based on the measured cloud properties, reveal that these low-level polluted clouds radiate only 2.6 % more energy back to space, compared with a less polluted cloud. The corresponding additional decrease in temperature is rather small.
Silke Groß, Tina Jurkat-Witschas, Qiang Li, Martin Wirth, Benedikt Urbanek, Martina Krämer, Ralf Weigel, and Christiane Voigt
Atmos. Chem. Phys., 23, 8369–8381, https://doi.org/10.5194/acp-23-8369-2023, https://doi.org/10.5194/acp-23-8369-2023, 2023
Short summary
Short summary
Aviation-emitted aerosol can have an impact on cirrus clouds. We present optical and microphysical properties of mid-latitude cirrus clouds which were formed under the influence of aviation-emitted aerosol or which were formed under rather pristine conditions. We find that cirrus clouds affected by aviation-emitted aerosol show larger values of the particle linear depolarization ratio, larger mean effective ice particle diameters and decreased ice particle number concentrations.
Patrick Weber, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Susanne Hering, Steven Spielman, Gregory Lewis, Andreas Petzold, and Ulrich Bundke
Atmos. Meas. Tech., 16, 3505–3514, https://doi.org/10.5194/amt-16-3505-2023, https://doi.org/10.5194/amt-16-3505-2023, 2023
Short summary
Short summary
This study tests the new water condensation particle counter (MAGIC 210-LP) for deployment on passenger aircraft coordinated by the European research infrastructure IAGOS. We conducted a series of laboratory experiments for flight altitude conditions. We demonstrate that this water condensation particle counter model shows excellent agreement with a butanol-based instrument used in parallel and a Faraday cup electrometer as reference instrument at all tested pressure conditions.
Manuel Moser, Christiane Voigt, Tina Jurkat-Witschas, Valerian Hahn, Guillaume Mioche, Olivier Jourdan, Régis Dupuy, Christophe Gourbeyre, Alfons Schwarzenboeck, Johannes Lucke, Yvonne Boose, Mario Mech, Stephan Borrmann, André Ehrlich, Andreas Herber, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 23, 7257–7280, https://doi.org/10.5194/acp-23-7257-2023, https://doi.org/10.5194/acp-23-7257-2023, 2023
Short summary
Short summary
This study provides a comprehensive microphysical and thermodynamic phase analysis of low-level clouds in the northern Fram Strait, above the sea ice and the open ocean, during spring and summer. Using airborne in situ cloud data, we show that the properties of Arctic low-level clouds vary significantly with seasonal meteorological situations and surface conditions. The observations presented in this study can help one to assess the role of clouds in the Arctic climate system.
Patrick Weber, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Jannik Schmitt, Gerhard Steiner, Lothar Keck, Andreas Petzold, and Ulrich Bundke
Aerosol Research, 1, 1–12, https://doi.org/10.5194/ar-1-1-2023, https://doi.org/10.5194/ar-1-1-2023, 2023
Short summary
Short summary
The aerosol number concentration is essential information for aerosol science. A condensation particle counter (CPC) can robustly provide this information. Butanol is often used as a working fluid in a CPC. We could show that dimethyl sulfoxide (DMSO) behaves equivalently to butanol in terms of the instrument`s counting efficiency, cut-off diameter and concentration linearity. We tested this on different aerosols, including sodium chloride, ammonium sulfate and fresh combustion soot.
Dominik Brunner, Gerrit Kuhlmann, Stephan Henne, Erik Koene, Bastian Kern, Sebastian Wolff, Christiane Voigt, Patrick Jöckel, Christoph Kiemle, Anke Roiger, Alina Fiehn, Sven Krautwurst, Konstantin Gerilowski, Heinrich Bovensmann, Jakob Borchardt, Michal Galkowski, Christoph Gerbig, Julia Marshall, Andrzej Klonecki, Pascal Prunet, Robert Hanfland, Margit Pattantyús-Ábrahám, Andrzej Wyszogrodzki, and Andreas Fix
Atmos. Chem. Phys., 23, 2699–2728, https://doi.org/10.5194/acp-23-2699-2023, https://doi.org/10.5194/acp-23-2699-2023, 2023
Short summary
Short summary
We evaluated six atmospheric transport models for their capability to simulate the CO2 plumes from two of the largest power plants in Europe by comparing the models against aircraft observations collected during the CoMet (Carbon Dioxide and Methane Mission) campaign in 2018. The study analyzed how realistically such plumes can be simulated at different model resolutions and how well the planned European satellite mission CO2M will be able to quantify emissions from power plants.
Yun Li, Christoph Mahnke, Susanne Rohs, Ulrich Bundke, Nicole Spelten, Georgios Dekoutsidis, Silke Groß, Christiane Voigt, Ulrich Schumann, Andreas Petzold, and Martina Krämer
Atmos. Chem. Phys., 23, 2251–2271, https://doi.org/10.5194/acp-23-2251-2023, https://doi.org/10.5194/acp-23-2251-2023, 2023
Short summary
Short summary
The radiative effect of aviation-induced cirrus is closely related to ambient conditions and its microphysical properties. Our study investigated the occurrence of contrail and natural cirrus measured above central Europe in spring 2014. It finds that contrail cirrus appears frequently in the pressure range 200 to 245 hPa and occurs more often in slightly ice-subsaturated environments than expected. Avoiding slightly ice-subsaturated regions by aviation might help mitigate contrail cirrus.
Ziming Wang, Luca Bugliaro, Tina Jurkat-Witschas, Romy Heller, Ulrike Burkhardt, Helmut Ziereis, Georgios Dekoutsidis, Martin Wirth, Silke Groß, Simon Kirschler, Stefan Kaufmann, and Christiane Voigt
Atmos. Chem. Phys., 23, 1941–1961, https://doi.org/10.5194/acp-23-1941-2023, https://doi.org/10.5194/acp-23-1941-2023, 2023
Short summary
Short summary
Differences in the microphysical properties of contrail cirrus and natural cirrus in a contrail outbreak situation during the ML-CIRRUS campaign over the North Atlantic flight corridor can be observed from in situ measurements. The cirrus radiative effect in the area of the outbreak, derived from satellite observation-based radiative transfer modeling, is warming in the early morning and cooling during the day.
Andreas Marsing, Ralf Meerkötter, Romy Heller, Stefan Kaufmann, Tina Jurkat-Witschas, Martina Krämer, Christian Rolf, and Christiane Voigt
Atmos. Chem. Phys., 23, 587–609, https://doi.org/10.5194/acp-23-587-2023, https://doi.org/10.5194/acp-23-587-2023, 2023
Short summary
Short summary
We employ highly resolved aircraft measurements of profiles of the ice water content (IWC) in Arctic cirrus clouds in winter and spring, when solar irradiation is low. Using radiation transfer calculations, we assess the cloud radiative effect over different surfaces like snow or ocean. The variability in the IWC of the clouds affects their overall radiative effect and drives internal processes. This helps understand the role of cirrus in a rapidly changing Arctic environment.
Johannes Lucke, Tina Jurkat-Witschas, Romy Heller, Valerian Hahn, Matthew Hamman, Wolfgang Breitfuss, Venkateshwar Reddy Bora, Manuel Moser, and Christiane Voigt
Atmos. Meas. Tech., 15, 7375–7394, https://doi.org/10.5194/amt-15-7375-2022, https://doi.org/10.5194/amt-15-7375-2022, 2022
Short summary
Short summary
Flight testing in icing conditions requires instruments that are able to accurately measure the liquid water content of supercooled large droplets (SLDs). This work finds that the 12 mm cone of the Nevzorov hot-wire probe has excellent collection properties for SLDs. We also derive a correction to compensate for the low collision efficiency of small droplets with the cone. The results provide a procedure to evaluate LWC measurements of the 12 mm cone during wind tunnel and airborne experiments.
Laura Tomsche, Andreas Marsing, Tina Jurkat-Witschas, Johannes Lucke, Stefan Kaufmann, Katharina Kaiser, Johannes Schneider, Monika Scheibe, Hans Schlager, Lenard Röder, Horst Fischer, Florian Obersteiner, Andreas Zahn, Martin Zöger, Jos Lelieveld, and Christiane Voigt
Atmos. Chem. Phys., 22, 15135–15151, https://doi.org/10.5194/acp-22-15135-2022, https://doi.org/10.5194/acp-22-15135-2022, 2022
Short summary
Short summary
The detection of sulfur compounds in the upper troposphere (UT) and lower stratosphere (LS) is a challenge. In-flight measurements of SO2 and sulfate aerosol were performed during the BLUESKY mission in spring 2020 under exceptional atmospheric conditions. Reduced sinks in the dry UTLS and lower but still significant air traffic influenced the enhanced SO2 in the UT, and aged volcanic plumes enhanced the LS sulfate aerosol impacting the atmospheric radiation budget and global climate.
Mohamadou A. Diallo, Felix Ploeger, Michaela I. Hegglin, Manfred Ern, Jens-Uwe Grooß, Sergey Khaykin, and Martin Riese
Atmos. Chem. Phys., 22, 14303–14321, https://doi.org/10.5194/acp-22-14303-2022, https://doi.org/10.5194/acp-22-14303-2022, 2022
Short summary
Short summary
The quasi-biennial oacillation disruption events in both 2016 and 2020 decreased lower-stratospheric water vapour and ozone. Differences in the strength and depth of the anomalous lower-stratospheric circulation and ozone are due to differences in tropical upwelling and cold-point temperature induced by lower-stratospheric planetary and gravity wave breaking. The differences in water vapour are due to higher cold-point temperature in 2020 induced by Australian wildfire.
Hossein Dadashazar, Andrea F. Corral, Ewan Crosbie, Sanja Dmitrovic, Simon Kirschler, Kayla McCauley, Richard Moore, Claire Robinson, Joseph S. Schlosser, Michael Shook, K. Lee Thornhill, Christiane Voigt, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 13897–13913, https://doi.org/10.5194/acp-22-13897-2022, https://doi.org/10.5194/acp-22-13897-2022, 2022
Short summary
Short summary
Multi-season airborne data over the northwestern Atlantic show that organic mass fraction and the relative amount of oxygenated organics within that fraction are enhanced in droplet residual particles as compared to particles below and above cloud. In-cloud aqueous processing is shown to be a potential driver of this compositional shift in cloud. This implies that aerosol–cloud interactions in the region reduce aerosol hygroscopicity due to the jump in the organic : sulfate ratio in cloud.
Roger Teoh, Ulrich Schumann, Edward Gryspeerdt, Marc Shapiro, Jarlath Molloy, George Koudis, Christiane Voigt, and Marc E. J. Stettler
Atmos. Chem. Phys., 22, 10919–10935, https://doi.org/10.5194/acp-22-10919-2022, https://doi.org/10.5194/acp-22-10919-2022, 2022
Short summary
Short summary
Aircraft condensation trails (contrails) contribute to over half of the climate forcing attributable to aviation. This study uses historical air traffic and weather data to simulate contrails in the North Atlantic over 5 years, from 2016 to 2021. We found large intra- and inter-year variability in contrail radiative forcing and observed a 66 % reduction due to COVID-19. Most warming contrails predominantly result from night-time flights in winter.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Ovid O. Krüger, Bruna A. Holanda, Sourangsu Chowdhury, Andrea Pozzer, David Walter, Christopher Pöhlker, Maria Dolores Andrés Hernández, John P. Burrows, Christiane Voigt, Jos Lelieveld, Johannes Quaas, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 22, 8683–8699, https://doi.org/10.5194/acp-22-8683-2022, https://doi.org/10.5194/acp-22-8683-2022, 2022
Short summary
Short summary
The abrupt reduction in human activities during the first COVID-19 lockdown created unprecedented atmospheric conditions. We took the opportunity to quantify changes in black carbon (BC) as a major anthropogenic air pollutant. Therefore, we measured BC on board a research aircraft over Europe during the lockdown and compared the results to measurements from 2017. With model simulations we account for different weather conditions and find a lockdown-related decrease in BC of 41 %.
Simon Kirschler, Christiane Voigt, Bruce Anderson, Ramon Campos Braga, Gao Chen, Andrea F. Corral, Ewan Crosbie, Hossein Dadashazar, Richard A. Ferrare, Valerian Hahn, Johannes Hendricks, Stefan Kaufmann, Richard Moore, Mira L. Pöhlker, Claire Robinson, Amy J. Scarino, Dominik Schollmayer, Michael A. Shook, K. Lee Thornhill, Edward Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 8299–8319, https://doi.org/10.5194/acp-22-8299-2022, https://doi.org/10.5194/acp-22-8299-2022, 2022
Short summary
Short summary
In this study we show that the vertical velocity dominantly impacts the cloud droplet number concentration (NC) of low-level clouds over the western North Atlantic in the winter and summer season, while the cloud condensation nuclei concentration, aerosol size distribution and chemical composition impact NC within a season. The observational data presented in this study can evaluate and improve the representation of aerosol–cloud interactions for a wide range of conditions.
