Research article 07 Apr 2021
Research article | 07 Apr 2021
Long-term variation in aerosol lidar ratio in Shanghai based on Raman lidar measurements
Tongqiang Liu et al.
Related authors
No articles found.
Yijing Chen, Qianli Ma, Weili Lin, Xiaobin Xu, Jie Yao, and Wei Gao
Atmos. Chem. Phys., 20, 15969–15982, https://doi.org/10.5194/acp-20-15969-2020, https://doi.org/10.5194/acp-20-15969-2020, 2020
Short summary
Short summary
CO is one of the major air pollutants. Our study showed that the long-term CO levels at a background station in one of the most developed areas of China decreased significantly and verified that this downward trend was attributed to the decrease in anthropogenic emissions, which indicated that the adopted pollution control policies were effective. Also, this decrease has an implication for the atmospheric chemistry considering the negative correlation between CO levels and OH radical's lifetime.
Yixuan Gu, Fengxia Yan, Jianming Xu, Yuanhao Qu, Wei Gao, Fangfang He, and Hong Liao
Atmos. Chem. Phys., 20, 14361–14375, https://doi.org/10.5194/acp-20-14361-2020, https://doi.org/10.5194/acp-20-14361-2020, 2020
Short summary
Short summary
High levels and statistically insignificant changes of ozone are detected at a remote monitoring site on Sheshan Island in Shanghai, China, from 2012 to 2017; 6-year observations suggest regional transport exerted minimum influence on the offshore oceanic air in September and October. Both city plumes and oceanic air inflows could contribute to ozone enhancements in Shanghai, and the latter are found to lead to 20–30 % increases in urban ozone concentrations based on WRF-Chem simulations.
Feng Zhang, Qiu-Run Yu, Jia-Li Mao, Chen Dan, Yanyu Wang, Qianshan He, Tiantao Cheng, Chunhong Chen, Dongwei Liu, and Yanping Gao
Atmos. Chem. Phys., 20, 11799–11808, https://doi.org/10.5194/acp-20-11799-2020, https://doi.org/10.5194/acp-20-11799-2020, 2020
Short summary
Short summary
In this work, we make the three main contributions. (1) We reveal the remarkable differences in the geographical distributions of cirrus over the Tibetan Plateau regarding the cloud top height. (2) The orography, gravity wave, and deep convection determine the formation of cirrus with a cloud top below 9, at 9–12, and above 12 km, respectively. (3) It is the first time the contributions of the Tibetan Plateau to the presence of cirrus on a regional scale are discussed.
Yanyu Wang, Rui Lyu, Xin Xie, Ze Meng, Meijin Huang, Junshi Wu, Haizhen Mu, Qiu-Run Yu, Qianshan He, and Tiantao Cheng
Atmos. Meas. Tech., 13, 575–592, https://doi.org/10.5194/amt-13-575-2020, https://doi.org/10.5194/amt-13-575-2020, 2020
Short summary
Short summary
A satellite-based method for clear-sky aerosol direct radiative forcing (ADRF) retrieval and spatiotemporal characteristics of ADRF in eastern China were displayed during 2000–2016. Our analysis shows aerosols have a strong cooling effect at the surface, and the changes of ADRF are closely related to the changes of AOD with the development of economic growth and rapid urbanization in eastern China.
Jianzhong Ma, Christoph Brühl, Qianshan He, Benedikt Steil, Vlassis A. Karydis, Klaus Klingmüller, Holger Tost, Bin Chen, Yufang Jin, Ningwei Liu, Xiangde Xu, Peng Yan, Xiuji Zhou, Kamal Abdelrahman, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 19, 11587–11612, https://doi.org/10.5194/acp-19-11587-2019, https://doi.org/10.5194/acp-19-11587-2019, 2019
Short summary
Short summary
We find a pronounced maximum in aerosol extinction in the upper troposphere and lower stratosphere over the Tibetan Plateau during the Asian summer monsoon, caused mainly by mineral dust emitted from the northern Tibetan Plateau and slope area, lofted to and accumulating within the anticyclonic circulation. Mineral dust, water-soluble compounds, such as nitrate and sulfate, and associated liquid water dominate aerosol extinction around the tropopause within the Asian summer monsoon anticyclone.
Jianming Xu, Xuexi Tie, Wei Gao, Yanfen Lin, and Qingyan Fu
Atmos. Chem. Phys., 19, 9017–9035, https://doi.org/10.5194/acp-19-9017-2019, https://doi.org/10.5194/acp-19-9017-2019, 2019
Short summary
Short summary
The PM2.5 in China has decreased significantly in recent years as a result of the implementation of the Chinese Clean Air Action Plan in 2013, while the O3 pollution is getting worse, especially in megacities. The work aims to better understand the elevated O3 pollution in the megacity of Shanghai, China, and its response to emission changes, which is important for developing an effective emission control strategy in the future.
