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S1 Evaluation of ERAS temperature using IAGOS in the UTLS

Simmons et al. (2014) found a temperature uncertainty of 0.1 K near the tropopause in the tropics in the precursor of ERAS
data, the ERA-Interim reanalysis. Figure S1 compares T; 4505 and Tggasfor the same test data set used for further ANN model
evaluation (samples from one in every 10 selected days of collected IAGOS waypoints around cruise altitudes between 200
hPa and 400 hPa over eastern Atlantic, western Europe, and Africa in 2020). The classification of clear sky, cloudy, UT, and
LS conditions is based only on the current pressure level's ciwc and pv values. The good agreement between both temperatures
is reflected in all tested scenarios - all sky UT, cloudy UTLS, clear sky UTLS, and all sky UT - indicated by high determination
coefficients (R? 0f 0.96 - 0.98). The spread of the correlation corresponds to greater variability in Tj450s When the aircraft flew
through clouds or due to the interpolation of the gridded Tzg,5 to the aircraft’s vertical position. The MAE between T 4505
and Tygus varies between 0.69 K and 0.80 K across the entire data set. Tz, has a relatively more obvious cold bias in clear

sky UTLS and all sky LS regions, with larger MAE and smaller R? values among these four scenarios.

(@ | ke d cloudy UT () loudy UTLS
350 Clear skKy ana clouay 250 clouay
N = 16542 N = 11197
MAE = 0.69 MAE = 0.75 s
2401 2 = 0.98 102 240 10
- .:L --
2230 <230
= 220 - 101+~ 220 10!
4
210 r 210
0 2 : . . . : 100
20900 210 230 230 240 250 0900 210 230 230 240 250
Tiacos (K) Tiacos (K)
(c) | ky UTLS (@ | k: d cloudy LS
e clear sky 550.Clear sky and cloudy
N = 13874 N = 13859 102
MAE = 0.75 MAE = 0.80
2401 g2 = 0.97 102 2401 R2 = 0.96
< 230 A < 230 .
Q .' - ..- . Q ':Fl-| 1
& ] £ W 4 10
=220 ol 100 2220 T
2101 o 210 -..“‘::
2 100 2 10°
9900 210 220 230 240 250 9900 210 230 230 240 250
Tiacos (K) Tiacos (K)

Figure S1: Comparisons of T gg45 against T;450s in (a) clear sky and cloudy UT, (b) cloudy UTLS, (c) clear sky UTLS, and (d) clear
sky and cloudy LS in the test data set between 200 hPa and 400 hPa over the Atlantic, Europe and Africa for the year 2020.

S2 The correlation between RHi;;;0s and ERAS temporal meteorological variables

We have determined the temporal dependence of measured RHi,; 405 at the time and location of IAGOS data acquisition on
meteorological variables at the preceding time up to 24 hour prior through the calculation of the Pearson correlation coefficient.
Based on the calculations, compared to the time 6 hour before, the correlation of RHigg,s and RHijyq0s from 0.49 decreases
by about 5.4% at the current time. The correlations for Tzg,s and z with RHi; 4605 are also statistically significant and almost
constant, with coefficients of about -0.5 and 0.4. w consistently demonstrates negative correlations with upward motion,
resulting in cooling and an increase in RHi. The absolute correlation decreases from the 6-h time lags to the current time from
-0.11 by about 86%. The correlation for u and v tends to fluctuate around 0.34 and 0.44. d generally exhibits positive
correlations, with the highest value occurring around the 4-h to 5-h time lag, are 0.18 at the 6-h time lag higher than that of
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0.03 at the current time by about 83%. In contrast, vo continues to exhibit negative correlations with RHi;4;0s, With an
increasing absolute correlation coefficient that approaches -0.2.

Including meteorological data from 6 hour prior improves the accuracy of the RHi prediction model on the validation dataset,
reducing the MAE from 2.31% to 2.21% and the RMSE from 4.01% to 3.64%. The effect of time lags on model accuracy is
calculated and presented in Table S1. As meteorological variables from 1, 2, 3, and 6 hours before the current time are
introduced, the decrease in MAE and RMSE gradually becomes more significant. To balance information richness with
computational efficiency, we choose the combination of current time, 2 hour, and 6 hour.

Table S1: Impact of including data distributions from 6 hours prior on network prediction accuracy.

Scenarios MAE (%) RMSE (%) R?
current 2.31 4.01 0.99
current, -1 h 2.21 4.17 0.98
current, -2 h 2.3 4.01 0.98
current, -3 h 2.33 4.01 0.98
current, -6 h 2.21 3.64 0.98
current, -2h, -6h 2.23 3.78 0.99

S3 Preparation of training and validation data

Accounting for the typical time spans of water vapor transport mechanisms, including deep convection, warm conveyor belt
uplift regimes, and slow ascending flows, the criteria for data combination involve a 2-h and 6-h time lag before IAGOS data
acquisition, £2 pressure layers from ERAS, and the current humidity from ERAS5 and TAGOS. Subsequently, a data set
comprising 4 million samples is compiled for training, validation, and testing.