Klaus Gierens, Lena Wilhelm, Sina Hofer, and Susanne Rohs
Atmos. Chem. Phys., 22, 7699–7712, https://doi.org/10.5194/acp-22-7699-2022, https://doi.org/10.5194/acp-22-7699-2022, 2022
Short summary
Short summary
We are interested in the prediction of condensation trails, in particular strong ones. For this we need a good forecast of temperature and humidity in the levels where aircraft cruise. Unfortunately, the humidity forecast is quite difficult for these levels, in particular the ice supersaturation, which is needed for long-lasting contrails. We are thus seeking proxy variables that help distinguish situations where strong contrails can form, for instance the lapse rate.
Patrick Weber, Andreas Petzold, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Andrew Freedman, Timothy B. Onasch, and Ulrich Bundke
Atmos. Meas. Tech., 15, 3279–3296, https://doi.org/10.5194/amt-15-3279-2022, https://doi.org/10.5194/amt-15-3279-2022, 2022
Short summary
Short summary
In our laboratory closure study, we measured the full set of aerosol optical properties for different light-absorbing aerosols using a set of instruments.
Our key finding is that the extensive and intensive aerosol optical properties obtained agree with data from reference instruments, except the absorption Ångström exponent of externally mixed aerosols. The reported uncertainty in the single-scattering albedo fulfils the defined goals for Global Climate Observing System applications of 10 %.
Mireia Papke Chica, Valerian Hahn, Tiziana Braeuer, Elena de la Torre Castro, Florian Ewald, Mathias Gergely, Simon Kirschler, Luca Bugliaro Goggia, Stefanie Knobloch, Martina Kraemer, Johannes Lucke, Johanna Mayer, Raphael Maerkl, Manuel Moser, Laura Tomsche, Tina Jurkat-Witschas, Martin Zoeger, Christian von Savigny, and Christiane Voigt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-255, https://doi.org/10.5194/acp-2022-255, 2022
Preprint withdrawn
Short summary
Short summary
The mixed-phase temperature regime in convective clouds challenges our understanding of microphysical and radiative cloud properties. We provide a rare and unique dataset of aircraft in situ measurements in a strong mid-latitude convective system. We find that mechanisms initiating ice nucleation and growth strongly depend on temperature, relative humidity, and vertical velocity and variate within the measured system, resulting in altitude dependent changes of the cloud liquid and ice fraction.
Luca Bugliaro, Dennis Piontek, Stephan Kox, Marius Schmidl, Bernhard Mayer, Richard Müller, Margarita Vázquez-Navarro, Daniel M. Peters, Roy G. Grainger, Josef Gasteiger, and Jayanta Kar
Nat. Hazards Earth Syst. Sci., 22, 1029–1054, https://doi.org/10.5194/nhess-22-1029-2022, https://doi.org/10.5194/nhess-22-1029-2022, 2022
Short summary
Short summary
The monitoring of ash dispersion in the atmosphere is an important task for satellite remote sensing since ash represents a threat to air traffic. We present an AI-based method that retrieves the spatial extension and properties of volcanic ash clouds with high temporal resolution during day and night by means of geostationary satellite measurements. This algorithm, trained on realistic observations simulated with a radiative transfer model, runs operationally at the German Weather Service.
Helmut Ziereis, Peter Hoor, Jens-Uwe Grooß, Andreas Zahn, Greta Stratmann, Paul Stock, Michael Lichtenstern, Jens Krause, Vera Bense, Armin Afchine, Christian Rolf, Wolfgang Woiwode, Marleen Braun, Jörn Ungermann, Andreas Marsing, Christiane Voigt, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys., 22, 3631–3654, https://doi.org/10.5194/acp-22-3631-2022, https://doi.org/10.5194/acp-22-3631-2022, 2022
Short summary
Short summary
Airborne observations were conducted in the lowermost Arctic stratosphere during the winter of 2015/2016. The observed distribution of reactive nitrogen shows clear indications of nitrification in mid-winter and denitrification in late winter. This was caused by the formation of polar stratospheric cloud particles, which were observed during several flights. The sedimentation and evaporation of these particles and the descent of air masses cause a redistribution of reactive nitrogen.
Adrien Deroubaix, Laurent Menut, Cyrille Flamant, Peter Knippertz, Andreas H. Fink, Anneke Batenburg, Joel Brito, Cyrielle Denjean, Cheikh Dione, Régis Dupuy, Valerian Hahn, Norbert Kalthoff, Fabienne Lohou, Alfons Schwarzenboeck, Guillaume Siour, Paolo Tuccella, and Christiane Voigt
Atmos. Chem. Phys., 22, 3251–3273, https://doi.org/10.5194/acp-22-3251-2022, https://doi.org/10.5194/acp-22-3251-2022, 2022
Short summary
Short summary
During the summer monsoon in West Africa, pollutants emitted in urbanized areas modify cloud cover and precipitation patterns. We analyze these patterns with the WRF-CHIMERE model, integrating the effects of aerosols on meteorology, based on the numerous observations provided by the Dynamics-Aerosol-Climate-Interactions campaign. This study adds evidence to recent findings that increased pollution levels in West Africa delay the breakup time of low-level clouds and reduce precipitation.
Martin J. Osborne, Johannes de Leeuw, Claire Witham, Anja Schmidt, Frances Beckett, Nina Kristiansen, Joelle Buxmann, Cameron Saint, Ellsworth J. Welton, Javier Fochesatto, Ana R. Gomes, Ulrich Bundke, Andreas Petzold, Franco Marenco, and Jim Haywood
Atmos. Chem. Phys., 22, 2975–2997, https://doi.org/10.5194/acp-22-2975-2022, https://doi.org/10.5194/acp-22-2975-2022, 2022
Short summary
Short summary
Using the Met Office NAME dispersion model, supported by satellite- and ground-based remote-sensing observations, we describe the dispersion of aerosols from the 2019 Raikoke eruption and the concurrent wildfires in Alberta Canada. We show how the synergy of dispersion modelling and multiple observation sources allowed observers in the London VAAC to arrive at a more complete picture of the aerosol loading at altitudes commonly used by aviation.
Matthieu Plu, Guillaume Bigeard, Bojan Sič, Emanuele Emili, Luca Bugliaro, Laaziz El Amraoui, Jonathan Guth, Beatrice Josse, Lucia Mona, and Dennis Piontek
Nat. Hazards Earth Syst. Sci., 21, 3731–3747, https://doi.org/10.5194/nhess-21-3731-2021, https://doi.org/10.5194/nhess-21-3731-2021, 2021
Short summary
Short summary
Volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, may have huge economic consequences due to flight cancellations. In this article, we demonstrate the benefits of source term improvement and of data assimilation for quantifying volcanic ash concentrations. The work, which was supported by the EUNADICS-AV project, is the first one, to our knowledge, that demonstrates the benefit of the assimilation of ground-based lidar data over Europe during an eruption.
Ramon Campos Braga, Barbara Ervens, Daniel Rosenfeld, Meinrat O. Andreae, Jan-David Förster, Daniel Fütterer, Lianet Hernández Pardo, Bruna A. Holanda, Tina Jurkat-Witschas, Ovid O. Krüger, Oliver Lauer, Luiz A. T. Machado, Christopher Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Manfred Wendisch, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 17513–17528, https://doi.org/10.5194/acp-21-17513-2021, https://doi.org/10.5194/acp-21-17513-2021, 2021
Short summary
Short summary
Interactions of aerosol particles with clouds represent a large uncertainty in estimates of climate change. Properties of aerosol particles control their ability to act as cloud condensation nuclei. Using aerosol measurements in the Amazon, we performed model studies to compare predicted and measured cloud droplet number concentrations at cloud bases. Our results confirm previous estimates of particle hygroscopicity in this region.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Tiziana Bräuer, Christiane Voigt, Daniel Sauer, Stefan Kaufmann, Valerian Hahn, Monika Scheibe, Hans Schlager, Felix Huber, Patrick Le Clercq, Richard H. Moore, and Bruce E. Anderson
Atmos. Chem. Phys., 21, 16817–16826, https://doi.org/10.5194/acp-21-16817-2021, https://doi.org/10.5194/acp-21-16817-2021, 2021
Short summary
Short summary
Over half of aviation climate impact is caused by contrails. Biofuels can reduce the ice crystal numbers in contrails and mitigate the climate impact. The experiment ECLIF II/NDMAX in 2018 assessed the effects of biofuels on contrails and aviation emissions. The NASA DC-8 aircraft performed measurements inside the contrail of the DLR A320. One reference fuel and two blends of the biofuel HEFA and kerosene are analysed. We find a max reduction of contrail ice numbers through biofuel use of 40 %.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Hannah Clark, Yasmine Bennouna, Maria Tsivlidou, Pawel Wolff, Bastien Sauvage, Brice Barret, Eric Le Flochmoën, Romain Blot, Damien Boulanger, Jean-Marc Cousin, Philippe Nédélec, Andreas Petzold, and Valérie Thouret
Atmos. Chem. Phys., 21, 16237–16256, https://doi.org/10.5194/acp-21-16237-2021, https://doi.org/10.5194/acp-21-16237-2021, 2021
Short summary
Short summary
We examined 27 years of IAGOS (In-service Aircraft for a Global Observing System) profiles at Frankfurt to see if there were unusual features during the spring of 2020 related to COVID-19 lockdowns in Europe. Increased ozone near the surface was partly linked to the reduction in emissions. Carbon monoxide decreased near the surface, but the impact of the lockdowns was offset by polluted air masses from elsewhere. There were small reductions in ozone and carbon monoxide in the free troposphere.
Hossein Dadashazar, Majid Alipanah, Miguel Ricardo A. Hilario, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Andrew J. Peters, Amy Jo Scarino, Michael Shook, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Bo Zhang, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 16121–16141, https://doi.org/10.5194/acp-21-16121-2021, https://doi.org/10.5194/acp-21-16121-2021, 2021
Short summary
Short summary
This study investigates precipitation impacts on long-range transport of North American outflow over the western North Atlantic Ocean (WNAO). Results demonstrate that precipitation scavenging plays a significant role in modifying surface aerosol concentrations over the WNAO, especially in winter and spring due to large-scale scavenging processes. This study highlights how precipitation impacts surface aerosol properties with relevance for other marine regions vulnerable to continental outflow.
Matthieu Plu, Barbara Scherllin-Pirscher, Delia Arnold Arias, Rocio Baro, Guillaume Bigeard, Luca Bugliaro, Ana Carvalho, Laaziz El Amraoui, Kurt Eschbacher, Marcus Hirtl, Christian Maurer, Marie D. Mulder, Dennis Piontek, Lennart Robertson, Carl-Herbert Rokitansky, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 21, 2973–2992, https://doi.org/10.5194/nhess-21-2973-2021, https://doi.org/10.5194/nhess-21-2973-2021, 2021
Short summary
Short summary
Past volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, forced the cancellation of thousands of flights and had huge economic consequences.
In this article, an international team in the H2020 EU-funded EUNADICS-AV project has designed a probabilistic model approach to quantify ash concentrations. This approach is evaluated against measurements, and its potential use to mitigate the impact of future large-scale eruptions is discussed.
Victor Lannuque, Bastien Sauvage, Brice Barret, Hannah Clark, Gilles Athier, Damien Boulanger, Jean-Pierre Cammas, Jean-Marc Cousin, Alain Fontaine, Eric Le Flochmoën, Philippe Nédélec, Hervé Petetin, Isabelle Pfaffenzeller, Susanne Rohs, Herman G. J. Smit, Pawel Wolff, and Valérie Thouret
Atmos. Chem. Phys., 21, 14535–14555, https://doi.org/10.5194/acp-21-14535-2021, https://doi.org/10.5194/acp-21-14535-2021, 2021
Short summary
Short summary
The African intertropical troposphere is one of the world areas where the increase in ozone mixing ratio has been most pronounced since 1980 and where high carbon monoxide mixing ratios are found in altitude. In this article, IAGOS aircraft measurements, IASI satellite instrument observations, and SOFT-IO model products are used to explore the seasonal distribution variations and the origin of ozone and carbon monoxide over the African upper troposphere.
Ramon Campos Braga, Daniel Rosenfeld, Ovid O. Krüger, Barbara Ervens, Bruna A. Holanda, Manfred Wendisch, Trismono Krisna, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 14079–14088, https://doi.org/10.5194/acp-21-14079-2021, https://doi.org/10.5194/acp-21-14079-2021, 2021
Short summary
Short summary
Quantifying the precipitation within clouds is crucial for our understanding of the Earth's hydrological cycle. Using in situ measurements of cloud and rain properties over the Amazon Basin and Atlantic Ocean, we show here a linear relationship between the effective radius (re) and precipitation water content near the tops of convective clouds for different pollution states and temperature levels. Our results emphasize the role of re to determine both initiation and amount of precipitation.
