Articles | Volume 21, issue 7
https://doi.org/10.5194/acp-21-5377-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-5377-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term variation in aerosol lidar ratio in Shanghai based on Raman lidar measurements
Tongqiang Liu
College of Environmental Science and Engineering, Donghua University,
Shanghai, 201620, China
Qianshan He
CORRESPONDING AUTHOR
Shanghai Meteorological Service, Shanghai, 201199, China
Shanghai Key Laboratory of Meteorology and Health, Shanghai, 201199,
China
Yonghang Chen
CORRESPONDING AUTHOR
College of Environmental Science and Engineering, Donghua University,
Shanghai, 201620, China
Jie Liu
Shanghai Meteorological Service, Shanghai, 201199, China
Qiong Liu
College of Environmental Science and Engineering, Donghua University,
Shanghai, 201620, China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
Wei Gao
Shanghai Meteorological Service, Shanghai, 201199, China
Guan Huang
College of Environmental Science and Engineering, Donghua University,
Shanghai, 201620, China
Wenhao Shi
College of Environmental Science and Engineering, Donghua University,
Shanghai, 201620, China
Xiaohong Yu
Shanxi Institute of Meteorological Sciences, Taiyuan, 030000, China
Related authors
No articles found.
Shuai Li, Hua Zhang, Qi Chen, Yonghang Chen, Qi An, Zhili Wang, and Xinping Wu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4348, https://doi.org/10.5194/egusphere-2025-4348, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study evaluates the uncertainties of CMIP6 models in simulating surface O3 over China, using the Tracking Air Pollution in China (TAP) dataset under varying temperature, cloud cover, land-surface types, and pollutant levels. Historical changes are analyzed to provide context, while future O3 projections are assessed under different SSPs. Comparison of CMIP6 models under SSP3-7.0 highlights sources of inter-model differences, providing insights for O3 prediction and control in China.
Shuai Li, Hua Zhang, Yonghang Chen, Zhili Wang, Xiangyu Li, Yuan Li, and Yuanyuan Xue
Atmos. Meas. Tech., 17, 2011–2024, https://doi.org/10.5194/amt-17-2011-2024, https://doi.org/10.5194/amt-17-2011-2024, 2024
Short summary
Short summary
In this paper, Xinjiang was the test area, and nine evaluation indexes of FY-2F/CTA, including precision rate, false rate, missing rate, consistency rate, strong rate, weak rate, bias, AE, and RMSE, were calculated and analyzed under complex underlying surface (subsurface types, temperature and altitude conditions) and different weather conditions (dust effects and different cloud cover levels). The precision, consistency, and error indexes of FY-2F/CTA were tested and evaluated.
Changqin Yin, Jianming Xu, Wei Gao, Liang Pan, Yixuan Gu, Qingyan Fu, and Fan Yang
Atmos. Chem. Phys., 23, 1329–1343, https://doi.org/10.5194/acp-23-1329-2023, https://doi.org/10.5194/acp-23-1329-2023, 2023
Short summary
Short summary
The particle matter (PM2.5) at the top of the 632 m high Shanghai Tower was found to be higher than the surface from June to October due to unexpected larger PM2.5 levels during early to middle afternoon at Shanghai Tower. We suppose the significant chemical production of secondary species existed in the mid-upper planetary boundary layer. We found a high nitrate concentration at the tower site for both daytime and nighttime in winter, implying efficient gas-phase and heterogeneous formation.
Yijing Chen, Qianli Ma, Weili Lin, Xiaobin Xu, Jie Yao, and Wei Gao
Atmos. Chem. Phys., 20, 15969–15982, https://doi.org/10.5194/acp-20-15969-2020, https://doi.org/10.5194/acp-20-15969-2020, 2020
Short summary
Short summary
CO is one of the major air pollutants. Our study showed that the long-term CO levels at a background station in one of the most developed areas of China decreased significantly and verified that this downward trend was attributed to the decrease in anthropogenic emissions, which indicated that the adopted pollution control policies were effective. Also, this decrease has an implication for the atmospheric chemistry considering the negative correlation between CO levels and OH radical's lifetime.
Yixuan Gu, Fengxia Yan, Jianming Xu, Yuanhao Qu, Wei Gao, Fangfang He, and Hong Liao
Atmos. Chem. Phys., 20, 14361–14375, https://doi.org/10.5194/acp-20-14361-2020, https://doi.org/10.5194/acp-20-14361-2020, 2020
Short summary
Short summary
High levels and statistically insignificant changes of ozone are detected at a remote monitoring site on Sheshan Island in Shanghai, China, from 2012 to 2017; 6-year observations suggest regional transport exerted minimum influence on the offshore oceanic air in September and October. Both city plumes and oceanic air inflows could contribute to ozone enhancements in Shanghai, and the latter are found to lead to 20–30 % increases in urban ozone concentrations based on WRF-Chem simulations.