Qianshan He, Jianzhong Ma, Xiangdong Zheng, Xiaolu Yan, Holger Vömel, Frank G. Wienhold, Wei Gao, Dongwei Liu, Guangming Shi, and Tiantao Cheng
Atmos. Chem. Phys., 19, 8399–8406, https://doi.org/10.5194/acp-19-8399-2019, https://doi.org/10.5194/acp-19-8399-2019, 2019
Short summary
Short summary
An enhanced aerosol layer in the upper troposphere--lower stratosphere was observed by a COBALD over the Tibetan Plateau, in the summer of 2014. The color index of the enhanced aerosol layer indicates the prevalence of dominant fine particles with a mode radius < 0.1 μm. Unlike the very small particles at low relative humidity (RHi < 40%), the relatively large particles in the aerosol layer were generally very hydrophilic as their size increased dramatically with relative humidity.
Yi Tang, Shuxiao Wang, Qingru Wu, Kaiyun Liu, Long Wang, Shu Li, Wei Gao, Lei Zhang, Haotian Zheng, Zhijian Li, and Jiming Hao
Atmos. Chem. Phys., 18, 8279–8291, https://doi.org/10.5194/acp-18-8279-2018, https://doi.org/10.5194/acp-18-8279-2018, 2018
Short summary
Short summary
In this study, 3-year measurements of atmospheric Hg were carried out at a rural site in East China. A significant downward trend was observed during the sampling period. This study used a new approach that considers both cluster frequency and the Hg concentration associated with each cluster, and we calculated that atmospheric Hg from the whole region of China has caused a 70 % decline of GEM concentration at the Chongming monitoring site due to strict air pollution control policies in China.
Related subject area
Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Three-dimensional climatology, trends, and meteorological drivers of global and regional tropospheric type-dependent aerosols: insights from 13 years (2007–2019) of CALIOP observations
Aerosol properties and aerosol–radiation interactions in clear-sky conditions over Germany
Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: regional and interannual variability
Aerosol optical properties derived from POLDER-3/PARASOL (2005–2013) over the Western Mediterranean Sea – Part 2: Spatial distribution and temporal variability
Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020
Multi-dimensional satellite observations of aerosol properties and aerosol types over three major urban clusters in eastern China
Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 1: Methodology
Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 2: Case studies
Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011
Estimating radiative forcing efficiency of dust aerosol based on direct satellite observations: case studies over the Sahara and Taklimakan Desert
Satellite-based estimation of the impacts of summertime wildfires on PM2.5 concentration in the United States
Airborne and ground-based measurements of aerosol optical depth of freshly emitted anthropogenic plumes in the Athabasca Oil Sands Region
Cloud drop number concentrations over the western North Atlantic Ocean: seasonal cycle, aerosol interrelationships, and other influential factors
Separating emission and meteorological contributions to long-term PM2.5 trends over eastern China during 2000–2018
Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun–sky photometer measurements
Restoring the top-of-atmosphere reflectance during solar eclipses: a proof of concept with the UV absorbing aerosol index measured by TROPOMI
Assessing the contribution of the ENSO and MJO to Australian dust activity based on satellite- and ground-based observations
Aerosol above-cloud direct radiative effect and properties in the Namibian region during the AErosol, RadiatiOn, and CLOuds in southern Africa (AEROCLO-sA) field campaign – Multi-Viewing, Multi-Channel, Multi-Polarization (3MI) airborne simulator and sun photometer measurements
Himawari-8-derived diurnal variations in ground-level PM2.5 pollution across China using the fast space-time Light Gradient Boosting Machine (LightGBM)
Investigation of near-global daytime boundary layer height using high-resolution radiosondes: First results and comparison with ERA-5, MERRA-2, JRA-55, and NCEP-2 reanalyses
Lidar depolarization ratio of atmospheric pollen at multiple wavelengths
Lidar vertical observation network and data assimilation reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations over the North China Plain
AEROCOM and AEROSAT AAOD and SSA study – Part 1: Evaluation and intercomparison of satellite measurements
Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect
Impact of smoke and non-smoke aerosols on radiation and low-level clouds over the southeast Atlantic from co-located satellite observations
Aerosol particle depolarization ratio at 1565 nm measured with a Halo Doppler lidar
Aerosol characteristics at the three poles of the Earth as characterized by Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations
Aerosol impacts on warm-cloud microphysics and drizzle in a moderately polluted environment
Atmospheric boundary layer height estimation from aerosol lidar: a new approach based on morphological image processing techniques
The spatiotemporal relationship between PM2.5 and AOD in China: Influencing factors and Implications for satellite PM2.5 estimations by MAIAC AOD
Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia
Statistical aerosol properties associated with fire events from 2002 to 2019 and a case analysis in 2019 over Australia
Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI – Part 2: Comparison with MODIS and aircraft measurements from the CLARIFY-2017 field campaign
First validation of GOME-2/MetOp absorbing aerosol height using EARLINET lidar observations
Automated time–height-resolved air mass source attribution for profiling remote sensing applications
Aerosol type classification analysis using EARLINET multiwavelength and depolarization lidar observations
Satellite retrieval of aerosol combined with assimilated forecast
A global analysis of diurnal variability in dust and dust mixture using CATS observations
Satellite-based radiative forcing by light-absorbing particles in snow across the Northern Hemisphere
Constraining the relationships between aerosol height, aerosol optical depth and total column trace gas measurements using remote sensing and models
Aerosol-enhanced high precipitation events near the Himalayan foothills
Optical characterization of pure pollen types using a multi-wavelength Raman polarization lidar
Measurement Report: Determination of aerosol vertical features on different timescales over East Asia based on CATS aerosol products
North African mineral dust sources: new insights from a combined analysis based on 3D dust aerosol distributions, surface winds and ancillary soil parameters
EARLINET observations of Saharan dust intrusions over the northern Mediterranean region (2014–2017): properties and impact on radiative forcing
Elevated dust layers inhibit dissipation of heavy anthropogenic surface air pollution
Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology
An AeroCom–AeroSat study: intercomparison of satellite AOD datasets for aerosol model evaluation
Radiative effects of long-range-transported Saharan air layers as determined from airborne lidar measurements
Aerosol solar radiative forcing near the Taklimakan Desert based on radiative transfer and regional meteorological simulations during the Dust Aerosol Observation-Kashi campaign
Ke Gui, Huizheng Che, Yu Zheng, Hujia Zhao, Wenrui Yao, Lei Li, Lei Zhang, Hong Wang, Yaqiang Wang, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 15309–15336, https://doi.org/10.5194/acp-21-15309-2021, https://doi.org/10.5194/acp-21-15309-2021, 2021
Short summary
Short summary
This study utilized the globally gridded aerosol extinction data from CALIOP during 2007–2019 to investigate the 3D climatology, trends, and meteorological drivers of tropospheric type-dependent aerosols. Results revealed that the planetary boundary layer (PBL) and the free troposphere contribute 62.08 % and 37.92 %, respectively, of the global tropospheric TAOD. Trends in
CALIOP-derived aerosol loading, in particular those partitioned in the PBL, can be explained to a large extent by meteorology.
Jonas Witthuhn, Anja Hünerbein, Florian Filipitsch, Stefan Wacker, Stefanie Meilinger, and Hartwig Deneke
Atmos. Chem. Phys., 21, 14591–14630, https://doi.org/10.5194/acp-21-14591-2021, https://doi.org/10.5194/acp-21-14591-2021, 2021
Short summary
Short summary
Knowledge of aerosol–radiation interactions is important for understanding the climate system and for the renewable energy sector. Here, two complementary approaches are used to assess the consistency of the underlying aerosol properties and the resulting radiative effect in clear-sky conditions over Germany in 2015. An approach based on clear-sky models and broadband irradiance observations is contrasted to the use of explicit radiative transfer simulations using CAMS reanalysis data.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Paul Ginoux, and Jerry Shen
Atmos. Chem. Phys., 21, 13369–13395, https://doi.org/10.5194/acp-21-13369-2021, https://doi.org/10.5194/acp-21-13369-2021, 2021
Short summary
Short summary
We present a satellite-derived global dust climatological record over the last two decades, including the monthly mean visible dust optical depth (DAOD) and vertical distribution of dust extinction coefficient at a 2º × 5º spatial resolution derived from CALIOP and MODIS. In addition, the CALIOP climatological dataset also includes dust vertical extinction profiles. Based on these two datasets, we carried out a comprehensive comparative study of the spatial and temporal climatology of dust.
Isabelle Chiapello, Paola Formenti, Lydie Mbemba Kabuiku, Fabrice Ducos, Didier Tanré, and François Dulac
Atmos. Chem. Phys., 21, 12715–12737, https://doi.org/10.5194/acp-21-12715-2021, https://doi.org/10.5194/acp-21-12715-2021, 2021
Short summary
Short summary
The Mediterranean atmosphere is impacted by a variety of particle pollution, which exerts a complex pressure on climate and air quality. We analyze the 2005–2013 POLDER-3 satellite advanced aerosol data set over the Western Mediterranean Sea. Aerosols' spatial distribution and temporal evolution suggests a large-scale improvement of air quality related to the fine aerosol component, most probably resulting from reduction of anthropogenic particle emissions in the surrounding European countries.