Hossein Dadashazar, David Painemal, Majid Alipanah, Michael Brunke, Seethala Chellappan, Andrea F. Corral, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Claire Robinson, Amy Jo Scarino, Michael Shook, Kenneth Sinclair, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Xubin Zeng, Luke Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 21, 10499–10526, https://doi.org/10.5194/acp-21-10499-2021, https://doi.org/10.5194/acp-21-10499-2021, 2021
Short summary
Short summary
This study investigates the seasonal cycle of cloud drop number concentration (Nd) over the western North Atlantic Ocean (WNAO) using multiple datasets. Reasons for the puzzling discrepancy between the seasonal cycles of Nd and aerosol concentration were identified. Results indicate that Nd is highest in winter (when aerosol proxy values are often lowest) due to conditions both linked to cold-air outbreaks and that promote greater droplet activation.
Ulrich Schumann, Ian Poll, Roger Teoh, Rainer Koelle, Enrico Spinielli, Jarlath Molloy, George S. Koudis, Robert Baumann, Luca Bugliaro, Marc Stettler, and Christiane Voigt
Atmos. Chem. Phys., 21, 7429–7450, https://doi.org/10.5194/acp-21-7429-2021, https://doi.org/10.5194/acp-21-7429-2021, 2021
Short summary
Short summary
The roughly 70 % reduction of air traffic during the COVID-19 pandemic from March–August 2020 compared to 2019 provides a test case for the relationship between air traffic density, contrails, and their radiative forcing of climate change. This paper investigates the induced traffic and contrail changes in a model study. Besides strong weather changes, the model results indicate aviation-induced cirrus and top-of-the-atmosphere irradiance changes, which can be tested with observations.
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Harald Rybka, Ulrike Burkhardt, Martin Köhler, Ioanna Arka, Luca Bugliaro, Ulrich Görsdorf, Ákos Horváth, Catrin I. Meyer, Jens Reichardt, Axel Seifert, and Johan Strandgren
Atmos. Chem. Phys., 21, 4285–4318, https://doi.org/10.5194/acp-21-4285-2021, https://doi.org/10.5194/acp-21-4285-2021, 2021
Short summary
Short summary
Estimating the impact of convection on the upper-tropospheric water budget remains a problem for models employing resolutions of several kilometers or more. A sub-kilometer high-resolution model is used to study summertime convection. The results suggest mostly close agreement with ground- and satellite-based observational data while slightly overestimating total frozen water path and anvil lifetime. The simulations are well suited to supplying information for parameterization development.
Inken Knop, Stephan E. Bansmer, Valerian Hahn, and Christiane Voigt
Atmos. Meas. Tech., 14, 1761–1781, https://doi.org/10.5194/amt-14-1761-2021, https://doi.org/10.5194/amt-14-1761-2021, 2021
Short summary
Short summary
Knowledge on droplet size and concentration is essential for several applications of atomizers. After having developed a new spray system for our icing wind tunnel, we did intercomparison tests of different droplet measurement techniques including two commercial probes. The probes proved the good repeatability of the spray conditions and showed good overall agreement in measuring size and concentration. Furthermore, we could identify limitations and error sources of the measuring techniques.
Julia Perim de Faria, Ulrich Bundke, Andrew Freedman, Timothy B. Onasch, and Andreas Petzold
Atmos. Meas. Tech., 14, 1635–1653, https://doi.org/10.5194/amt-14-1635-2021, https://doi.org/10.5194/amt-14-1635-2021, 2021
Short summary
Short summary
An evaluation of the performance and accuracy of a Cavity Attenuated Phase-Shift Single Scattering Albedo Monitor (CAPS PMSSA; Aerodyne Research, Inc.) was conducted in an optical-closure study with proven technologies for aerosol particle optical-property measurements. This study demonstrates that the CAPS PMSSA is a robust and reliable instrument for the direct measurement of the particle scattering and extinction coefficients and thus single-scattering albedo.
Andreas Petzold, Patrick Neis, Mihal Rütimann, Susanne Rohs, Florian Berkes, Herman G. J. Smit, Martina Krämer, Nicole Spelten, Peter Spichtinger, Philippe Nédélec, and Andreas Wahner
Atmos. Chem. Phys., 20, 8157–8179, https://doi.org/10.5194/acp-20-8157-2020, https://doi.org/10.5194/acp-20-8157-2020, 2020
Short summary
Short summary
The first analysis of 15 years of global-scale water vapour and relative humidity observations by passenger aircraft in the MOZAIC and IAGOS programmes resolves detailed features of water vapour and ice-supersaturated air in the mid-latitude tropopause. Key results provide in-depth insight into seasonal and regional variability and chemical signatures of ice-supersaturated air masses, including trend analyses, and show a close link to cirrus clouds and their highly important effects on climate.
Frank Roux, Hannah Clark, Kuo-Ying Wang, Susanne Rohs, Bastien Sauvage, and Philippe Nédélec
Atmos. Chem. Phys., 20, 3945–3963, https://doi.org/10.5194/acp-20-3945-2020, https://doi.org/10.5194/acp-20-3945-2020, 2020
Short summary
Short summary
Ozone, carbon monoxide and relative humidity were measured by two China Airlines aircraft equipped with IAGOS instruments during the summer of 2016. We examined landing and take-off profiles near Taipei (Taiwan), in the vicinity of three typhoons, in relation to ERA-5 meteorological reanalyses. Upstream of the storms, these data suggest that air is transported downwards from the stratosphere. Downstream, the troposphere is cleaner and moister due to the uplift of marine boundary layer air.
Mattia Righi, Johannes Hendricks, Ulrike Lohmann, Christof Gerhard Beer, Valerian Hahn, Bernd Heinold, Romy Heller, Martina Krämer, Michael Ponater, Christian Rolf, Ina Tegen, and Christiane Voigt
Geosci. Model Dev., 13, 1635–1661, https://doi.org/10.5194/gmd-13-1635-2020, https://doi.org/10.5194/gmd-13-1635-2020, 2020
Short summary
Short summary
A new cloud microphysical scheme is implemented in the global EMAC-MADE3 aerosol model and evaluated. The new scheme features a detailed parameterization for aerosol-driven ice formation in cirrus clouds, accounting for the competition between homogeneous and heterogeneous ice formation processes. The comparison against satellite data and in situ measurements shows that the model performance is in line with similar global coupled models featuring ice cloud parameterizations.
Pascal Polonik, Christoph Knote, Tobias Zinner, Florian Ewald, Tobias Kölling, Bernhard Mayer, Meinrat O. Andreae, Tina Jurkat-Witschas, Thomas Klimach, Christoph Mahnke, Sergej Molleker, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Ralf Weigel, and Manfred Wendisch
Atmos. Chem. Phys., 20, 1591–1605, https://doi.org/10.5194/acp-20-1591-2020, https://doi.org/10.5194/acp-20-1591-2020, 2020
Short summary
Short summary
A realistic representation of cloud–aerosol interactions is central to accurate climate projections. Here we combine observations collected during the ACRIDICON-CHUVA campaign with chemistry-transport simulations to evaluate the model’s ability to represent the indirect effects of biomass burning aerosol on cloud microphysics. We find an upper limit for the model sensitivity on cloud condensation nuclei concentrations well below the levels reached during the burning season in the Amazon Basin.
Philipp Reutter, Patrick Neis, Susanne Rohs, and Bastien Sauvage
Atmos. Chem. Phys., 20, 787–804, https://doi.org/10.5194/acp-20-787-2020, https://doi.org/10.5194/acp-20-787-2020, 2020
Short summary
Short summary
This study compares in situ measurements of temperature and humidity in the upper troposphere and lower stratosphere with reanalysis data from the ECMWF ERA-Interim data set. It is shown that temperature compares well between both data sets. However, extreme values of relative humidity with respect to ice (RHi) are missing in ERA-Interim, and hence the number and size of ice supersaturated regions differ strongly between both data sets.
Andreas Marsing, Tina Jurkat-Witschas, Jens-Uwe Grooß, Stefan Kaufmann, Romy Heller, Andreas Engel, Peter Hoor, Jens Krause, and Christiane Voigt
Atmos. Chem. Phys., 19, 10757–10772, https://doi.org/10.5194/acp-19-10757-2019, https://doi.org/10.5194/acp-19-10757-2019, 2019
Short summary
Short summary
We study the partitioning of inorganic chlorine into active (ozone-depleting) and reservoir species in the lowermost stratosphere of the Arctic polar vortex, using novel in situ aircraft measurements in winter 2015/2016. We observe a change in recovery pathways of the reservoirs HCl and ClONO2 with increasing potential temperature. A comparison with the CLaMS model relates the observations to the vortex-wide evolution and confirms unresolved discrepancies in the mid-winter HCl distribution.
Jonathan W. Taylor, Sophie L. Haslett, Keith Bower, Michael Flynn, Ian Crawford, James Dorsey, Tom Choularton, Paul J. Connolly, Valerian Hahn, Christiane Voigt, Daniel Sauer, Régis Dupuy, Joel Brito, Alfons Schwarzenboeck, Thierry Bourriane, Cyrielle Denjean, Phil Rosenberg, Cyrille Flamant, James D. Lee, Adam R. Vaughan, Peter G. Hill, Barbara Brooks, Valéry Catoire, Peter Knippertz, and Hugh Coe
Atmos. Chem. Phys., 19, 8503–8522, https://doi.org/10.5194/acp-19-8503-2019, https://doi.org/10.5194/acp-19-8503-2019, 2019
Short summary
Short summary
Low-level clouds cover a wide area of southern West Africa (SWA) and play an important role in the region's climate, reflecting sunlight away from the surface. We performed aircraft measurements of aerosols and clouds over SWA during the 2016 summer monsoon and found pollution, and polluted clouds, across the whole region. Smoke from biomass burning in Central Africa is transported to West Africa, causing a polluted background which limits the effect of local pollution on cloud properties.
Klaus Gierens and Kostas Eleftheratos
Atmos. Chem. Phys., 19, 3733–3746, https://doi.org/10.5194/acp-19-3733-2019, https://doi.org/10.5194/acp-19-3733-2019, 2019
Short summary
Short summary
We derive a new method to retrieve upper-tropospheric humidity (UTH) from High-resolution Infrared Radiation Sounder (HIRS) channel 12 brightness temperatures. With the new method we solve an old problem, namely that the wavelength change that occurred between HIRS 2 on NOAA 14 and HIRS 3 on NOAA 15 led to the retrieval of many more events with high UTH; that is, the time series shows strong jumps at high UTH values. This old problem is solved with the new retrieval.
Michael Weger, Bernd Heinold, Christa Engler, Ulrich Schumann, Axel Seifert, Romy Fößig, Christiane Voigt, Holger Baars, Ulrich Blahak, Stephan Borrmann, Corinna Hoose, Stefan Kaufmann, Martina Krämer, Patric Seifert, Fabian Senf, Johannes Schneider, and Ina Tegen
Atmos. Chem. Phys., 18, 17545–17572, https://doi.org/10.5194/acp-18-17545-2018, https://doi.org/10.5194/acp-18-17545-2018, 2018
Short summary
Short summary
The impact of desert dust on cloud formation is investigated for a major Saharan dust event over Europe by interactive regional dust modeling. Dust particles are very efficient ice-nucleating particles promoting the formation of ice crystals in clouds. The simulations show that the observed extensive cirrus development was likely related to the above-average dust load. The interactive dust–cloud feedback in the model significantly improves the agreement with aircraft and satellite observations.
Stefan Kaufmann, Christiane Voigt, Romy Heller, Tina Jurkat-Witschas, Martina Krämer, Christian Rolf, Martin Zöger, Andreas Giez, Bernhard Buchholz, Volker Ebert, Troy Thornberry, and Ulrich Schumann
Atmos. Chem. Phys., 18, 16729–16745, https://doi.org/10.5194/acp-18-16729-2018, https://doi.org/10.5194/acp-18-16729-2018, 2018
Short summary
Short summary
We present an intercomparison of the airborne water vapor measurements during the ML-CIRRUS mission. Although the agreement of the hygrometers significantly improved compared to studies from recent decades, systematic differences remain under specific meteorological conditions. We compare the measurements to model data, where we observe a model wet bias in the lower stratosphere close to the tropopause, likely caused by a blurred humidity gradient in the model tropopause.