Feng Zhang, Qiu-Run Yu, Jia-Li Mao, Chen Dan, Yanyu Wang, Qianshan He, Tiantao Cheng, Chunhong Chen, Dongwei Liu, and Yanping Gao
Atmos. Chem. Phys., 20, 11799–11808, https://doi.org/10.5194/acp-20-11799-2020, https://doi.org/10.5194/acp-20-11799-2020, 2020
Short summary
Short summary
In this work, we make the three main contributions. (1) We reveal the remarkable differences in the geographical distributions of cirrus over the Tibetan Plateau regarding the cloud top height. (2) The orography, gravity wave, and deep convection determine the formation of cirrus with a cloud top below 9, at 9–12, and above 12 km, respectively. (3) It is the first time the contributions of the Tibetan Plateau to the presence of cirrus on a regional scale are discussed.
Cited articles
Ackermann, J.: The extinction-to-backscatter ratio of tropospheric aerosol:
A numerical study, J. Atmos. Ocean. Tech., 15, 1043–1050,
https://doi.org/10.1175/1520-0426(1998)015<1043:Tetbro>2.0.Co;2, 1998.
Alexander, S. P. and Protat, A.: Vertical Profiling of Aerosols With a
Combined Raman-Elastic Backscatter Lidar in the Remote Southern Ocean Marine
Boundary Layer (43–66∘ S, 132–150∘ E), J.
Geophys. Res.-Atmos., 124, 12107–12125,
https://doi.org/10.1029/2019jd030628, 2019.
Amiridis, V., Balis, D. S., Giannakaki, E., Stohl, A., Kazadzis, S., Koukouli, M. E., and Zanis, P.: Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements, Atmos. Chem. Phys., 9, 2431–2440, https://doi.org/10.5194/acp-9-2431-2009, 2009.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from
biomass burning, Global Biogeochem. Cy., 15, 955–966,
https://doi.org/10.1029/2000gb001382, 2001.
Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann,
W., and Michaelis, W.: Combined Raman Elastic-Backscatter Lidar for Vertical
Profiling of Moisture, Aerosol Extinction, Backscatter, and Lidar Ratio,
Appl. Phys. B, 55, 18–28,
https://doi.org/10.1007/Bf00348608, 1992.
Behrendt, A. and Nakamura, T.: Calculation of the calibration constant of
polarization lidar and its dependency on atmospheric temperature, Opt.
Express, 10, 805–817, https://doi.org/10.1364/oe.10.000805, 2002.
Cai, C., Geng, F., Tie, X., Yu, Q., and An, J.: Characteristics and source
apportionment of VOCs measured in Shanghai, China, Atmos. Environ.,
44, 5005–5014, https://doi.org/10.1016/j.atmosenv.2010.07.059, 2010.
Chen, Z., Liu, W., Heese, B., Althausen, D., Baars, H., Cheng, T., Shu, X.,
and Zhang, T.: Aerosol optical properties observed by combined Raman-elastic
backscatter lidar in winter 2009 in Pearl River Delta, south China, J.
Geophys. Res.-Atmos., 119, 2496–2510,
https://doi.org/10.1002/2013jd020200, 2014.
Cheng, T., Xu, C., Duan, J., Wang, Y., Leng, C., Tao, J., Che, H., He, Q.,
Wu, Y., Zhang, R., Li, X., Chen, J., Kong, L., and Yu, X.: Seasonal
variation and difference of aerosol optical properties in columnar and
surface atmospheres over Shanghai, Atmos. Environ., 123, 315–326,
https://doi.org/10.1016/j.atmosenv.2015.05.029, 2015.
Chow, J. C., Watson, J. G., Doraiswamy, P., Chen, L.-W. A., Sodeman, D. A.,
Lowenthal, D. H., Park, K., Arnott, W. P., and Motallebi, N.: Aerosol light
absorption, black carbon, and elemental carbon at the Fresno Supersite,
California, Atmos. Res., 93, 874–887,
https://doi.org/10.1016/j.atmosres.2009.04.010, 2009.
D'Amico, G., Amodeo, A., Mattis, I., Freudenthaler, V., and Pappalardo, G.: EARLINET Single Calculus Chain – technical – Part 1: Pre-processing of raw lidar data, Atmos. Meas. Tech., 9, 491–507, https://doi.org/10.5194/amt-9-491-2016, 2016.
Fan, S., Liu, C., Xie, Z., Dong, Y., Hu, Q., Fan, G., Chen, Z., Zhang, T.,
Duan, J., Zhang, P., and Liu, J.: Scanning vertical distributions of typical
aerosols along the Yangtze River using elastic lidar, Sci. Total Environ.,
628/629, 631–641, https://doi.org/10.1016/j.scitotenv.2018.02.099, 2018.
Fernald, F. G.: Analysis of atmospheric lidar observations: some comments,
OSA Proc., 23, 652–653, 1984.