Hongbin Yu, Qian Tan, Lillian Zhou, Yaping Zhou, Huisheng Bian, Mian Chin, Claire L. Ryder, Robert C. Levy, Yaswant Pradhan, Yingxi Shi, Qianqian Song, Zhibo Zhang, Peter R. Colarco, Dongchul Kim, Lorraine A. Remer, Tianle Yuan, Olga Mayol-Bracero, and Brent N. Holben
Atmos. Chem. Phys., 21, 12359–12383, https://doi.org/10.5194/acp-21-12359-2021, https://doi.org/10.5194/acp-21-12359-2021, 2021
Short summary
Short summary
This study characterizes a historic African dust intrusion into the Caribbean Basin in June 2020 using satellites and NASA GEOS. Dust emissions in West Africa were large albeit not extreme. However, a unique synoptic system accumulated the dust near the coast for about 4 d before it was ventilated. Although GEOS reproduced satellite-observed plume tracks well, it substantially underestimated dust emissions and did not lift up dust high enough for ensuing long-range transport.
Yuqin Liu, Tao Lin, Juan Hong, Yonghong Wang, Lamei Shi, Yiyi Huang, Xian Wu, Hao Zhou, Jiahua Zhang, and Gerrit de Leeuw
Atmos. Chem. Phys., 21, 12331–12358, https://doi.org/10.5194/acp-21-12331-2021, https://doi.org/10.5194/acp-21-12331-2021, 2021
Short summary
Short summary
The four-dimensional variation of aerosol properties over the BTH, YRD and PRD (east China) were investigated using satellite observations from 2007 to 2020. Distinct differences between the aerosol optical depth and vertical distribution of the occurrence of aerosol types over these regions depend on season, aerosol loading and meteorological conditions. Day–night differences between the vertical distribution of aerosol types suggest effects of boundary layer dynamics and aerosol transport.
Ákos Horváth, James L. Carr, Olga A. Girina, Dong L. Wu, Alexey A. Bril, Alexey A. Mazurov, Dmitry V. Melnikov, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 21, 12189–12206, https://doi.org/10.5194/acp-21-12189-2021, https://doi.org/10.5194/acp-21-12189-2021, 2021
Short summary
Short summary
We give a detailed description of a new technique to estimate the height of volcanic eruption columns from near-limb geostationary imagery. Such oblique angle observations offer spectacular side views of eruption columns protruding from the Earth ellipsoid and thereby facilitate a height-by-angle estimation method. Due to its purely geometric nature, the new technique is unaffected by the limitations of traditional brightness-temperature-based height retrievals.
Ákos Horváth, Olga A. Girina, James L. Carr, Dong L. Wu, Alexey A. Bril, Alexey A. Mazurov, Dmitry V. Melnikov, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 21, 12207–12226, https://doi.org/10.5194/acp-21-12207-2021, https://doi.org/10.5194/acp-21-12207-2021, 2021
Short summary
Short summary
We demonstrate the side view plume height estimation technique described in Part 1 on seven volcanic eruptions from 2019 and 2020, including the 2019 Raikoke eruption. We explore the strengths and limitations of the new technique in comparison to height estimation from brightness temperatures, stereo observations, and ground-based video footage.
Daniel Pérez-Ramírez, David N. Whiteman, Igor Veselovskii, Richard Ferrare, Gloria Titos, María José Granados-Muñoz, Guadalupe Sánchez-Hernández, and Francisco Navas-Guzmán
Atmos. Chem. Phys., 21, 12021–12048, https://doi.org/10.5194/acp-21-12021-2021, https://doi.org/10.5194/acp-21-12021-2021, 2021
Short summary
Short summary
This paper shows how aerosol hygroscopicity enhances the vertical profile of aerosol backscattering and extinction. The study is possible thanks to the large set of remote sensing instruments and focuses on the the Baltimore–Washington DC metropolitan area during hot and humid summer days with very relevant anthropogenic emission aerosol sources. The results illustrate how the combination of aerosol emissions and meteorological conditions ultimately alters the aerosol radiative forcing.
Lin Tian, Lin Chen, Peng Zhang, and Lei Bi
Atmos. Chem. Phys., 21, 11669–11687, https://doi.org/10.5194/acp-21-11669-2021, https://doi.org/10.5194/acp-21-11669-2021, 2021
Short summary
Short summary
The result shows dust aerosols from the Taklimakan Desert have higher aerosol scattering during dust storm cases of this paper, and this caused higher negative direct radiative forcing efficiency (DRFEdust) than aerosols from the Sahara.