Christiane Voigt, Andreas Dörnbrack, Martin Wirth, Silke M. Groß, Michael C. Pitts, Lamont R. Poole, Robert Baumann, Benedikt Ehard, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 15623–15641, https://doi.org/10.5194/acp-18-15623-2018, https://doi.org/10.5194/acp-18-15623-2018, 2018
Short summary
Short summary
The 2015–2016 stratospheric winter was the coldest in the 36-year climatological data record. The extreme conditions promoted the formation of persistent Arctic polar stratospheric ice clouds. An extended ice PSC detected by airborne lidar in January 2016 shows a second mode with higher particle depolarization ratios. Back-trajectories from the high-depol ice matched to CALIOP PSC curtains provide evidence for ice nucleation on NAT. The novel data consolidate our understanding of PSC formation.
Christiane Schulz, Johannes Schneider, Bruna Amorim Holanda, Oliver Appel, Anja Costa, Suzane S. de Sá, Volker Dreiling, Daniel Fütterer, Tina Jurkat-Witschas, Thomas Klimach, Christoph Knote, Martina Krämer, Scot T. Martin, Stephan Mertes, Mira L. Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Bernadett Weinzierl, Helmut Ziereis, Martin Zöger, Meinrat O. Andreae, Paulo Artaxo, Luiz A. T. Machado, Ulrich Pöschl, Manfred Wendisch, and Stephan Borrmann
Atmos. Chem. Phys., 18, 14979–15001, https://doi.org/10.5194/acp-18-14979-2018, https://doi.org/10.5194/acp-18-14979-2018, 2018
Short summary
Short summary
Aerosol chemical composition measurements in the tropical upper troposphere over the Amazon region show that 78 % of the aerosol in the upper troposphere consists of organic matter. Up to 20 % of the organic aerosol can be attributed to isoprene epoxydiol secondary organic aerosol (IEPOX-SOA). Furthermore, organic nitrates were identified, suggesting a connection to the IEPOX-SOA formation.
Sören Johansson, Wolfgang Woiwode, Michael Höpfner, Felix Friedl-Vallon, Anne Kleinert, Erik Kretschmer, Thomas Latzko, Johannes Orphal, Peter Preusse, Jörn Ungermann, Michelle L. Santee, Tina Jurkat-Witschas, Andreas Marsing, Christiane Voigt, Andreas Giez, Martina Krämer, Christian Rolf, Andreas Zahn, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Meas. Tech., 11, 4737–4756, https://doi.org/10.5194/amt-11-4737-2018, https://doi.org/10.5194/amt-11-4737-2018, 2018
Short summary
Short summary
We present two-dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 from measurements of the GLORIA infrared limb imager during the POLSTRACC/GW-LCYCLE/SALSA aircraft campaigns in the Arctic winter 2015/2016. GLORIA sounded the atmosphere between 5 and 14 km with vertical resolutions of 0.4–1 km. Estimated errors are in the range of 1–2 K (temperature) and 10 %–20 % (trace gases). Comparisons to in situ instruments onboard the aircraft and to Aura/MLS are shown.
Aurélien Chauvigné, Olivier Jourdan, Alfons Schwarzenboeck, Christophe Gourbeyre, Jean François Gayet, Christiane Voigt, Hans Schlager, Stefan Kaufmann, Stephan Borrmann, Sergej Molleker, Andreas Minikin, Tina Jurkat, and Ulrich Schumann
Atmos. Chem. Phys., 18, 9803–9822, https://doi.org/10.5194/acp-18-9803-2018, https://doi.org/10.5194/acp-18-9803-2018, 2018
Short summary
Short summary
This paper demonstrates a new form of statistical analysis of contrail to cirrus evolution. The authors show well-separated analyses of the different stages of the contrail's evolution, which allows us to study their optical, microphysical, and chemical properties. These results could be used to develop representative parameterizations of the scattering and geometrical properties of the ice crystals’ shapes and sizes, observed in the visible wavelength range.
Armin Afchine, Christian Rolf, Anja Costa, Nicole Spelten, Martin Riese, Bernhard Buchholz, Volker Ebert, Romy Heller, Stefan Kaufmann, Andreas Minikin, Christiane Voigt, Martin Zöger, Jessica Smith, Paul Lawson, Alexey Lykov, Sergey Khaykin, and Martina Krämer
Atmos. Meas. Tech., 11, 4015–4031, https://doi.org/10.5194/amt-11-4015-2018, https://doi.org/10.5194/amt-11-4015-2018, 2018
Short summary
Short summary
The ice water content (IWC) of cirrus clouds is an essential parameter that determines their radiative properties and is thus important for climate simulations. Experimental investigations of IWCs measured on board research aircraft reveal that their accuracy is influenced by the sampling position. IWCs detected at the aircraft roof deviate significantly from wing, side or bottom IWCs. The reasons are deflections of the gas streamlines and ice particle trajectories behind the aircraft cockpit.
Hervé Petetin, Bastien Sauvage, Herman G. J. Smit, François Gheusi, Fabienne Lohou, Romain Blot, Hannah Clark, Gilles Athier, Damien Boulanger, Jean-Marc Cousin, Philippe Nedelec, Patrick Neis, Susanne Rohs, and Valérie Thouret
Atmos. Chem. Phys., 18, 9561–9581, https://doi.org/10.5194/acp-18-9561-2018, https://doi.org/10.5194/acp-18-9561-2018, 2018
Short summary
Short summary
Based on the numerous profiles available since 1994, this paper investigates the vertical stratification of ozone, carbon monoxide and relative humidity in the lower part of the troposphere (planetary boundary layer, lower free troposphere). Such a characterization of the vertical distribution of pollution is notably important for better understanding vertical exchanges and evaluating models on the vertical dimension.
Florian Berkes, Norbert Houben, Ulrich Bundke, Harald Franke, Hans-Werner Pätz, Franz Rohrer, Andreas Wahner, and Andreas Petzold
Atmos. Meas. Tech., 11, 3737–3757, https://doi.org/10.5194/amt-11-3737-2018, https://doi.org/10.5194/amt-11-3737-2018, 2018
Short summary
Short summary
The need for in situ nitrogen oxide measurements on a global scale is crucial to improve the chemistry in global chemistry models and evaluate satellite retrievals. Here we present the characterization of the new IAGOS NOx instrument installed on passenger aircraft, which will provide statistical robust measurements from the surface up to 13 km.
Stephan E. Bansmer, Arne Baumert, Stephan Sattler, Inken Knop, Delphine Leroy, Alfons Schwarzenboeck, Tina Jurkat-Witschas, Christiane Voigt, Hugo Pervier, and Biagio Esposito
Atmos. Meas. Tech., 11, 3221–3249, https://doi.org/10.5194/amt-11-3221-2018, https://doi.org/10.5194/amt-11-3221-2018, 2018
Short summary
Short summary
Snow, frost formation and ice cubes in our drinks are part of our daily life. But what about our technical innovations like aviation, electrical power transmission and wind-energy production, can they cope with icing? Icing Wind Tunnels are an ideal laboratory environment to answer that question. In this paper, we show how the icing wind tunnel in Braunschweig (Germany) was built and how we can use it for engineering and climate research.
Klaus-Dirk Gottschaldt, Hans Schlager, Robert Baumann, Duy Sinh Cai, Veronika Eyring, Phoebe Graf, Volker Grewe, Patrick Jöckel, Tina Jurkat-Witschas, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 18, 5655–5675, https://doi.org/10.5194/acp-18-5655-2018, https://doi.org/10.5194/acp-18-5655-2018, 2018
Short summary
Short summary
This study places aircraft trace gas measurements from within the Asian summer monsoon anticyclone into the context of regional, intra- and interannual variability. We find that the processes reflected in the measurements are present throughout multiple simulated monsoon seasons. Dynamical instabilities, photochemical ozone production, lightning and entrainments from the lower troposphere and from the tropopause region determine the distinct composition of the anticyclone and its outflow.
Trismono C. Krisna, Manfred Wendisch, André Ehrlich, Evelyn Jäkel, Frank Werner, Ralf Weigel, Stephan Borrmann, Christoph Mahnke, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Luiz A. T. Machado
Atmos. Chem. Phys., 18, 4439–4462, https://doi.org/10.5194/acp-18-4439-2018, https://doi.org/10.5194/acp-18-4439-2018, 2018
Short summary
Short summary
The optical thickness and particle effective radius of a cirrus above liquid water clouds and a DCC topped by an anvil cirrus are retrieved based on SMART and MODIS radiance measurements. For the cirrus, retrieved particle effective radius are validated with corresponding in situ data using a vertical weighting method. This approach allows to assess the measurements, retrieval algorithms, and derived cloud products.
Klaus Gierens, Kostas Eleftheratos, and Robert Sausen
Atmos. Meas. Tech., 11, 939–948, https://doi.org/10.5194/amt-11-939-2018, https://doi.org/10.5194/amt-11-939-2018, 2018
Short summary
Short summary
HIRS channel 12 on the series of NOAA weathersatellites is sensitive to humidity in the upper troposphere. A change in its central wavelength between NOAA 14 and 15 made it necessary to perform an intercalibration to retain a homogeneous time series. Here we show that the intercalibration of Shi and Bates (2011), which is based on statistical methods, can be underpinned by physical arguments using results of radiative transfer calculations.
Meinrat O. Andreae, Armin Afchine, Rachel Albrecht, Bruna Amorim Holanda, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Micael A. Cecchini, Anja Costa, Maximilian Dollner, Daniel Fütterer, Emma Järvinen, Tina Jurkat, Thomas Klimach, Tobias Konemann, Christoph Knote, Martina Krämer, Trismono Krisna, Luiz A. T. Machado, Stephan Mertes, Andreas Minikin, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Daniel Sauer, Hans Schlager, Martin Schnaiter, Johannes Schneider, Christiane Schulz, Antonio Spanu, Vinicius B. Sperling, Christiane Voigt, Adrian Walser, Jian Wang, Bernadett Weinzierl, Manfred Wendisch, and Helmut Ziereis
Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, https://doi.org/10.5194/acp-18-921-2018, 2018
Short summary
Short summary
We made airborne measurements of aerosol particle concentrations and properties over the Amazon Basin. We found extremely high concentrations of very small particles in the region between 8 and 14 km altitude all across the basin, which had been recently formed by gas-to-particle conversion at these altitudes. This makes the upper troposphere a very important source region of atmospheric particles with significant implications for the Earth's climate system.
Romy Heller, Christiane Voigt, Stuart Beaton, Andreas Dörnbrack, Andreas Giez, Stefan Kaufmann, Christian Mallaun, Hans Schlager, Johannes Wagner, Kate Young, and Markus Rapp
Atmos. Chem. Phys., 17, 14853–14869, https://doi.org/10.5194/acp-17-14853-2017, https://doi.org/10.5194/acp-17-14853-2017, 2017
Ramon Campos Braga, Daniel Rosenfeld, Ralf Weigel, Tina Jurkat, Meinrat O. Andreae, Manfred Wendisch, Ulrich Pöschl, Christiane Voigt, Christoph Mahnke, Stephan Borrmann, Rachel I. Albrecht, Sergej Molleker, Daniel A. Vila, Luiz A. T. Machado, and Lucas Grulich
Atmos. Chem. Phys., 17, 14433–14456, https://doi.org/10.5194/acp-17-14433-2017, https://doi.org/10.5194/acp-17-14433-2017, 2017
Johan Strandgren, Jennifer Fricker, and Luca Bugliaro
Atmos. Meas. Tech., 10, 4317–4339, https://doi.org/10.5194/amt-10-4317-2017, https://doi.org/10.5194/amt-10-4317-2017, 2017
Short summary
Short summary
We characterise the the performance of a set of artificial neural networks used for the remote sensing of cirrus clouds from the geostationary Meteosat Second Generation satellites. The retrievals show little interference with the underlying land surface type as well as with possible liquid water clouds or aerosol layers below the cirrus cloud. We also characterise the retrievals as a funtion of optical thickness and top height and gain better understanding of the retrival uncertainties of CiPS
Florian Berkes, Patrick Neis, Martin G. Schultz, Ulrich Bundke, Susanne Rohs, Herman G. J. Smit, Andreas Wahner, Paul Konopka, Damien Boulanger, Philippe Nédélec, Valerie Thouret, and Andreas Petzold
Atmos. Chem. Phys., 17, 12495–12508, https://doi.org/10.5194/acp-17-12495-2017, https://doi.org/10.5194/acp-17-12495-2017, 2017
Short summary
Short summary
This study highlights the importance of independent global measurements with high and long-term accuracy to quantify long-term changes, especially in the UTLS region, and to help identify inconsistencies between different data sets of observations and models. Here we investigated temperature trends over different regions within a climate-sensitive area of the atmosphere and demonstrated the value of the IAGOS temperature observations as an anchor point for the evaluation of reanalyses.