Ferrare, R. A., Turner, D. D., Brasseur, L. H., Feltz, W. F., Dubovik, O.,
and Tooman, T. P.: Raman lidar measurements of the aerosol
extinction-to-backscatter ratio over the Southern Great Plains, J.
Geophys. Res.-Atmos., 106, 20333–20347,
https://doi.org/10.1029/2000jd000144, 2001.
Franke, K., Ansmann, A., Muller, D., Althausen, D., Wagner, A., and Scheele,
R.: One-year observations of particle lidar ratio over the tropical Indian
Ocean with Raman lidar, Geophys. Res. Lett., 28, 4559–4562,
https://doi.org/10.1029/2001gl013671, 2001.
Fu, Q., Thorsen, T. J., Su, J., Ge, J. M., and Huang, J. P.: Test of
Mie-based single-scattering properties of non-spherical dust aerosols in
radiative flux calculations, J. Quant. Spectrosc.
Ra., 110, 1640–1653,
https://doi.org/10.1016/j.jqsrt.2009.03.010, 2009.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy,
L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Giannakaki, E., van Zyl, P. G., Müller, D., Balis, D., and Komppula, M.: Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements, Atmos. Chem. Phys., 16, 8109–8123, https://doi.org/10.5194/acp-16-8109-2016, 2016.
Gobbi, G. P.: Polarization lidar returns from aerosols and thin clouds: a
framework for the analysis, Appl. Opt., 37, 5505–5508,
https://doi.org/10.1364/ao.37.005505, 1998.
Gong, W., Liu, B., Ma, Y., and Zhang, M.: Mie LIDAR Observations of
Tropospheric Aerosol over Wuhan, Atmosphere, 6, 1129–1140,
https://doi.org/10.3390/atmos6081129, 2015.
Hänel, A., Baars, H., Althausen, D., Ansmann, A., Engelmann, R., and
Sun, J. Y.: One-year aerosol profiling with EUCAARI Raman lidar at
Shangdianzi GAW station: Beijing plume and seasonal variations, J.
Geophys. Res.-Atmos., 117, D13201,
https://doi.org/10.1029/2012jd017577, 2012.
He, Q., Zhao, X., Lu, J., Zhou, G., Yang, H., Gao, W., Yu, W., and Cheng,
T.: Impacts of biomass-burning on aerosol properties of a severe haze event
over Shanghai, Particuology, 20, 52–60,
https://doi.org/10.1016/j.partic.2014.11.004, 2015.
He, Q. S., Li, C. C., Mao, J. T., Lau, A. K. H., and Li, P. R.: A study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong Kong, Atmos. Chem. Phys., 6, 3243–3256, https://doi.org/10.5194/acp-6-3243-2006, 2006.
Hee, W. S., Lim, H. S., Jafri, M. Z. M., Lolli, S., and Ying, K. W.:
Vertical Profiling of Aerosol Types Observed across Monsoon Seasons with a
Raman Lidar in Penang Island, Malaysia, Aerosol Air Qual. Res.,
16, 2843–2854, https://doi.org/10.4209/aaqr.2015.07.0450, 2016.
Hess, M., Koepke, P., and Schult, I.: Optical properties of aerosols and
clouds: The software package OPAC, B. Am. Meteorol. Soc., 79, 831–844,
https://doi.org/10.1175/1520-0477(1998)079<0831:Opoaac>2.0.Co;2, 1998.
Hu, Q., Goloub, P., Veselovskii, I., Bravo-Aranda, J.-A., Popovici, I. E., Podvin, T., Haeffelin, M., Lopatin, A., Dubovik, O., Pietras, C., Huang, X., Torres, B., and Chen, C.: Long-range-transported Canadian smoke plumes in the lower stratosphere over northern France, Atmos. Chem. Phys., 19, 1173–1193, https://doi.org/10.5194/acp-19-1173-2019, 2019.
Huang, J., Lin, B., Minnis, P., Wang, T., Wang, X., Hu, Y., Yi, Y., and
Ayers, J. K.: Satellite-based assessment of possible dust aerosols
semi-direct effect on cloud water path over East Asia, Geophys. Res.
Lett., 33, L19802, https://doi.org/10.1029/2006gl026561, 2006.
Huang, J. P., Wang, T. H., Wang, W. C., Li, Z. Q., and Yan, H. R.: Climate
effects of dust aerosols over East Asian arid and semiarid regions, J.
Geophys. Res.-Atmos., 119, 11398–11416, https://doi.org/10.1002/2014jd021796,
2014.
Huang, K., Zhuang, G., Lin, Y., Fu, J. S., Wang, Q., Liu, T., Zhang, R., Jiang, Y., Deng, C., Fu, Q., Hsu, N. C., and Cao, B.: Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai, Atmos. Chem. Phys., 12, 105–124, https://doi.org/10.5194/acp-12-105-2012, 2012.
Jacobson, M. Z.: Studying the effects of aerosols on vertical photolysis
rate coefficient and temperature profiles over an urban airshed, J.