The microphysical properties and particle shapes of dust aerosol significantly influence DRFEdust. The satellite-based equi-albedo method has a unique advantage in DRFEdust estimation: it could validate the results derived from the numerical model directly.
Zhixin Xue, Pawan Gupta, and Sundar Christopher
Atmos. Chem. Phys., 21, 11243–11256, https://doi.org/10.5194/acp-21-11243-2021, https://doi.org/10.5194/acp-21-11243-2021, 2021
Short summary
Short summary
Frequent and widespread wildfires in the northwestern United States and Canada have become the
new normalduring the Northern Hemisphere summer months, which degrades particulate matter air quality in the United States significantly. Using satellite data, we show that smoke aerosols caused significant pollution changes over half of the United States. We estimate that nearly 29 states have increased PM2.5 during the fire-active year when compared to fire-inactive years.
Konstantin Baibakov, Samuel LeBlanc, Keyvan Ranjbar, Norman T. O'Neill, Mengistu Wolde, Jens Redemann, Kristina Pistone, Shao-Meng Li, John Liggio, Katherine Hayden, Tak W. Chan, Michael J. Wheeler, Leonid Nichman, Connor Flynn, and Roy Johnson
Atmos. Chem. Phys., 21, 10671–10687, https://doi.org/10.5194/acp-21-10671-2021, https://doi.org/10.5194/acp-21-10671-2021, 2021
Short summary
Short summary
We find that the airborne measurements of the vertical extinction due to aerosols (aerosol optical depth, AOD) obtained in the Athabasca Oil Sands Region (AOSR) can significantly exceed ground-based values. This can have an effect on estimating the AOSR radiative impact and is relevant to satellite validation based on ground-based measurements. We also show that the AOD can marginally increase as the plumes are being transported away from the source and the new particles are being formed.
Hossein Dadashazar, David Painemal, Majid Alipanah, Michael Brunke, Seethala Chellappan, Andrea F. Corral, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Claire Robinson, Amy Jo Scarino, Michael Shook, Kenneth Sinclair, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Xubin Zeng, Luke Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 21, 10499–10526, https://doi.org/10.5194/acp-21-10499-2021, https://doi.org/10.5194/acp-21-10499-2021, 2021
Short summary
Short summary
This study investigates the seasonal cycle of cloud drop number concentration (Nd) over the western North Atlantic Ocean (WNAO) using multiple datasets. Reasons for the puzzling discrepancy between the seasonal cycles of Nd and aerosol concentration were identified. Results indicate that Nd is highest in winter (when aerosol proxy values are often lowest) due to conditions both linked to cold-air outbreaks and that promote greater droplet activation.
Qingyang Xiao, Yixuan Zheng, Guannan Geng, Cuihong Chen, Xiaomeng Huang, Huizheng Che, Xiaoye Zhang, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 21, 9475–9496, https://doi.org/10.5194/acp-21-9475-2021, https://doi.org/10.5194/acp-21-9475-2021, 2021
Short summary
Short summary
We used both statistical methods and a chemical transport model to assess the contribution of meteorology and emissions to PM2.5 during 2000–2018. Both methods revealed that emissions dominated the long-term PM2.5 trend with notable meteorological effects ranged up to 37.9 % of regional annual average PM2.5. The meteorological contribution became more beneficial to PM2.5 control in southern China but more unfavorable in northern China during the studied period.
Jose Antonio Benavent-Oltra, Juan Andrés Casquero-Vera, Roberto Román, Hassan Lyamani, Daniel Pérez-Ramírez, María José Granados-Muñoz, Milagros Herrera, Alberto Cazorla, Gloria Titos, Pablo Ortiz-Amezcua, Andrés Esteban Bedoya-Velásquez, Gregori de Arruda Moreira, Noemí Pérez, Andrés Alastuey, Oleg Dubovik, Juan Luis Guerrero-Rascado, Francisco José Olmo-Reyes, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 21, 9269–9287, https://doi.org/10.5194/acp-21-9269-2021, https://doi.org/10.5194/acp-21-9269-2021, 2021
Short summary
Short summary
In this paper, we use the GRASP algorithm combining different remote sensing measurements to obtain the aerosol vertical and column properties during the SLOPE I and II campaigns. We show an overview of aerosol properties retrieved by GRASP during these campaigns and evaluate the retrievals of aerosol properties using the in situ measurements performed at a high-altitude station and airborne flights. For the first time we present an evaluation of the absorption coefficient by GRASP.