Johan Strandgren, Luca Bugliaro, Frank Sehnke, and Leon Schröder
Atmos. Meas. Tech., 10, 3547–3573, https://doi.org/10.5194/amt-10-3547-2017, https://doi.org/10.5194/amt-10-3547-2017, 2017
Short summary
Short summary
The new algorithm CiPS is presented and validated. CiPS detects cirrus clouds, identifies opaque pixels and retrieves the corresponding optical thickness, cloud top height and ice water path from the geostationary imager MSG/SEVIRI. CiPS utilises a set of four artificial neural networks trained with space-borne lidar data, thermal MSG/SEVIRI observations, model data and auxiliary data.
To demonstrate the capabilities of CiPS, the life cycle of a thin cirrus cloud is analysed.
Micael A. Cecchini, Luiz A. T. Machado, Meinrat O. Andreae, Scot T. Martin, Rachel I. Albrecht, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Daniel Fütterer, Tina Jurkat, Christoph Mahnke, Andreas Minikin, Sergej Molleker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Bernadett Weinzierl, and Manfred Wendisch
Atmos. Chem. Phys., 17, 10037–10050, https://doi.org/10.5194/acp-17-10037-2017, https://doi.org/10.5194/acp-17-10037-2017, 2017
Short summary
Short summary
We study the effects of aerosol particles and updraft speed on the warm phase of Amazonian clouds. We expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution and the effects on droplet size distribution (DSD) shape. The quantitative results show that particle concentration is the primary driver for the vertical profiles of effective diameter and droplet concentration in the warm phase of Amazonian convective clouds.
Evelyn Jäkel, Manfred Wendisch, Trismono C. Krisna, Florian Ewald, Tobias Kölling, Tina Jurkat, Christiane Voigt, Micael A. Cecchini, Luiz A. T. Machado, Armin Afchine, Anja Costa, Martina Krämer, Meinrat O. Andreae, Ulrich Pöschl, Daniel Rosenfeld, and Tianle Yuan
Atmos. Chem. Phys., 17, 9049–9066, https://doi.org/10.5194/acp-17-9049-2017, https://doi.org/10.5194/acp-17-9049-2017, 2017
Short summary
Short summary
Vertical profiles of the cloud particle phase state in tropical deep convective clouds (DCCs) were investigated using airborne imaging spectrometer measurements during the ACRIDICON-CHUVA campaign, which was conducted over the Brazilian rainforest in September 2014. A phase discrimination retrieval was applied to observations of clouds formed in different aerosol conditions. The profiles were compared to in situ and satellite measurements.
Ramon Campos Braga, Daniel Rosenfeld, Ralf Weigel, Tina Jurkat, Meinrat O. Andreae, Manfred Wendisch, Mira L. Pöhlker, Thomas Klimach, Ulrich Pöschl, Christopher Pöhlker, Christiane Voigt, Christoph Mahnke, Stephan Borrmann, Rachel I. Albrecht, Sergej Molleker, Daniel A. Vila, Luiz A. T. Machado, and Paulo Artaxo
Atmos. Chem. Phys., 17, 7365–7386, https://doi.org/10.5194/acp-17-7365-2017, https://doi.org/10.5194/acp-17-7365-2017, 2017
Klaus-D. Gottschaldt, Hans Schlager, Robert Baumann, Heiko Bozem, Veronika Eyring, Peter Hoor, Patrick Jöckel, Tina Jurkat, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 17, 6091–6111, https://doi.org/10.5194/acp-17-6091-2017, https://doi.org/10.5194/acp-17-6091-2017, 2017
Short summary
Short summary
We present upper-tropospheric trace gas measurements in the Asian summer monsoon anticyclone, obtained with the HALO research aircraft in September 2012. The anticyclone is one of the largest atmospheric features on Earth, but many aspects of it are not well understood. With the help of model simulations we find that entrainments from the tropopause region and the lower troposphere, combined with photochemistry and dynamical instabilities, can explain the observations.
Klaus Gierens and Kostas Eleftheratos
Atmos. Meas. Tech., 10, 681–693, https://doi.org/10.5194/amt-10-681-2017, https://doi.org/10.5194/amt-10-681-2017, 2017
Short summary
Short summary
For studies of trends in ice supersaturation in the upper troposphere we need very long time series of upper tropospheric humidity. The set of HIRS channel 12 satellite data can be used for this purpose, since Shi and Bates (2011) had provided an intercalibrated time series of channel 12 brightness temperatures. In the current paper we improve the intercalibration at the low tail of brightness temperatures, which leads to a more homogeneous time series of upper-tropospheric humidities.
Ulrich Schumann, Christoph Kiemle, Hans Schlager, Ralf Weigel, Stephan Borrmann, Francesco D'Amato, Martina Krämer, Renaud Matthey, Alain Protat, Christiane Voigt, and C. Michael Volk
Atmos. Chem. Phys., 17, 2311–2346, https://doi.org/10.5194/acp-17-2311-2017, https://doi.org/10.5194/acp-17-2311-2017, 2017
Short summary
Short summary
A long-lived (1 h) contrail and overshooting convection were observed in the tropics, near Darwin, Australia. The data are used to study the contrail life cycle at low temperatures and cirrus from deep overturning convection in the lower tropical stratosphere. Airborne in situ, lidar, profiler, radar, and satellite data, as well as a photo, are used to distinguish contrail cirrus from convective cirrus and to study the origin of the observed ice and aerosol, up to 2.3 km above the tropopause.
Tobias Sirch, Luca Bugliaro, Tobias Zinner, Matthias Möhrlein, and Margarita Vazquez-Navarro
Atmos. Meas. Tech., 10, 409–429, https://doi.org/10.5194/amt-10-409-2017, https://doi.org/10.5194/amt-10-409-2017, 2017
Short summary
Short summary
A novel approach for the nowcasting of clouds and direct normal irradiance (DNI) based on the geostationary satellite MSG is presented. The basis of the algorithm is an optical flow method to derive cloud motion vectors for low and high level clouds separately. DNI is calculated from the forecasted optical thickness of the clouds. Validation against MSG observations shows good performance: compared to persistence an improvement of forecast horizon by a factor of 2 is reached for 2 h forecasts.
Ulrich Schumann, Robert Baumann, Darrel Baumgardner, Sarah T. Bedka, David P. Duda, Volker Freudenthaler, Jean-Francois Gayet, Andrew J. Heymsfield, Patrick Minnis, Markus Quante, Ehrhard Raschke, Hans Schlager, Margarita Vázquez-Navarro, Christiane Voigt, and Zhien Wang
Atmos. Chem. Phys., 17, 403–438, https://doi.org/10.5194/acp-17-403-2017, https://doi.org/10.5194/acp-17-403-2017, 2017
Short summary
Short summary
The initially linear clouds often seen behind aircraft are known as contrails. Contrails are prototype cirrus clouds forming under well-known conditions, but with less certain life cycle and climate effects. This paper collects contrail data from a large set of measurements and compares them among each other and with models. The observations show consistent contrail properties over a wide range of aircraft and atmosphere conditions. The dataset is available for further research.
Christiane Voigt, Andreas Dörnbrack, Martin Wirth, Silke M. Groß, Robert Baumann, Benedikt Ehard, Michael C. Pitts, Lamont R. Poole, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1082, https://doi.org/10.5194/acp-2016-1082, 2016
Revised manuscript not accepted
Short summary
Short summary
The letter describes unprecedented observations of widespread and persistent polar stratospheric ice clouds (ice PSCs) in the exceptionally cold Arctic stratospheric winter 2015/16. The unique observations are of global relevance because trends in Arctic ozone loss and in polar temperatures are highly uncertain. The new observations at cold conditions serve to enhance our knowledge on ice PSC formation, Arctic ozone loss and polar stratrospheric temperatures in a changing climate.
Ralf Weigel, Peter Spichtinger, Christoph Mahnke, Marcus Klingebiel, Armin Afchine, Andreas Petzold, Martina Krämer, Anja Costa, Sergej Molleker, Philipp Reutter, Miklós Szakáll, Max Port, Lucas Grulich, Tina Jurkat, Andreas Minikin, and Stephan Borrmann
Atmos. Meas. Tech., 9, 5135–5162, https://doi.org/10.5194/amt-9-5135-2016, https://doi.org/10.5194/amt-9-5135-2016, 2016
Short summary
Short summary
The subject of our study concerns measurements with optical array probes (OAPs) on fast-flying aircraft such as the G550 (HALO or HIAPER). At up to Mach 0.7 the effect of air compression upstream of underwing-mounted instruments and particles' inertia need consideration for determining ambient particle concentrations. Compared to conventional practices the introduced correction procedure eliminates ambiguities and exhibits consistency over flight speeds between 50 and 250 m s−.
Valery Shcherbakov, Olivier Jourdan, Christiane Voigt, Jean-Francois Gayet, Aurélien Chauvigne, Alfons Schwarzenboeck, Andreas Minikin, Marcus Klingebiel, Ralf Weigel, Stephan Borrmann, Tina Jurkat, Stefan Kaufmann, Romy Schlage, Christophe Gourbeyre, Guy Febvre, Tatyana Lapyonok, Wiebke Frey, Sergej Molleker, and Bernadett Weinzierl
Atmos. Chem. Phys., 16, 11883–11897, https://doi.org/10.5194/acp-16-11883-2016, https://doi.org/10.5194/acp-16-11883-2016, 2016
Tobias Zinner, Petra Hausmann, Florian Ewald, Luca Bugliaro, Claudia Emde, and Bernhard Mayer
Atmos. Meas. Tech., 9, 4615–4632, https://doi.org/10.5194/amt-9-4615-2016, https://doi.org/10.5194/amt-9-4615-2016, 2016
Short summary
Short summary
A new retrieval of optical thickness and effective particle size of ice clouds over a wide range of optical thickness from transmittance measurements is presented. A visible range spectral slope is used to resolve the transmittance optical thickness ambiguity. Retrieval sensitivity to ice crystal habit, aerosol, albedo, sensor accuracy and lookup table interpolation is presented as well as an application of the method and comparison to satellite products for 2 days.
Claudia Emde, Robert Buras-Schnell, Arve Kylling, Bernhard Mayer, Josef Gasteiger, Ulrich Hamann, Jonas Kylling, Bettina Richter, Christian Pause, Timothy Dowling, and Luca Bugliaro
Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, https://doi.org/10.5194/gmd-9-1647-2016, 2016
Short summary
Short summary
libradtran is a widely used software package for radiative transfer calculations. It allows one to compute (polarized) radiances, irradiance, and actinic fluxes in the solar and thermal spectral regions. This paper gives an overview of libradtran version 2.0 with focus on new features (e.g. polarization, Raman scattering, absorption parameterization, cloud and aerosol optical properties). libRadtran is freely available at http://www.libradtran.org.
Tina Jurkat, Stefan Kaufmann, Christiane Voigt, Dominik Schäuble, Philipp Jeßberger, and Helmut Ziereis
Atmos. Meas. Tech., 9, 1907–1923, https://doi.org/10.5194/amt-9-1907-2016, https://doi.org/10.5194/amt-9-1907-2016, 2016
Short summary
Short summary
The paper details novel mass spectrometric measurements with AIMS-TG aboard the new German research aircraft HALO. The measurements comprise a wide range of tracers with characteristic source regions. Using these tracers, stratospheric and tropospheric air in the UTLS is tagged. The instrument is equipped with a new discharge ionization source, an in-flight calibration and improved transmission of adhesive gases like HNO3 and HCl. AIMS was built to characterize transport and mixing in the UTLS.
Klaus Gierens and Kostas Eleftheratos
Atmos. Chem. Phys., 16, 4159–4169, https://doi.org/10.5194/acp-16-4159-2016, https://doi.org/10.5194/acp-16-4159-2016, 2016
Short summary
Short summary
Upper tropospheric humidity (UTH) is a weighted mean of the relative humidity (RH) in the upper troposphere. It can change due to climate change even when the relative humidity would stay unchanged because the weighting functions will alter. We show that changes of UTH expected during 30 years of tropospheric warming are typically less than 1 % in magnitude and mostly negative. Larger positive changes of UTH (as found in an analysis of 30 years of satellite data) point thus to an increase of RH.
Stefan Kaufmann, Christiane Voigt, Tina Jurkat, Troy Thornberry, David W. Fahey, Ru-Shan Gao, Romy Schlage, Dominik Schäuble, and Martin Zöger
Atmos. Meas. Tech., 9, 939–953, https://doi.org/10.5194/amt-9-939-2016, https://doi.org/10.5194/amt-9-939-2016, 2016
Short summary
Short summary
We present the development of a new airborne mass spectrometer AIMS-H2O for the fast and accurate measurement of water vapor in the upper troposphere and lower stratosphere. The high accuracy needed for e.g. quantification of atmospheric water vapor transport processes or cloud formation is achieved by an in-flight calibration of the instrument. AIMS-H2O is deployed on the DLR research aircraft HALO and Falcon where it covers a range of water vapor mixing ratios from 1 to 500 ppmv.