Geophys. Res.-Atmos., 103, 10593–10604,
https://doi.org/10.1029/98jd00287, 1998.
Jacobson, M. Z. and Kaufman, Y. J.: Wind reduction by aerosol particles, Geophys. Res. Lett., 33, L24814, https://doi.org/10.1029/2006gl027838, 2006.
Kai, K., Nagata, Y., Tsunematsu, N., Matsumura, T., Kim, H.-S., Matsumoto,
T., Hu, S., Zhou, H., Abo, M., and Nagai, T.: The Structure of the Dust
Layer over the Taklimakan Deser during the Dust Storm in April 2002 as
Observed Using a Depolarization Lidar, J. Meteorol. Soc. Jpn., 86, 1–16,
https://doi.org/10.2151/jmsj.86.1, 2008.
Kalluri, R. O. R., Zhang, X., Bi, L., Zhao, J., Yu, L., and Kotalo, R. G.:
Carbonaceous aerosol emission reduction over Shandong province and the
impact of air pollution control as observed from synthetic satellite data,
Atmos. Environ., 222, 117150,
https://doi.org/10.1016/j.atmosenv.2019.117150, 2020.
Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and Magill, B. E.: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, 2018.
Liu, D., Kanitz, T., Ciapponi, A., Mondello, A., D'Ottavi, A., Mateo, A. B.,
Straume, A.-G., Voland, C., Bon, D., Checa, E., Alvarez, E., Bellucci, I.,
Do Carmo, J. P., Brewster, J., Marshall, J., Schillinger, M., Hannington,
M., Rennie, M., Reitebuch, O., Lecrenier, O., Bravetti, P., Sacchieri, V.,
De Sanctis, V., Lefebvre, A., Parrinello, T., Wernham, D., Wang, Y., Wu, Y.,
Gross, B., and Moshary, F.: ESA’s Lidar Missions Aeolus and EarthCARE, The 29th International Laser Radar Conference (ILRC 29), 24-28 June 2019, Hefei, Peoples R China, 237, 01006, https://doi.org/10.1051/epjconf/202023701006, 2020a.
Liu, J., Zheng, Y., Li, Z., Flynn, C., and Cribb, M.: Seasonal variations of
aerosol optical properties, vertical distribution and associated radiative
effects in the Yangtze Delta region of China, J. Geophys.
Res.-Atmos., 117, D00K38, https://doi.org/10.1029/2011jd016490,
2012.
Liu, Q., He, Q., Fang, S., Guang, Y., Ma, C., Chen, Y., Kang, Y., Pan, H.,
Zhang, H., and Yao, Y.: Vertical distribution of ambient aerosol extinctive
properties during haze and haze-free periods based on the Micro-Pulse Lidar
observation in Shanghai, Sci. Total Environ., 574, 1502–1511,
https://doi.org/10.1016/j.scitotenv.2016.08.152, 2017.
Liu, Q., Liu, X., Liu, T., Kang, Y., Chen, Y., Li, J., and Zhang, H.:
Seasonal variation in particle contribution and aerosol types in Shanghai
based on satellite data from MODIS and CALIOP, Particuology, 51, 18–25,
https://doi.org/10.1016/j.partic.2019.10.001, 2020b.
Liu, Y., Zhu, Q., Huang, J., Hua, S., and Jia, R.: Impact of dust-polluted
convective clouds over the Tibetan Plateau on downstream precipitation,
Atmos. Environ., 209, 67–77,
https://doi.org/10.1016/j.atmosenv.2019.04.001, 2019a.
Liu, Y., Hua, S., Jia, R., and Huang, J. P.: Effect of Aerosols on the
Ice Cloud Properties Over the Tibetan Plateau, J. Geophys.
Res.-Atmos., 124, 9594–9608, https://doi.org/10.1029/2019jd030463, 2019b.
Lu, X., Mao, F., Pan, Z., Gong, W., Zhu, Y., and Yang, J.: Enhancement of
Atmospheric Stability by Anomalous Elevated Aerosols During Winter in China,
J. Geophys. Res.-Atmos., 125, e2019JD031734, https://doi.org/10.1029/2019jd031734,
2020.
Luo, B., Minnett, P. J., Szczodrak, M., Nalli, N. R., and Morris, V. R.:
Accuracy Assessment of MERRA-2 and ERA-Interim Sea Surface Temperature, Air
Temperature, and Humidity Profiles over the Atlantic Ocean Using AEROSE
Measurements, J. Climate, 33, 6889–6909,
https://doi.org/10.1175/jcli-d-19-0955.1, 2020.
Lv, L., Xiang, Y., Zhang, T., Chai, W., and Liu, W.: Comprehensive study of
regional haze in the North China Plain with synergistic measurement from
multiple mobile vehicle-based lidars and a lidar network, Sci. Total Environ.,
721, 137773, https://doi.org/10.1016/j.scitotenv.2020.137773, 2020.