Victor Trees, Ping Wang, and Piet Stammes
Atmos. Chem. Phys., 21, 8593–8614, https://doi.org/10.5194/acp-21-8593-2021, https://doi.org/10.5194/acp-21-8593-2021, 2021
Short summary
Short summary
Given the time and location of a point on the Earth's surface, we explain how to compute the wavelength-dependent obscuration during solar eclipses. We restore the top-of-atmosphere reflectances and the absorbing aerosol index in the partial Moon shadow during the solar eclipses on 26 December 2019 and 21 June 2020 measured by TROPOMI. This correction method resolves eclipse anomalies and allows for study of the effect of solar eclipses on the composition of the Earth's atmosphere from space.
Yan Yu and Paul Ginoux
Atmos. Chem. Phys., 21, 8511–8530, https://doi.org/10.5194/acp-21-8511-2021, https://doi.org/10.5194/acp-21-8511-2021, 2021
Short summary
Short summary
Despite Australian dust’s critical role in the regional climate and surrounding marine ecosystems, the controlling factors of its spatiotemporal variations are not fully understood. This study establishes the connection between large-scale climate variability and regional dust emission, leading to a better understanding of the spatiotemporal variation in dust activity and improved prediction of dust's climate and ecological influences.
Aurélien Chauvigné, Fabien Waquet, Frédérique Auriol, Luc Blarel, Cyril Delegove, Oleg Dubovik, Cyrille Flamant, Marco Gaetani, Philippe Goloub, Rodrigue Loisil, Marc Mallet, Jean-Marc Nicolas, Frédéric Parol, Fanny Peers, Benjamin Torres, and Paola Formenti
Atmos. Chem. Phys., 21, 8233–8253, https://doi.org/10.5194/acp-21-8233-2021, https://doi.org/10.5194/acp-21-8233-2021, 2021
Short summary
Short summary
This work presents aerosol above-cloud properties close to the Namibian coast from a combination of airborne passive remote sensing. The complete analysis of aerosol and cloud optical properties and their microphysical and radiative properties allows us to better identify the impacts of biomass burning emissions. This work also gives a complete overview of the key parameters for constraining climate models in case aerosol and cloud coexist in the troposphere.
Jing Wei, Zhanqing Li, Rachel T. Pinker, Jun Wang, Lin Sun, Wenhao Xue, Runze Li, and Maureen Cribb
Atmos. Chem. Phys., 21, 7863–7880, https://doi.org/10.5194/acp-21-7863-2021, https://doi.org/10.5194/acp-21-7863-2021, 2021
Short summary
Short summary
This study developed a space-time Light Gradient Boosting Machine (STLG) model to derive the high-temporal-resolution (1 h) and high-quality PM2.5 dataset in China (i.e., ChinaHighPM2.5) at a 5 km spatial resolution from the Himawari-8 Advanced Himawari Imager aerosol products. Our model outperforms most previous related studies with a much lower computation burden in terms of speed and memory, making it most suitable for real-time air pollution monitoring in China.
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-257, https://doi.org/10.5194/acp-2021-257, 2021
Preprint under review for ACP
Short summary
Short summary
The planetary boundary layer (PBL) is the lowest part of the troposphere, and boundary layer height (BLH) is the depth of PBL and is of critical importance to the dispersion of air pollution. The study presents the first near-global BLH climatology by using high-resolution (5–10 m) radiosonde measurements. The variations of BLH exhibit large spatial and temporal dependence, with a peak at 1700 Local Solar Time. The most promising reanalysis product is ERA-5 in terms of modeling BLH.
Stephanie Bohlmann, Xiaoxia Shang, Ville Vakkari, Elina Giannakaki, Ari Leskinen, Kari E. J. Lehtinen, Sanna Pätsi, and Mika Komppula
Atmos. Chem. Phys., 21, 7083–7097, https://doi.org/10.5194/acp-21-7083-2021, https://doi.org/10.5194/acp-21-7083-2021, 2021
Short summary
Short summary
Measurements of the multi-wavelength Raman polarization lidar PollyXT and a Halo Photonics StreamLine Doppler lidar have been combined with measurements of pollen type and concentration using a traditional pollen trap at the rural forest site in Vehmasmäki, Finland. Depolarization ratios were measured at three wavelengths. High depolarization ratios were detected during an event with high birch and spruce pollen concentrations and a wavelength dependence of the depolarization ratio was observed.
Yan Xiang, Tianshu Zhang, Chaoqun Ma, Lihui Lv, Jianguo Liu, Wenqing Liu, and Yafang Cheng
Atmos. Chem. Phys., 21, 7023–7037, https://doi.org/10.5194/acp-21-7023-2021, https://doi.org/10.5194/acp-21-7023-2021, 2021
Short summary
Short summary
For the first time, a vertical observation network consisting of 13 aerosol lidars and more than 1000 ground observation stations were combined with a data assimilation technique to reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations during extreme heavy aerosol pollution on the North China Plain.