J. Meyer, C. Rolf, C. Schiller, S. Rohs, N. Spelten, A. Afchine, M. Zöger, N. Sitnikov, T. D. Thornberry, A. W. Rollins, Z. Bozóki, D. Tátrai, V. Ebert, B. Kühnreich, P. Mackrodt, O. Möhler, H. Saathoff, K. H. Rosenlof, and M. Krämer
Atmos. Chem. Phys., 15, 8521–8538, https://doi.org/10.5194/acp-15-8521-2015, https://doi.org/10.5194/acp-15-8521-2015, 2015
J. Ungermann, J. Blank, M. Dick, A. Ebersoldt, F. Friedl-Vallon, A. Giez, T. Guggenmoser, M. Höpfner, T. Jurkat, M. Kaufmann, S. Kaufmann, A. Kleinert, M. Krämer, T. Latzko, H. Oelhaf, F. Olchewski, P. Preusse, C. Rolf, J. Schillings, O. Suminska-Ebersoldt, V. Tan, N. Thomas, C. Voigt, A. Zahn, M. Zöger, and M. Riese
Atmos. Meas. Tech., 8, 2473–2489, https://doi.org/10.5194/amt-8-2473-2015, https://doi.org/10.5194/amt-8-2473-2015, 2015
Short summary
Short summary
The GLORIA sounder is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the TACTS and ESMVAL campaigns in summer 2012. This paper describes the retrieval of temperature, as well as H2O, HNO3, and O3 cross sections from GLORIA dynamics mode spectra. A high correlation is achieved between the remote sensing and the in situ trace gas measurements.
P. Neis, H. G. J. Smit, M. Krämer, N. Spelten, and A. Petzold
Atmos. Meas. Tech., 8, 1233–1243, https://doi.org/10.5194/amt-8-1233-2015, https://doi.org/10.5194/amt-8-1233-2015, 2015
H. G. J. Smit, S. Rohs, P. Neis, D. Boulanger, M. Krämer, A. Wahner, and A. Petzold
Atmos. Chem. Phys., 14, 13241–13255, https://doi.org/10.5194/acp-14-13241-2014, https://doi.org/10.5194/acp-14-13241-2014, 2014
Short summary
Short summary
Long-term water vapour measurements from the MOZAIC programme are a unique source for upper troposphere humidity data. However, due to an error in the calibration procedure, RH data from MOZAIC were biased towards higher values for the period starting in year 2000. Here we report the procedures followed to reanalyse the calibrations and to reprocess the entire MOZAIC RH data. This study serves as the reference publication for the reanalysed MOZAIC RH data base for the period 1994 to 2009.
S. Kox, L. Bugliaro, and A. Ostler
Atmos. Meas. Tech., 7, 3233–3246, https://doi.org/10.5194/amt-7-3233-2014, https://doi.org/10.5194/amt-7-3233-2014, 2014
U. Hamann, A. Walther, B. Baum, R. Bennartz, L. Bugliaro, M. Derrien, P. N. Francis, A. Heidinger, S. Joro, A. Kniffka, H. Le Gléau, M. Lockhoff, H.-J. Lutz, J. F. Meirink, P. Minnis, R. Palikonda, R. Roebeling, A. Thoss, S. Platnick, P. Watts, and G. Wind
Atmos. Meas. Tech., 7, 2839–2867, https://doi.org/10.5194/amt-7-2839-2014, https://doi.org/10.5194/amt-7-2839-2014, 2014
S. Groß, M. Wirth, A. Schäfler, A. Fix, S. Kaufmann, and C. Voigt
Atmos. Meas. Tech., 7, 2745–2755, https://doi.org/10.5194/amt-7-2745-2014, https://doi.org/10.5194/amt-7-2745-2014, 2014
K. Gierens, K. Eleftheratos, and L. Shi
Atmos. Chem. Phys., 14, 7533–7541, https://doi.org/10.5194/acp-14-7533-2014, https://doi.org/10.5194/acp-14-7533-2014, 2014
F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, C. Voigt, and B. Weinzierl
Atmos. Chem. Phys., 14, 6111–6137, https://doi.org/10.5194/acp-14-6111-2014, https://doi.org/10.5194/acp-14-6111-2014, 2014
J. Tian, N. Riemer, M. West, L. Pfaffenberger, H. Schlager, and A. Petzold
Atmos. Chem. Phys., 14, 5327–5347, https://doi.org/10.5194/acp-14-5327-2014, https://doi.org/10.5194/acp-14-5327-2014, 2014
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
B. Reinhardt, R. Buras, L. Bugliaro, S. Wilbert, and B. Mayer
Atmos. Meas. Tech., 7, 823–838, https://doi.org/10.5194/amt-7-823-2014, https://doi.org/10.5194/amt-7-823-2014, 2014
J. C. Corbin, B. Sierau, M. Gysel, M. Laborde, A. Keller, J. Kim, A. Petzold, T. B. Onasch, U. Lohmann, and A. A. Mensah
Atmos. Chem. Phys., 14, 2591–2603, https://doi.org/10.5194/acp-14-2591-2014, https://doi.org/10.5194/acp-14-2591-2014, 2014
J.-F. Gayet, V. Shcherbakov, L. Bugliaro, A. Protat, J. Delanoë, J. Pelon, and A. Garnier
Atmos. Chem. Phys., 14, 899–912, https://doi.org/10.5194/acp-14-899-2014, https://doi.org/10.5194/acp-14-899-2014, 2014
P. Jeßberger, C. Voigt, U. Schumann, I. Sölch, H. Schlager, S. Kaufmann, A. Petzold, D. Schäuble, and J.-F. Gayet
Atmos. Chem. Phys., 13, 11965–11984, https://doi.org/10.5194/acp-13-11965-2013, https://doi.org/10.5194/acp-13-11965-2013, 2013
K. Gierens and F. Dilger
Atmos. Chem. Phys., 13, 10847–10857, https://doi.org/10.5194/acp-13-10847-2013, https://doi.org/10.5194/acp-13-10847-2013, 2013
E. Kienast-Sjögren, P. Spichtinger, and K. Gierens
Atmos. Chem. Phys., 13, 9021–9037, https://doi.org/10.5194/acp-13-9021-2013, https://doi.org/10.5194/acp-13-9021-2013, 2013
A. Petzold, J. A. Ogren, M. Fiebig, P. Laj, S.-M. Li, U. Baltensperger, T. Holzer-Popp, S. Kinne, G. Pappalardo, N. Sugimoto, C. Wehrli, A. Wiedensohler, and X.-Y. Zhang
Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, https://doi.org/10.5194/acp-13-8365-2013, 2013
G. Wetzel, H. Oelhaf, G. Berthet, A. Bracher, C. Cornacchia, D. G. Feist, H. Fischer, A. Fix, M. Iarlori, A. Kleinert, A. Lengel, M. Milz, L. Mona, S. C. Müller, J. Ovarlez, G. Pappalardo, C. Piccolo, P. Raspollini, J.-B. Renard, V. Rizi, S. Rohs, C. Schiller, G. Stiller, M. Weber, and G. Zhang
Atmos. Chem. Phys., 13, 5791–5811, https://doi.org/10.5194/acp-13-5791-2013, https://doi.org/10.5194/acp-13-5791-2013, 2013
T. D. Thornberry, A. W. Rollins, R. S. Gao, L. A. Watts, S. J. Ciciora, R. J. McLaughlin, C. Voigt, B. Hall, and D. W. Fahey
Atmos. Meas. Tech., 6, 1461–1475, https://doi.org/10.5194/amt-6-1461-2013, https://doi.org/10.5194/amt-6-1461-2013, 2013
A. Petzold, T. Onasch, P. Kebabian, and A. Freedman
Atmos. Meas. Tech., 6, 1141–1151, https://doi.org/10.5194/amt-6-1141-2013, https://doi.org/10.5194/amt-6-1141-2013, 2013
K. Gottschaldt, C. Voigt, P. Jöckel, M. Righi, R. Deckert, and S. Dietmüller
Atmos. Chem. Phys., 13, 3003–3025, https://doi.org/10.5194/acp-13-3003-2013, https://doi.org/10.5194/acp-13-3003-2013, 2013
S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold
Atmos. Chem. Phys., 13, 2487–2505, https://doi.org/10.5194/acp-13-2487-2013, https://doi.org/10.5194/acp-13-2487-2013, 2013
F. Ewald, L. Bugliaro, H. Mannstein, and B. Mayer
Atmos. Meas. Tech., 6, 309–322, https://doi.org/10.5194/amt-6-309-2013, https://doi.org/10.5194/amt-6-309-2013, 2013
R. Weller, A. Minikin, A. Petzold, D. Wagenbach, and G. König-Langlo
Atmos. Chem. Phys., 13, 1579–1590, https://doi.org/10.5194/acp-13-1579-2013, https://doi.org/10.5194/acp-13-1579-2013, 2013
M. Gysel, M. Laborde, A. A. Mensah, J. C. Corbin, A. Keller, J. Kim, A. Petzold, and B. Sierau
Atmos. Meas. Tech., 5, 3099–3107, https://doi.org/10.5194/amt-5-3099-2012, https://doi.org/10.5194/amt-5-3099-2012, 2012
K. Gierens and S. Brinkop
Atmos. Chem. Phys., 12, 11933–11942, https://doi.org/10.5194/acp-12-11933-2012, https://doi.org/10.5194/acp-12-11933-2012, 2012
K. Gierens
Atmos. Chem. Phys., 12, 11943–11949, https://doi.org/10.5194/acp-12-11943-2012, https://doi.org/10.5194/acp-12-11943-2012, 2012
T. Hamburger, G. McMeeking, A. Minikin, A. Petzold, H. Coe, and R. Krejci
Atmos. Chem. Phys., 12, 11533–11554, https://doi.org/10.5194/acp-12-11533-2012, https://doi.org/10.5194/acp-12-11533-2012, 2012
Related subject area
Subject: Gases | Research Activity: Machine Learning | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A Data-Efficient Deep Transfer Learning Framework for Methane Super-Emitter Detection in Oil and Gas Fields Using Sentinel-2 Satellite
Constraining biospheric carbon dioxide fluxes by combined top-down and bottom-up approaches
Quantifying the drivers of surface ozone anomalies in the urban areas over the Qinghai-Tibet Plateau
Shutao Zhao, Yuzhong Zhang, Shuang Zhao, Xinlu Wang, and Daniel J. Varon
EGUsphere, https://doi.org/10.5194/egusphere-2024-2565, https://doi.org/10.5194/egusphere-2024-2565, 2024
Short summary
Short summary
We target at the challenge of detecting methane super-emitters in oil and gas fields, which is critical for mitigating climate change. Traditional satellite-based detectors struggle due to interference from complex surfaces. We developed a novel method using deep-transfer-learning that improves detection efficiency and accuracy by reducing artifacts and adapting methane knowledge to different regions. Application revealed significant methane emissions, demonstrating the potential of our method.
Samuel Upton, Markus Reichstein, Fabian Gans, Wouter Peters, Basil Kraft, and Ana Bastos
Atmos. Chem. Phys., 24, 2555–2582, https://doi.org/10.5194/acp-24-2555-2024, https://doi.org/10.5194/acp-24-2555-2024, 2024
Short summary
Short summary
Data-driven eddy-covariance upscaled estimates of the global land–atmosphere net CO2 exchange (NEE) show important mismatches with regional and global estimates based on atmospheric information. To address this, we create a model with a dual constraint based on bottom-up eddy-covariance data and top-down atmospheric inversion data. Our model overcomes shortcomings of each approach, producing improved NEE estimates from local to global scale, helping to reduce uncertainty in the carbon budget.
Hao Yin, Youwen Sun, Justus Notholt, Mathias Palm, Chunxiang Ye, and Cheng Liu
Atmos. Chem. Phys., 22, 14401–14419, https://doi.org/10.5194/acp-22-14401-2022, https://doi.org/10.5194/acp-22-14401-2022, 2022
Short summary
Short summary
Improved knowledge of the chemistry and drivers of surface ozone over the Qinghai-Tibet Plateau (QTP) is significant for regulatory and control purposes in this high-altitude region in the Himalayas. Our study investigates the processes and drivers of surface ozone anomalies by using machine-learning model-based meteorological normalization methods between 2015 and 2020 in urban areas over the QTP. This study can provide valuable implication for ozone mitigation over the QTP.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., and Ghemawat, S.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems, arXiv preprint, Cornell University [data set], https://arxiv.org/abs/1603.04467 (last access: 1 March 2025), 2016.