To ensure model robustness and construct an independent test data set, we now use a sequence-based split: four consecutive
days of data are used to build the ANN model, followed by a 1-day gap, with the subsequent day's data reserved for validation
or testing. While the primary focus is on improving predictions of higher RHi values and ice supersaturation, the complete

range of RHi values supplied to the neural networks enhances the overall accuracy of the model.
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Figure S2: Distributions of input variables including Tgpas (K), z (m%/s?), w (Pa/s), d (s™"), u (m/s), v (m/s), and vo (s™') from ERA5
and valid target RHi;,;0s for the ANN model. The trend of RHigg 5 for the test dataset is shown in Fig. 6.

Distributions of the input and target values in the training data sets are sketched in Fig. S2. Notably, they are not uniformly
distributed due to the performed selections as well as the usage of different weather conditions. For instance, Tggys Spans a
range from approximately 193 K to 252 K, and the geopotential z encompasses values between roughly 8000 m?/s? and 12500
m?/s%. RHi; 4605 values vary across the entire spectrum, ranging from 0 % to 275 %. For the derivation of g, 4¢0s, the saturation

water vapor pressure over ice, Pjc., is first calculated using the equation in Murphy and Koop (2005),
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= e(9.550426—5723.265/T1A505+3.53968ln(TIAgos)—0.00728332T1A605) (1)

plCe

An earlier comparison between different parameterizations of p;., showed that the differences are less than 0.5% for

temperatures greater than 173.15 K (Schumann, 2012). In the next step, ¢ is calculated from RHi according to,
_ RHi X pjce X Ry

P X Ry (2)

q

where p is the pressure altitude (Pa), Ro (287.05 Jkg 'K ') and R; (461.51 Jkg 'K™!) are the real gas constants for air and water

vapor, respectively.

S4 Validation of ANN specific humidity in clear and cloudy conditions in the ULTS

qann €xhibit increased correlations with g 4605 (R* > 0.71) and decreased bias (MAE < 0.06 g/kg) across all scenarios, as
evidenced in Fig. S3, when evaluated on its test data set. In the all sky UT (cloudy UTLS) areas, the bias is reduced for g,y
compared to gggr4s, With an increase of R? by 0.16/0.12 and a decrease of MAE by 0.03/0.03 g/kg. In the clear UTLS (all sky
LS) regimes, the increase of R? is 0.16/0.16, and the decrease of MAE is 0.02/0.01 g/kg).

The assessment of specific humidity compared to q;450s reveals a greater variability in the results compared to RHigg,s and
RHi,yy- This increased uncertainty can be attributed to biases arising from the transition process between RHi;4;0s and qacos-
The presence of ’vertical points’ in each plot, deviating from the regression line, indicates limited data points and infrequent
measurements under extreme conditions. This, in turn, contributes to the abnormal values in these instances.

The consistency between q,yy and g;acos in Fig. S4b is better than that between qppas and qp460s in Fig. S4a. In Fig. S4c,
the MBE of qggas compared with q;4605 1s always negative, with the bias increasing up to 0.4 g/kg when g, 4505 reaches 2
g/kg. In Fig. S4d, the ANN model improves the accuracy of g predictions, showing a good agreement for lower water vapor

concentrations and an underestimation compared to q;4¢0s, Which is less pronounced than that of gggys.
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Figure S3: Comparison of qgg,s (left column) and q4yy (right column) against q; 4605 in the (a) and (b) clear sky and cloudy UT,

(c¢) and (d) cloudy UTLS, (e) and (f) clear sky UTLS, and (g) and (h) clear sky and cloudy (or all sky) LS regions in the test data set.
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Figure S4: Frequency distribution (a and c) and overall mean biased error MBE (%) (b and d) of qgp45 and q 4y against q460s in

the clear sky and cloudy UT (grey) in the test data set.

S5 Comparisons with independent aircraft measurements

The water vapor measurement from AIMS (Atmospheric Ionization Mass Spectrometer) instrument using a backward heated
inlet has been evaluated and shown to be in good agreement with other high-quality water vapor data (Kaufmann et al., 2018).
Therefore, in addition to the IAGOS measurements, this study uses the independent humidity data records from AIMS
(Kaufmann et al., 2016) aboard the HALO aircraft in special weather situations during the CIRRUS-HL campaign to validate
the accuracy of RHi prediction from the ANN model.

On 21 July 2021, HALO departed from Germany in the early morning and detected one strong contrail case over the Iberian
Peninsula at cruise level. Figure S5 presents RHiggas and RHiyyy at 200 hPa at 08:00 UTC on 21 July 2021. It shows that
RHi,yy generally reduces RHi in lower pressure regions. Figure S6a and c present RHigg,s and RHiyyy along the HALO
flight track from 06:11 UTC to 09:08 UTC, spanning pressure levels between 146 and 293 hPa, with the flight mainly around
160 hPa. Compared with AIMS measured RHiyjys, the wet bias of RHigg,s can reach up to 40% (reddish points) in Fig. S6b.
In contrast, the ANN model can reduce the RHi overestimation in the UTLS region within the range of = 10% (cyan or green

points in Fig. S6d).
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Figure S6: RHi derived from (a) ERAS or (c) the ANN model and the differences relative to AIMS measurements in (b) and (d)
obtained from the HALO aircraft on 21 July 2021 during the CIRRUS-HL campaign. The lines present the HALO flight track.
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