Nick Schutgens, Oleg Dubovik, Otto Hasekamp, Omar Torres, Hiren Jethva, Peter J. T. Leonard, Pavel Litvinov, Jens Redemann, Yohei Shinozuka, Gerrit de Leeuw, Stefan Kinne, Thomas Popp, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 21, 6895–6917, https://doi.org/10.5194/acp-21-6895-2021, https://doi.org/10.5194/acp-21-6895-2021, 2021
Short summary
Short summary
Absorptive aerosol has a potentially large impact on climate change. We evaluate and intercompare four global satellite datasets of absorptive aerosol optical depth (AAOD) and single-scattering albedo (SSA). We show that these datasets show reasonable correlations with the AErosol RObotic NETwork (AERONET) reference, although significant biases remain. In a follow-up paper we show that these observations nevertheless can be used for model evaluation.
Carmen Córdoba-Jabonero, Michaël Sicard, María-Ángeles López-Cayuela, Albert Ansmann, Adolfo Comerón, María-Paz Zorzano, Alejandro Rodríguez-Gómez, and Constantino Muñoz-Porcar
Atmos. Chem. Phys., 21, 6455–6479, https://doi.org/10.5194/acp-21-6455-2021, https://doi.org/10.5194/acp-21-6455-2021, 2021
Short summary
Short summary
The particular pathway of dust outbreaks defines the aerosol scenario and short-wave (SW) dust direct radiative effect (DRE). The synergetic use of POLIPHON method with continuous P-MPL measurements allows SW DRE of coarse (Dc) and fine (Df) dust particles to be evaluated separately. A dust-induced cooling effect is found, and despite Dc usually being dominant in intense dust events, the Df contribution to the total DRE can be significant, being higher at the top of atmosphere than on surface.
Alejandro Baró Pérez, Abhay Devasthale, Frida A.-M. Bender, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 6053–6077, https://doi.org/10.5194/acp-21-6053-2021, https://doi.org/10.5194/acp-21-6053-2021, 2021
Short summary
Short summary
We study the impacts of above-cloud biomass burning plumes on radiation and clouds over the southeast Atlantic using data derived from satellite observations and data-constrained model simulations. A substantial amount of the aerosol within the plumes is not classified as smoke by the satellite. The atmosphere warms more with increasing smoke aerosol loading. No clear influence of aerosol type, loading, or moisture within the overlying aerosol plumes is detected on the cloud top cooling rates.
Ville Vakkari, Holger Baars, Stephanie Bohlmann, Johannes Bühl, Mika Komppula, Rodanthi-Elisavet Mamouri, and Ewan James O'Connor
Atmos. Chem. Phys., 21, 5807–5820, https://doi.org/10.5194/acp-21-5807-2021, https://doi.org/10.5194/acp-21-5807-2021, 2021
Short summary
Short summary
The depolarization ratio is a valuable parameter for aerosol categorization from remote sensing measurements. Here, we introduce particle depolarization ratio measurements at the 1565 nm wavelength, which is substantially longer than previously utilized wavelengths and enhances our capabilities to study the wavelength dependency of the particle depolarization ratio.
Yikun Yang, Chuanfeng Zhao, Quan Wang, Zhiyuan Cong, Xingchuan Yang, and Hao Fan
Atmos. Chem. Phys., 21, 4849–4868, https://doi.org/10.5194/acp-21-4849-2021, https://doi.org/10.5194/acp-21-4849-2021, 2021
Short summary
Short summary
The occurrence frequency of different aerosol types and aerosol optical depth over the Arctic, Antarctic and Tibetan Plateau (TP) show distinctive spatiotemporal differences. The aerosol extinction coefficient in the Arctic and TP has a broad vertical distribution, while that of the Antarctic has obvious seasonal differences. Compared with the Antarctic, the Arctic and TP are vulnerable to surrounding pollutants, and the source of air masses has obvious seasonal variations.
Ying-Chieh Chen, Sheng-Hsiang Wang, Qilong Min, Sarah Lu, Pay-Liam Lin, Neng-Huei Lin, Kao-Shan Chung, and Everette Joseph
Atmos. Chem. Phys., 21, 4487–4502, https://doi.org/10.5194/acp-21-4487-2021, https://doi.org/10.5194/acp-21-4487-2021, 2021
Short summary
Short summary
In this study, we integrate satellite and surface observations to statistically quantify aerosol impacts on low-level warm-cloud microphysics and drizzle over northern Taiwan. Our result provides observational evidence for aerosol indirect effects. The frequency of drizzle is reduced under polluted conditions. For light-precipitation events (≤ 1 mm h-1), however, higher aerosol concentrations drive raindrops toward smaller sizes and thus increase the appearance of the drizzle drops.