Ma, X., Wang, C., Han, G., Ma, Y., Li, S., Gong, W., and Chen, J.: Regional
Atmospheric Aerosol Pollution Detection Based on LiDAR Remote Sensing,
Remote Sens., 11, 2339, https://doi.org/10.3390/rs11202339, 2019.
Masonis, S. J.: An intercomparison of aerosol light extinction and
180∘ backscatter as derived using in situ instruments and Raman
lidar during the INDOEX field campaign, J. Geophys. Res.,
107, 8014, https://doi.org/10.1029/2000jd000035, 2002.
McComiskey, A., Schwartz, S. E., Schmid, B., Guan, H., Lewis, E. R.,
Ricchiazzi, P., and Ogren, J. A.: Direct aerosol forcing: Calculation from
observables and sensitivities to inputs, J. Geophys. Res.,
113, D09202, https://doi.org/10.1029/2007jd009170, 2008.
Mehta, M., Singh, N., and Anshumali: Global trends of columnar and
vertically distributed properties of aerosols with emphasis on dust,
polluted dust and smoke – inferences from 10-year long CALIOP observations,
Remote Sens. Environ., 208, 120–132,
https://doi.org/10.1016/j.rse.2018.02.017, 2018.
Mishchenko, M. I., Cairns, B., Hansen, J. E., Travis, L. D., Burg, R.,
Kaufman, Y. J., Vanderlei Martins, J., and Shettle, E. P.: Monitoring of
aerosol forcing of climate from space: analysis of measurement requirements,
J. Quant. Spectrosc. Ra., 88, 149–161,
https://doi.org/10.1016/j.jqsrt.2004.03.030, 2004.
Müller, D.: Saharan dust over a central European EARLINET-AERONET site:
Combined observations with Raman lidar and Sun photometer, J.
Geophys. Res., 108, 4345, https://doi.org/10.1029/2002jd002918, 2003.
Müller, D., Ansmann, A., Mattis, I., Tesche, M., Wandinger, U.,
Althausen, D., and Pisani, G.: Aerosol-type-dependent lidar ratios observed
with Raman lidar, J. Geophys. Res., 112, D16202,
https://doi.org/10.1029/2006jd008292, 2007.
Murayama, T., Okamoto, H., Kaneyasu, N., Kamataki, H., and Miura, K.:
Application of lidar depolarization measurement in the atmospheric boundary
layer: Effects of dust and sea-salt particles, J. Geophys.
Res.-Atmos., 104, 31781–31792,
https://doi.org/10.1029/1999jd900503, 1999.
Murayama, T., Müller, D., Wada, K., Shimizu, A., Sekiguchi, M., and
Tsukamoto, T.: Characterization of Asian dust and Siberian smoke with
multi-wavelength Raman lidar over Tokyo, Japan in spring 2003, Geophys.
Res. Lett., 31,
L23103,
https://doi.org/10.1029/2004gl021105, 2004.
Newsom, R. K., Turner, D. D., Mielke, B., Clayton, M., Ferrare, R., and
Sivaraman, C.: Simultaneous analog and photon counting detection for Raman
lidar, Appl. Opt., 48, 3903–3914, https://doi.org/10.1364/ao.48.003903, 2009.
Nicolae, D., Donovan, D., Zadelhoff, G.-J., Daou, D., Wandinger, U.,
Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F.,
Landulfo, E., McCormick, M. P., Senff, C., Veselovskii, I., and Wandinger,
U.: Earthcare atlid extinction and backscatter retrieval algorithms,
The 28th International Laser Radar Conference, 25–30 June 2017, Politehnica Univ Bucharest, Bucharest, ROMANIA, 176, 02022, https://doi.org/10.1051/epjconf/201817602022, 2018.
Nie, W., Ding, A. J., Xie, Y. N., Xu, Z., Mao, H., Kerminen, V.-M., Zheng, L. F., Qi, X. M., Huang, X., Yang, X.-Q., Sun, J. N., Herrmann, E., Petäjä, T., Kulmala, M., and Fu, C. B.: Influence of biomass burning plumes on HONO chemistry in eastern China, Atmos. Chem. Phys., 15, 1147–1159, https://doi.org/10.5194/acp-15-1147-2015, 2015.
Noh, Y. M., Kim, Y. J., Choi, B. C., and Murayama, T.: Aerosol lidar ratio
characteristics measured by a multi-wavelength Raman lidar system at Anmyeon
Island, Korea, Atmos. Res., 86, 76–87,
https://doi.org/10.1016/j.atmosres.2007.03.006, 2007.
Noh, Y. M., Kim, Y. J., and Müller, D.: Seasonal characteristics of
lidar ratios measured with a Raman lidar at Gwangju, Korea in spring and
autumn, Atmos. Environ., 42, 2208–2224,
https://doi.org/10.1016/j.atmosenv.2007.11.045, 2008.
Novitsky, E. J. and Philbrick, C. R.: Multistatic lidar profiling of urban
atmospheric aerosols, J. Geophys. Res.-Atmos., 110, D07S11,
https://doi.org/10.1029/2004jd004723, 2005.
Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare,
R. A., Lee, K.-P., Hostetler, C. A., Kittaka, C., Rogers, R. R., Kuehn, R.
E., and Liu, Z.: The CALIPSO Automated Aerosol Classification and Lidar
Ratio Selection Algorithm, J. Atmos. Ocean. Tech., 26, 1994–2014,
https://doi.org/10.1175/2009jtecha1231.1, 2009.
Painemal, D., Clayton, M., Ferrare, R., Burton, S., Josset, D., and Vaughan, M.: Novel aerosol extinction coefficients and lidar ratios over the ocean from CALIPSO–CloudSat: evaluation and global statistics, Atmos. Meas. Tech., 12, 2201–2217, https://doi.org/10.5194/amt-12-2201-2019, 2019.
Papagiannopoulos, N., Mona, L., Amodeo, A., D'Amico, G., Gumà Claramunt, P., Pappalardo, G., Alados-Arboledas, L., Guerrero-Rascado, J. L., Amiridis, V., Kokkalis, P., Apituley, A., Baars, H., Schwarz, A., Wandinger, U., Binietoglou, I., Nicolae, D., Bortoli, D., Comerón, A., Rodríguez-Gómez, A., Sicard, M., Papayannis, A., and Wiegner, M.: An automatic observation-based aerosol typing method for EARLINET, Atmos. Chem. Phys., 18, 15879–15901, https://doi.org/10.5194/acp-18-15879-2018, 2018.
Pappalardo, G., Amodeo, A., Pandolfi, M., Wandinger, U., Ansmann, A.,
Bosenberg, J., Matthias, V., Amiridis, V., De Tomasi, F., Frioud, M.,
Larlori, M., Komguem, L., Papayannis, A., Rocadenbosch, F., and Wang, X.:
Aerosol lidar intercomparison in the framework of the EARLINET project. 3.
Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio,
Appl. Opt., 43, 5370–5385, https://doi.org/10.1364/ao.43.005370, 2004.
Pietruczuk, A. and Podgorski, J.: The lidar ratio derived from
sun-photometer measurements at Belsk Geophysical Observatory, Acta
Geophys., 57, 476–493, https://doi.org/10.2478/s11600-009-0006-9, 2009.
Qi, Y., Ge, J., and Huang, J.: Spatial and temporal distribution of MODIS
and MISR aerosol optical depth over northern China and comparison with
AERONET, Chinese Sci. Bull., 58, 2497–2506,
https://doi.org/10.1007/s11434-013-5678-5, 2013.
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T.,
Washington, W. M., Fu, Q., Sikka, D. R., and Wild, M.: Atmospheric brown
clouds: impacts on South Asian climate and hydrological cycle, P. Natl.
Acad. Sci. USA, 102, 5326–5333, https://doi.org/10.1073/pnas.0500656102,
2005.
Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K.
A., Boone, C., and Pumphrey, H.: Asian monsoon transport of pollution to the
stratosphere, Science, 328, 611–613,
https://doi.org/10.1126/science.1182274, 2010.
Reagan, J. A., Apte, M. V., Ben-David, A., and Herman, B. M.: Assessment of
Aerosol Extinction to Backscatter Ratio Measurements Made at 694.3 Nm in
Tucson, Arizona, Aerosol Sci. Tech., 8, 215–226,
https://doi.org/10.1080/02786828808959184, 1988.
Reid, J. S., Hobbs, P. V., Ferek, R. J., Blake, D. R., Martins, J. V.,
Dunlap, M. R., and Liousse, C.: Physical, chemical, and optical properties
of regional hazes dominated by smoke in Brazil, J. Geophys.
Res.-Atmos., 103, 32059–32080, https://doi.org/10.1029/98jd00458,
1998.
Sajadi, M. M., Habibzadeh, P., Vintzileos, A., Shokouhi, S.,
Miralles-Wilhelm, F., and Amoroso, A.: Temperature, Humidity, and Latitude
Analysis to Estimate Potential Spread and Seasonality of Coronavirus Disease
2019 (COVID-19), JAMA Netw. Open., 3, e2011834,
https://doi.org/10.1001/jamanetworkopen.2020.11834, 2020.
Salemink, H. W. M., Schotanus, P., and Bergwerff, J. B.: Quantitative Lidar
at 532nm for Vertical Extinction Profiles and the Effect of Relative
Humidity, Appl. Phys. B, 34, 187–189, https://doi.org/10.1007/BF00697633, 1984.
Shaik, D. S., Kant, Y., Mitra, D., Singh, A., Chandola, H. C., Sateesh, M.,
Babu, S. S., and Chauhan, P.: Impact of biomass burning on regional aerosol
optical properties: A case study over northern India, J. Environ. Manage., 244,
328–343, https://doi.org/10.1016/j.jenvman.2019.04.025, 2019.