Alduchov, O. A. and Eskridge, R. E.: Improved Magnus form approximation of saturation vapor pressure, J. Climatol. Appl. Meteorol., 35, 601–609, https://doi.org/10.1175/1520-0450(1996)035<0601:imfaos>2.0.co;2, 1996.
Berkes, F., Neis, P., Schultz, M. G., Bundke, U., Rohs, S., Smit, H. G. J., Wahner, A., Konopka, P., Boulanger, D., Nédélec, P., Thouret, V., and Petzold, A.: In situ temperature measurements in the upper troposphere and lowermost stratosphere from 2 decades of IAGOS long-term routine observation, Atmos. Chem. Phys., 17, 12495–12508, https://doi.org/10.5194/acp-17-12495-2017, 2017.
Bickel, M., Ponater, M., Bock, L., Burkhardt, U., and Reineke, S.: Estimating the effective radiative forcing of contrail cirrus, J. Climate, 33, 1991–2005, https://doi.org/10.1175/JCLI-D-19-0467.1, 2020.
Boulanger, D., Thouret, V., and Petzold, A.: IAGOS Data Portal, AERIS [data set], https://doi.org/10.25326/20, 2020.
Burkhardt, U., Bock, L., and Bier, A.: Mitigating the contrail cirrus climate impact by reducing aircraft soot number emissions, npj Clim. Atmos. Sci., 1, 37, https://doi.org/10.1038/s41612-018-0046-4, 2018.
Chen, C.-C., Gettelman, A., Craig, C., Minnis, P., and Duda, D. P.: Global contrail coverage simulated by CAM5 with the inventory of 2006 global aircraft emissions, J. Adv. Model. Earth Syst., 4, M04003, https://doi.org/10.1029/2011MS000105, 2012.
Dessler, A. E. and Sherwood, S. C.: ATMOSPHERIC SCIENCE: A Matter of Humidity, Science, 323, 1020–1021, https://doi.org/10.1126/science.1171264, 2009.
Diao, M., Jensen, J. B., Pan, L. L., Homeyer, C. R., Honomichl, S., Bresch, J. F., and Bansemer, A.: Distributions of ice supersaturation and ice crystals from airborne observations in relation to upper tropospheric dynamical boundaries, J. Geophys. Res.-Atmos., 120, 5101–5121, https://doi.org/10.1002/2015JD023139, 2015.
Dickson, N. C., Gierens, K. M., Rogers, H. L., and Jones, R. L.: Probabilistic description of ice-supersaturated layers in low resolution profiles of relative humidity, Atmos. Chem. Phys., 10, 6749–6763, https://doi.org/10.5194/acp-10-6749-2010, 2010.
Dyroff, C., Zahn, A., Christner, E., Forbes, R., Tompkins, A. M., and van Velthoven, P. F. J.: Comparison of ECMWF analysis and forecast humidity data with CARIBIC upper troposphere and lower stratosphere observations, Q. J. Roy. Meteor. Soc., 141, 833–844, https://doi.org/10.1002/qj.2400, 2015.
ECMWF: IFS Documentation CY41R2 – Part IV: Physical Processes, IFS Documentation CY41R2, 4, https://doi.org/10.21957/tr5rv27xu, 2016.
Forbes, R. M. and Ahlgrimm, M.: On the representation of high-latitude boundary layer mixed-phase cloud in the ECMWF global model, Mon. Weather Rev., 142, 3425–3445, https://doi.org/10.1175/MWR-D-13-00325.1, 2014.
Forbes, R. and Tompkins, A.: An improved representation of cloud and precipitation, Tech. Rep., European Center for Medium-Range Weather Forecasting, https://doi.org/10.21957/nfgulzhe, 2011.
Forster, P. M. de F. and Shine, K. P.: Assessing the climate impact of trends in stratospheric water vapor, Geophys. Res. Lett., 29, 10-1–10-4, https://doi.org/10.1029/2001GL013909, 2002.
Gasparini, B., McGraw, Z., Storelvmo, T., and Lohmann, U.: To what extent can cirrus cloud seeding counteract global warming?, Environ. Res. Lett., 15, 054002, https://doi.org/10.1088/1748-9326/ab71a3, 2020.
Gettelman, A., Hoor, P., Pan, L. L., Randel, W. J., Hegglin, M. I., and Birner, T.: THE EXTRATROPICAL UPPER TROPOSPHERE AND LOWER STRATOSPHERE, Rev. Geophys., 49, 3, https://doi.org/10.1029/2011RG000355, 2011.
Gierens, K. and Brinkop, S.: Dynamical characteristics of ice supersaturated regions, Atmos. Chem. Phys., 12, 11933–11942, https://doi.org/10.5194/acp-12-11933-2012, 2012.
Gierens, K., Matthes, S., and Rohs, S.: How Well Can Persistent Contrails Be Predicted?, Aerospace, 7, 169, https://doi.org/10.3390/aerospace7120169, 2020.
Groß, S., Wirth, M., Schäfler, A., Fix, A., Kaufmann, S., and Voigt, C.: Potential of airborne lidar measurements for cirrus cloud studies, Atmos. Meas. Tech., 7, 2745–2755, https://doi.org/10.5194/amt-7-2745-2014, 2014.
Gulli, A. and Pal, S.: Deep learning with Keras, Packt Publishing, ISBN 9781787128422, 2017.
He, K., Zhang, X., Ren, S., and Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 1026–1034, https://doi.org/10.1109/ICCV.2015.123, 2015.
Hegglin, M. I., Tegtmeier, S., Anderson, J., Froidevaux, L., Fuller, R., Funke, B., Jones, A., Lingenfelser, G., Lumpe, J., Pendlebury, D., Remsberg, E., Rozanov, A., Toohey, M., Urban, J., von Clarmann, T., Walker, K. A., Wang, R., and Weigel, K.: SPARC data initiative: Comparison of water vapor climatologies from international satellite limb sounders: Sparc Data Initiative Water Vapor Comparisons, J. Geophys. Res.-Atmos., 118, 11824–11846, https://doi.org/10.1002/jgrd.50752, 2013.
Hegglin, M. I., Plummer, D. A., Shepherd, T. G., Scinocca, J. F., Anderson, J., Froidevaux, L., Funke, B., Hurst, D., Rozanov, A., Urban, J., von Clarmann, T., Walker, K. A., Wang, H. J., Tegtmeier, S., and Weigel, K.: Vertical structure of stratospheric water vapour trends derived from merged satellite data, Nat. Geosci., 7, 768–776, https://doi.org/10.1038/NGEO2236, 2014.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: Copernicus Climate Change Service (C3S) Climate Data Store (CDS), ERA5 hourly data on pressure levels from 1940 to present, ECMWF [data set], https://doi.org/10.24381/cds.bd0915c6, 2023.
Heymsfield, A. J., Miloshevich, L. M., Twohy, C., Sachse, G., and Oltmans, S.: Upper-tropospheric relative humidity observations and implications for cirrus ice nucleation, Geophys. Res. Lett., 25, 1343–1346, https://doi.org/10.1029/98GL01089, 1998.
Hofer, S., Gierens, K., and Rohs, S.: How well can persistent contrails be predicted? An update, Atmos. Chem. Phys., 24, 7911–7925, https://doi.org/10.5194/acp-24-7911-2024, 2024.
Kadow, C., Hall, D. M., and Ulbrich, U.: Artificial intelligence reconstructs missing climate information, Nat. Geosci., 13, 408–413, https://doi.org/10.1038/s41561-020-0582-5, 2020.
Kärcher, B.: Formation and radiative forcing of contrail cirrus, Nat. Commun., 9, 1824, https://doi.org/10.1038/s41467-018-04068-0, 2018.
Kaufmann, S., Voigt, C., Jurkat, T., Thornberry, T., Fahey, D. W., Gao, R.-S., Schlage, R., Schäuble, D., and Zöger, M.: The airborne mass spectrometer AIMS – Part 1: AIMS-H2O for UTLS water vapor measurements, Atmos. Meas. Tech., 9, 939–953, https://doi.org/10.5194/amt-9-939-2016, 2016.
Kaufmann, S., Voigt, C., Heller, R., Jurkat-Witschas, T., Krämer, M., Rolf, C., Zöger, M., Giez, A., Buchholz, B., Ebert, V., Thornberry, T., and Schumann, U.: Intercomparison of midlatitude tropospheric and lower-stratospheric water vapor measurements and comparison to ECMWF humidity data, Atmos. Chem. Phys., 18, 16729–16745, https://doi.org/10.5194/acp-18-16729-2018, 2018.
Kaufmann, S., Dischl, R., and Voigt, C.: Regional and seasonal impact of hydrogen propulsion systems on potential contrail cirrus cover, Atmos. Environ.: X, 24, 100298, https://doi.org/10.1016/j.aeaoa.2024.100298, 2024.
Krämer, M., Schiller, C., Afchine, A., Bauer, R., Gensch, I., Mangold, A., Schlicht, S., Spelten, N., Sitnikov, N., Borrmann, S., de Reus, M., and Spichtinger, P.: Ice supersaturations and cirrus cloud crystal numbers, Atmos. Chem. Phys., 9, 3505–3522, https://doi.org/10.5194/acp-9-3505-2009, 2009.
Krüger, K., Schäfler, A., Wirth, M., Weissmann, M., and Craig, G. C.: Vertical structure of the lower-stratospheric moist bias in the ERA5 reanalysis and its connection to mixing processes, Atmos. Chem. Phys., 22, 15559–15577, https://doi.org/10.5194/acp-22-15559-2022, 2022.
Kunz, A., Spelten, N., Konopka, P., Müller, R., Forbes, R. M., and Wernli, H.: Comparison of Fast In situ Stratospheric Hygrometer (FISH) measurements of water vapor in the upper troposphere and lower stratosphere (UTLS) with ECMWF (re)analysis data, Atmos. Chem. Phys., 14, 10803–10822, https://doi.org/10.5194/acp-14-10803-2014, 2014.
Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., and Battaglia, P.: Learning skillful medium-range global weather forecasting, Science, 382, 1416–1421, https://doi.org/10.1126/science.adi2336, 2023.
Lamquin, N., Stubenrauch, C. J., Gierens, K., Burkhardt, U., and Smit, H.: A global climatology of upper-tropospheric ice supersaturation occurrence inferred from the Atmospheric Infrared Sounder calibrated by MOZAIC, Atmos. Chem. Phys., 12, 381–405, https://doi.org/10.5194/acp-12-381-2012, 2012.
Lawrence, H., Bormann, N., Sandu, I., Day, J., Farnan, J., and Bauer, P.: Use and impact of Arctic observations in the ECMWF Numerical Weather Prediction system, Q. J. Roy. Meteor. Soc., 145, 3432–3454, https://doi.org/10.1002/qj.3628, 2019.
Ma, R., Letu, H., Yang, K., Wang, T., Shi, C., Xu, J., Shi, J., Shi, C., and Chen, L.: Estimation of surface shortwave radiation from Himawari-8 satellite data based on a combination of radiative transfer and deep neural network, IEEE T. Geosci. Remote, 58, 5304–5316, https://doi.org/10.1109/tgrs.2019.2963262, 2020.
Märkl, R. S., Voigt, C., Sauer, D., Dischl, R. K., Kaufmann, S., Harlaß, T., Hahn, V., Roiger, A., Weiß-Rehm, C., Burkhardt, U., Schumann, U., Marsing, A., Scheibe, M., Dörnbrack, A., Renard, C., Gauthier, M., Swann, P., Madden, P., Luff, D., Sallinen, R., Schripp, T., and Le Clercq, P.: Powering aircraft with 100 % sustainable aviation fuel reduces ice crystals in contrails, Atmos. Chem. Phys., 24, 3813–3837, https://doi.org/10.5194/acp-24-3813-2024, 2024.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, ISBN 1532-4435, 2011.
Petzold, A., Thouret, V., Gerbig, C., Zahn, A., Brenninkmeijer, C. A. M., Gallagher, M., Hermann, M., Pontaud, M., Ziereis, H., Boulanger, D., Marshall, J., Nédélec, P., Smit, H. G. J., Frieß, U., Flaud, J.-M., Wahner, A., Cammas, J.-P., Volz-Thomas, A., and IAGOS-Team: Global-Scale Atmosphere Monitoring by In-Service Aircraft – Current Achievements and Future Prospects of the European Research Infrastructure IAGOS, Tellus B, 67, 28452, https://doi.org/10.3402/tellusb.v67.28452, 2015.
Petzold, A., Neis, P., Rütimann, M., Rohs, S., Berkes, F., Smit, H. G. J., Krämer, M., Spelten, N., Spichtinger, P., Nédélec, P., and Wahner, A.: Ice-supersaturated air masses in the northern mid-latitudes from regular in situ observations by passenger aircraft: vertical distribution, seasonality and tropospheric fingerprint, Atmos. Chem. Phys., 20, 8157–8179, https://doi.org/10.5194/acp-20-8157-2020, 2020.