Sicard, M., Rocadenbosch, F., Reba, M. N. M., Comerón, A., Tomás, S., García-Vízcaino, D., Batet, O., Barrios, R., Kumar, D., and Baldasano, J. M.: Seasonal variability of aerosol optical properties observed by means of a Raman lidar at an EARLINET site over Northeastern Spain, Atmos. Chem. Phys., 11, 175–190, https://doi.org/10.5194/acp-11-175-2011, 2011.
Singh, U. N., Pappalardo, G., Mizutani, K., Amodeo, A., Mona, L., and
Pandolfi, M.: Systematic measurements of the aerosol
extinction-to-backscatter ratio, P. Soc. Photo-Opt. Ins., 5653, 77–87, 2005.
Song, H.-J., Kim, S., Lee, H., and Kim, K.-H.: Climatology of Tropospheric
Relative Humidity over the Korean Peninsula from Radiosonde and ECMWF
Reanalysis, Atmosphere, 11, 704, https://doi.org/10.3390/atmos11070704, 2020.
Takamura, T., Sasano, Y., and Hayasaka, T.: Tropospheric aerosol optical
properties derived from lidar, sun photometer, and optical particle counter
measurements, Appl. Opt., 33, 7132–7140, https://doi.org/10.1364/AO.33.007132,
1994.
Tesche, M., Ansmann, A., Muller, D., Althausen, D., Engelmann, R., Hu, M.,
and Zhang, Y.: Particle backscatter, extinction, and lidar ratio profiling
with Raman lidar in south and north China, Appl. Opt., 46, 6302–6308,
https://doi.org/10.1364/ao.46.006302, 2007.
Tzanis, C. G., Koutsogiannis, I., Philippopoulos, K., and Deligiorgi, D.:
Recent climate trends over Greece, Atmos. Res., 230, 104623,
https://doi.org/10.1016/j.atmosres.2019.104623, 2019.
Vadrevu, K. P., Ellicott, E., Badarinath, K. V., and Vermote, E.: MODIS
derived fire characteristics and aerosol optical depth variations during the
agricultural residue burning season, north India, Environ. Pollut., 159,
1560–1569, https://doi.org/10.1016/j.envpol.2011.03.001, 2011.
Walker, M., Venable, D., and Whiteman, D. N.: Gluing for Raman lidar systems
using the lamp mapping technique, Appl. Opt., 53, 8535–8543,
https://doi.org/10.1364/AO.53.008535, 2014.
Wandinger, U., Freudenthaler, V., Baars, H., Amodeo, A., Engelmann, R., Mattis, I., Groß, S., Pappalardo, G., Giunta, A., D'Amico, G., Chaikovsky, A., Osipenko, F., Slesar, A., Nicolae, D., Belegante, L., Talianu, C., Serikov, I., Linné, H., Jansen, F., Apituley, A., Wilson, K. M., de Graaf, M., Trickl, T., Giehl, H., Adam, M., Comerón, A., Muñoz-Porcar, C., Rocadenbosch, F., Sicard, M., Tomás, S., Lange, D., Kumar, D., Pujadas, M., Molero, F., Fernández, A. J., Alados-Arboledas, L., Bravo-Aranda, J. A., Navas-Guzmán, F., Guerrero-Rascado, J. L., Granados-Muñoz, M. J., Preißler, J., Wagner, F., Gausa, M., Grigorov, I., Stoyanov, D., Iarlori, M., Rizi, V., Spinelli, N., Boselli, A., Wang, X., Lo Feudo, T., Perrone, M. R., De Tomasi, F., and Burlizzi, P.: EARLINET instrument intercomparison campaigns: overview on strategy and results, Atmos. Meas. Tech., 9, 1001–1023, https://doi.org/10.5194/amt-9-1001-2016, 2016.
Wang, H., He, Q., Chen, Y., and Kang, Y.: Characterization of black carbon
concentrations of haze with different intensities in Shanghai by a
three-year field measurement, Atmos. Environ., 99, 536–545,
https://doi.org/10.1016/j.atmosenv.2014.10.025, 2014.
Wang, L., Lyu, B., and Bai, Y.: Aerosol vertical profile variations with
seasons, air mass movements and local PM2.5 levels in three large China
cities, Atmos. Environ., 224, 117329,
https://doi.org/10.1016/j.atmosenv.2020.117329, 2020a.
Wang, T., Han, Y., Huang, J., Sun, M., Jian, B., Huang, Z., and Yan, H.:
Climatology of Dust-Forced Radiative Heating Over the Tibetan Plateau and
Its Surroundings, J. Geophys. Res.-Atmos., 125, e2020JD032942,
https://doi.org/10.1029/2020jd032942, 2020b.
Wang, W., Huang, J., Zhou, T., Bi, J., Lin, L., Chen, Y., Huang, Z., and Su,
J.: Estimation of radiative effect of a heavy dust storm over northwest
China using Fu-Liou model and ground measurements, J. Quant.