Reutter, P., Neis, P., Rohs, S., and Sauvage, B.: Ice supersaturated regions: properties and validation of ERA-Interim reanalysis with IAGOS in situ water vapour measurements, Atmos. Chem. Phys., 20, 787–804, https://doi.org/10.5194/acp-20-787-2020, 2020.
Riese, M., Ploeger, F., Rap, A., Vogel, B., Konopka, P., Dameris, M., and Forster, P.: Impact of uncertainties in atmospheric mixing on simulated UTLS composition and related radiative effects, J. Geophys. Res., 117, D16305, https://doi.org/10.1029/2012JD017751, 2012.
Rolf, C., Rohs, S., Smit, H G.J., Krämer, M., Bozóki, Z., Hofmann, S., Franke, H., Maser, R., Hoor, P., and Petzold, A.: Evaluation of compact hygrometers for continuous airborne measurements, Meteorol. Z., 33, 15–34, https://doi.org/10.1127/metz/2023/1187, 2023.
Rollins, A. W., Thornberry, T. D., Gao, R. S., Smith, J. B., Sayres, D. S., Sargent, M. R., Schiller, C., Krämer, M., Spelten, N., Hurst, D. F., Jordan, A. F., Hall, E. G., Vömel, H., Diskin, G. S., Podolske, J. R., Christensen, L. E., Rosenlof, K. H., Jensen, E. J., and Fahey, D. W.: Evaluation of UT/LS hygrometer accuracy by intercomparison during the NASA MACPEX mission, J. Geophys. Res.-Atmos., 119, 1915–1935, https://doi.org/10.1002/2013JD020817, 2014.
Sanogo, S., Boucher, O., Bellouin, N., Borella, A., Wolf, K., and Rohs, S.: Variability in the properties of the distribution of the relative humidity with respect to ice: implications for contrail formation, Atmos. Chem. Phys., 24, 5495–5511, https://doi.org/10.5194/acp-24-5495-2024, 2024.
Schmidt, G. A., Ruedy, R. A., Miller, R. L., and Lacis, A. A.: Attribution of the present-day total greenhouse effect, J. Geophys. Res.-Atmos., 115, D20106, https://doi.org/10.1029/2010JD014287, 2010.
Schumann, U.: On conditions for contrail formation from aircraft exhausts, Meteorol. Z., 5, 4–23, https://doi.org/10.1127/metz/5/1996/4, 1996.
Schumann, U.: A contrail cirrus prediction model, Geosci. Model Dev., 5, 543–580, https://doi.org/10.5194/gmd-5-543-2012, 2012.
Schumann, U., Baumann, R., Baumgardner, D., Bedka, S. T., Duda, D. P., Freudenthaler, V., Gayet, J.-F., Heymsfield, A. J., Minnis, P., Quante, M., Raschke, E., Schlager, H., Vázquez-Navarro, M., Voigt, C., and Wang, Z.: Properties of individual contrails: a compilation of observations and some comparisons, Atmos. Chem. Phys., 17, 403–438, https://doi.org/10.5194/acp-17-403-2017, 2017.
Schumann, U., Bugliaro, L., Dörnbrack, A., Baumann, R., and Voigt, C.: Aviation Contrail Cirrus and Radiative Forcing Over Europe During 6 Months of COVID-19, Geophys. Res. Lett., 48, e2021GL092771, https://doi.org/10.1029/2021GL092771, 2021a.
Schumann, U., Poll, I., Teoh, R., Koelle, R., Spinielli, E., Molloy, J., Koudis, G. S., Baumann, R., Bugliaro, L., Stettler, M., and Voigt, C.: Air traffic and contrail changes over Europe during COVID-19: a model study, Atmos. Chem. Phys., 21, 7429–7450, https://doi.org/10.5194/acp-21-7429-2021, 2021b.
Seifert, A. and Siewert, C.: An ML-based P3-like multimodal two-moment ice microphysics in the ICON model, J. Adv. Model. Earth Syst., 16, e2023MS004206, https://doi.org/10.1029/2023MS004206, 2024.
Shapiro, M., Engberg, Z., Teoh, R., and Dean, T.: pycontrails: Python library for modeling aviation climate impacts, Zenodo [code], https://doi.org/10.5281/zenodo.7776686, 2023.
Sonntag, D.: Advancements in the field of hygrometry, Meteorol. Z., 3, 51–66, https://doi.org/10.1127/metz/3/1994/51, 1994.
Sperber, D. and Gierens, K.: Towards a more reliable forecast of ice supersaturation: concept of a one-moment ice-cloud scheme that avoids saturation adjustment, Atmos. Chem. Phys., 23, 15609–15627, https://doi.org/10.5194/acp-23-15609-2023, 2023.
Spichtinger, P., Gierens, K., and Read, W.: The global distribution of ice-supersaturated regions as seen by the Microwave Limb Sounder, Quart. J. Roy. Met. Soc., 129, 3391–3410, https://doi.org/10.1256/qj.02.141, 2003.
Stenke, A., Grewe, V., and Ponater, M.: Lagrangian transport of water vapor and cloud water in the ECHAM4 GCM and its impact on the cold bias, Clim. Dynam., 31, 491–506, https://doi.org/10.1007/s00382-007-0347-5, 2008.
Strandgren, J., Bugliaro, L., Sehnke, F., and Schröder, L.: Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks, Atmos. Meas. Tech., 10, 3547–3573, https://doi.org/10.5194/amt-10-3547-2017, 2017.
Tao, M., Konopka, P., Wright, J. S., Liu, Y., Bian, J., Davis, S., Jia, Y., and Ploeger, F.: Multi-decadal variability controls short-term stratospheric water vapor trends, Commun. Earth Environ., 4, 2662–4435, https://doi.org/10.1038/s43247-023-01094-9, 2023.
Teoh, R., Schumann, U., Majumdar, A., and Stettler, M. E. J.: Mitigating the Climate Forcing of Aircraft Contrails by Small-Scale Diversions and Technology Adoption, Environ. Sci. Technol., 54, 2941–2950, https://doi.org/10.1021/acs.est.9b05608, 2020.
Teoh, R., Schumann, U., Gryspeerdt, E., Shapiro, M., Molloy, J., Koudis, G., Voigt, C., and Stettler, M. E. J.: Aviation contrail climate effects in the North Atlantic from 2016 to 2021, Atmos. Chem. Phys., 22, 10919–10935, https://doi.org/10.5194/acp-22-10919-2022, 2022.
Teoh, R., Engberg, Z., Schumann, U., Voigt, C., Shapiro, M., Rohs, S., and Stettler, M. E. J.: Global aviation contrail climate effects from 2019 to 2021, Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, 2024.
Tiedtke, M.: Representation of clouds in large-scale models, Mon. Weather Rev., 121, 3040–3061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2, 1993.
Tompkins, A., Gierens, K., and Rädel, G.: Ice supersaturation in the ECMWF Integrated Forecast System, Q. J. Roy. Metor. Soc., 133, 53–63, https://doi.org/10.1002/qj.14, 2007.
van der Linden, R., Knippertz, P., Fink, A. H., Ingleby, B., Maranan, M., and Benedetti, A.: The influence of DACCIWA radiosonde data on the quality of ECMWF analyses and forecasts over southern West Africa, Q. J. Roy. Meteor. Soc., 146, 1719–1739, https://doi.org/10.1002/qj.3763, 2020.
van Rossum, G. and Drake, F. L.: Python Reference Manual, CreateSpace, Scotts Valley, CA, USA, ISBN 1441412697, 2009.
Voigt, C., Schumann, U., Minikin, A., Abdelmonem, A., Afchine, A., Borrmann, S., Boettcher, M., Buchholz, B., Bugliaro, L., Costa, A., Curtius, J., Dollner, M., Dörnbrack, A., Dreiling, V., Ebert, V., Ehrlich, A., Fix, A., Forster, L., Frank, F., Fütterer, D., Giez, A., Graf, K., Grooß, J.-U., Groß, S., Heimerl, K., Heinold, B., Hüneke, T., Järvinen, E., Jurkat, T., Kaufmann, S., Kenntner, M., Klingebiel, M., Klimach, T., Kohl, R., Krämer, M., Krisna, T. C., Luebke, A., Mayer, B., Mertes, S., Molleker, S., Petzold, A., Pfeilsticker, K., Port, M., Rapp, M., Reutter, P., Rolf, C., Rose, D., Sauer, D., Schäfler, A., Schlage, R., Schnaiter, M., Schneider, J., Spelten, N., Spichtinger, P., Stock, P., Walser, A., Weigel, R., Weinzierl, B., Wendisch, M., Werner, F., Wernli, H., Wirth, M., Zahn, A., Ziereis, H., and Zöger, M.: ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO, B. Am. Meteorol. Soc., 98, 271–288, https://doi.org/10.1175/BAMS-D-15-00213.1, 2017.
Voigt, C., Lelieveld, J., Schlager, H., Schneider, J., Curtius, J., Meerkötter, R., Sauer, D., Bugliaro, L., Bohn, B., Crowley, J. N., Erbertseder, T., Groβ, S., Hahn, V., Li, Q., Mertens, M., Pöhlker, M. L., Pozzer, A., Schumann, U., Tomsche, L., Williams, J., Zahn, A., Andreae, M., Borrmann, S., Bräuer, T., Dörich, R., Dörnbrack, A., Edtbauer, A., Ernle, L., Fischer, H., Giez, A., Granzin, M., Grewe, V., Harder, H., Heinritzi, M., Holanda, B. A., Jöckel, P., Kaiser, K., Krüger, O. O., Lucke, J., Marsing, A., Martin, A., Matthes, S., Pöhlker, C., Pöschl, U., Reifenberg, S., Ringsdorf, A., Scheibe, M., Tadic, I., Zauner-Wieczorek, M., Henke, R., and Rapp, M.: Cleaner skies during the COVID-19 lockdown, B. Am. Meteorol. Soc., 103, E1796–E1827, https://doi.org/10.1175/BAMS-D-21-0012.1, 2022.
Wang, C.-C.: On the Calculation and Correction of Equitable Threat Score for Model Quantitative Precipitation Forecasts for Small Verification Areas: The Example of Taiwan, Weather Forecast., 29, 788–798, https://doi.org/10.1175/WAF-D-13-00087.1, 2014.
Wang, Z., Bugliaro, L., Jurkat-Witschas, T., Heller, R., Burkhardt, U., Ziereis, H., Dekoutsidis, G., Wirth, M., Groß, S., Kirschler, S., Kaufmann, S., and Voigt, C.: Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic, Atmos. Chem. Phys., 23, 1941–1961, https://doi.org/10.5194/acp-23-1941-2023, 2023.
Wang, Z., Letu, H., Shang, H., and Bugliaro, L.: Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations, Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024, 2024.
Wilhelm, L., Gierens, K., and Rohs, S.: Meteorological Conditions That Promote Persistent Contrails, Appl. Sci.-Basel, 12, 4450, https://doi.org/10.3390/app12094450, 2022.
Woiwode, W., Dörnbrack, A., Polichtchouk, I., Johansson, S., Harvey, B., Höpfner, M., Ungermann, J., and Friedl-Vallon, F.: Technical note: Lowermost-stratosphere moist bias in ECMWF IFS model diagnosed from airborne GLORIA observations during winter–spring 2016, Atmos. Chem. Phys., 20, 15379–15387, https://doi.org/10.5194/acp-20-15379-2020, 2020.
Wolf, K., Bellouin, N., Boucher, O., Rohs, S., and Li, Y.: Correction of ERA5 temperature and relative humidity biases by bivariate quantile mapping for contrail formation analysis, Atmos. Chem. Phys., 25, 157–181, https://doi.org/10.5194/acp-25-157-2025, 2025.
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core, Q. J. Roy. Meteor. Soc., 141, 563–579, https://doi.org/10.1002/qj.2378, 2015.
Zhao, Y., Li, J., Zhang, L., Deng, C., Li, Y., Jian, B., and Huang, J.: Diurnal cycles of cloud cover and its vertical distribution over the Tibetan Plateau revealed by satellite observations, reanalysis datasets, and CMIP6 outputs, Atmos. Chem. Phys., 23, 743–769, https://doi.org/10.5194/acp-23-743-2023, 2023.
Short summary
Upper-tropospheric relative humidity bias in the ERA5 weather model is corrected by 10 % by an artificial neural network using aircraft in-service humidity data and thermodynamic and dynamical variables. The improved skills of the weather model will advance cirrus research, weather forecasts, and measures for contrail reduction.
Upper-tropospheric relative humidity bias in the ERA5 weather model is corrected by 10 % by an...
Altmetrics
Final-revised paper
Preprint