Spectrosc. Ra., 122, 114–126,
https://doi.org/10.1016/j.jqsrt.2012.10.018, 2013.
Wang, W., Gong, W., Mao, F., Pan, Z., and Liu, B.: Measurement and Study of
Lidar Ratio by Using a Raman Lidar in Central China, Int. J. Environ. Res.
Pu., 13, 508, https://doi.org/10.3390/ijerph13050508, 2016.
Wei, C., Wang, M. H., Fu, Q. Y., Dai, C., Huang, R., and Bao, Q.: Temporal
Characteristics and Potential Sources of Black Carbon in Megacity Shanghai,
China, J. Geophys. Res.-Atmos., 125, e2019JD031827,
https://doi.org/10.1029/2019jd031827, 2020.
Welton, E. J., Campbell, J. R., Spinhirne, J. D., and Scott, V. S.: Global
monitoring of clouds and aerosols using a network of micro-pulse lidar
systems, Proc. Spie., 4153, 151–158, https://doi.org/10.1117/12.417040, 2001.
Wu, J., Kong, S., Wu, F., Cheng, Y., Zheng, S., Qin, S., Liu, X., Yan, Q.,
Zheng, H., Zheng, M., Yan, Y., Liu, D., Ding, S., Zhao, D., Shen, G., Zhao,
T., and Qi, S.: The moving of high emission for biomass burning in China:
View from multi-year emission estimation and human-driven forces, Environ.
Int., 142, 105812, https://doi.org/10.1016/j.envint.2020.105812, 2020.
Xiao, M., Yu, Z., Kong, D., Gu, X., Mammarella, I., Montagnani, L., Arain,
M. A., Merbold, L., Magliulo, V., Lohila, A., Buchmann, N., Wolf, S.,
Gharun, M., Hörtnagl, L., Beringer, J., and Gioli, B.: Stomatal response
to decreased relative humidity constrains the acceleration of terrestrial
evapotranspiration, Environ. Res. Lett., 15, 094066,
https://doi.org/10.1088/1748-9326/ab9967, 2020.
Xu, J., Wang, Q., Deng, C., McNeill, V. F., Fankhauser, A., Wang, F., Zheng,
X., Shen, J., Huang, K., and Zhuang, G.: Insights into the characteristics
and sources of primary and secondary organic carbon: High time resolution
observation in urban Shanghai, Environ. Pollut., 233, 1177–1187,
https://doi.org/10.1016/j.envpol.2017.10.003, 2018.
Yan, H. and Wang, T.: Ten Years of Aerosol Effects on Single-Layer Overcast
Clouds over the US Southern Great Plains and the China Loess Plateau,
Adv. Meteorol., 2020, 1–15, https://doi.org/10.1155/2020/6719160,
2020.
Young, S. A., Cutten, D. R., Lynch, M. J., and Davies, J. E.: Lidar-Derived
Variations in the Backscatter-to-Extinction Ratio in Southern-Hemisphere
Coastal Maritime Aerosols, Atmos. Environ., 27, 1541–1551,
https://doi.org/10.1016/0960-1686(93)90154-Q, 1993.
Zarzycki, C. M. and Bond, T. C.: How much can the vertical distribution of
black carbon affect its global direct radiative forcing?, Geophys.
Res. Lett., 37, L20807, https://doi.org/10.1029/2010gl044555, 2010.
Zhang, L., Qiao, L., Lan, J., Yan, Y., and Wang, L.: Three-years monitoring
of PM2.5 and scattering coefficients in Shanghai, China, Chemosphere, 253,
126613, https://doi.org/10.1016/j.chemosphere.2020.126613, 2020.
Zhao, H., Mao, J. D., Zhou, C. Y., and Gong, X.: A method of determining
multi-wavelength lidar ratios combining aerodynamic particle sizer
spectrometer and sun-photometer, J. Quant. Spectrosc.
Ra., 217, 224–228,
https://doi.org/10.1016/j.jqsrt.2018.05.030, 2018.
Zhao, L., Wang, W., Hao, T., Qu, W., Sheng, L., Luo, C., An, X., and Zhou,
Y.: The autumn haze-fog episode enhanced by the transport of dust aerosols
in the Tianjin area, Atmos. Environ., 237, 117669,
https://doi.org/10.1016/j.atmosenv.2020.117669, 2020.
Short summary
The variation in aerosol 355 nm lidar ratio and its influence factors were analyzed in Shanghai. About 90 % of the lidar ratio was distributed in 10 sr–80 sr, with an average of 41.0±22.5 sr, and the lidar ratio decreased with the increase in height. Due to aerosol radiative effects, the vertical slope of the lidar ratio presented a decreasing trend with increasing atmospheric turbidity. A large lidar ratio above 1 km was related to biomass burning aerosols and high relative humidity.
The variation in aerosol 355 nm lidar ratio and its influence factors were analyzed in Shanghai....
Altmetrics
Final-revised paper
Preprint