Gemine Vivone, Giuseppe D'Amico, Donato Summa, Simone Lolli, Aldo Amodeo, Daniele Bortoli, and Gelsomina Pappalardo
Atmos. Chem. Phys., 21, 4249–4265, https://doi.org/10.5194/acp-21-4249-2021, https://doi.org/10.5194/acp-21-4249-2021, 2021
Short summary
Short summary
We developed a methodology to retrieve the atmospheric boundary layer height from elastic and multi-wavelength lidar observations that uses a new approach based on morphological image processing techniques. The intercomparison with other state-of-the-art algorithms shows on average 30 % improved performance. The algorithm also shows excellent performance with respect to the running time, i.e., just few seconds to execute the whole signal processing chain over 72 h of continuous measurements.
Qingqing He, Mengya Wang, and Steve Hung Lam Yim
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-143, https://doi.org/10.5194/acp-2021-143, 2021
Revised manuscript accepted for ACP
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Hao Fan
Atmos. Chem. Phys., 21, 3803–3825, https://doi.org/10.5194/acp-21-3803-2021, https://doi.org/10.5194/acp-21-3803-2021, 2021
Short summary
Short summary
We investigate the spatiotemporal distributions of aerosol optical properties and major aerosol types, along with the vertical distribution of the major aerosol types over Australia based on multi-source data. The results of this study provide significant information on aerosol optical properties in Australia, which can help to understand their characteristics and potential climate impacts.
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, Xing Yan, and Hao Fan
Atmos. Chem. Phys., 21, 3833–3853, https://doi.org/10.5194/acp-21-3833-2021, https://doi.org/10.5194/acp-21-3833-2021, 2021
Short summary
Short summary
Using long-term multi-source data, this study shows significant impacts of fire events on aerosol properties over Australia. The contribution of carbonaceous aerosols to the total was 26 % of the annual average but larger (30–43 %) in September–December; smoke and dust are the two dominant aerosol types at different heights in southeastern Australia for the 2019 fire case. These findings are helpful for understanding aerosol climate effects and improving climate modeling in Australia in future.
Fanny Peers, Peter Francis, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Michael I. Cotterell, Ian Crawford, Nicholas W. Davies, Cathryn Fox, Stuart Fox, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, Kate Szpek, and Jim M. Haywood
Atmos. Chem. Phys., 21, 3235–3254, https://doi.org/10.5194/acp-21-3235-2021, https://doi.org/10.5194/acp-21-3235-2021, 2021
Short summary
Short summary
Satellite observations at high temporal resolution are a valuable asset to monitor the transport of biomass burning plumes and the cloud diurnal cycle in the South Atlantic, but they need to be validated. Cloud and above-cloud aerosol properties retrieved from SEVIRI are compared against MODIS and measurements from the CLARIFY-2017 campaign. While some systematic differences are observed between SEVIRI and MODIS, the overall agreement in the cloud and aerosol properties is very satisfactory.
Konstantinos Michailidis, Maria-Elissavet Koukouli, Nikolaos Siomos, Dimitris Balis, Olaf Tuinder, L. Gijsbert Tilstra, Lucia Mona, Gelsomina Pappalardo, and Daniele Bortoli
Atmos. Chem. Phys., 21, 3193–3213, https://doi.org/10.5194/acp-21-3193-2021, https://doi.org/10.5194/acp-21-3193-2021, 2021
Short summary
Short summary
The aim of this study is to investigate the potential of the GOME-2 instrument aboard the MetOp-A, MetOp-B and MetOp-C platforms to deliver accurate geometrical features of lofted aerosol layers. For this purpose, we use archived ground-based data from lidar stations available from the EARLINET database. We show that for this well-developed and spatially well-spread aerosol layer, most GOME-2 retrievals fall within 1 km of the exact temporally collocated lidar observation.
Martin Radenz, Patric Seifert, Holger Baars, Athena Augusta Floutsi, Zhenping Yin, and Johannes Bühl
Atmos. Chem. Phys., 21, 3015–3033, https://doi.org/10.5194/acp-21-3015-2021, https://doi.org/10.5194/acp-21-3015-2021, 2021
Maria Mylonaki, Elina Giannakaki, Alexandros Papayannis, Christina-Anna Papanikolaou, Mika Komppula, Doina Nicolae, Nikolaos Papagiannopoulos, Aldo Amodeo, Holger Baars, and Ourania Soupiona
Atmos. Chem. Phys., 21, 2211–2227, https://doi.org/10.5194/acp-21-2211-2021, https://doi.org/10.5194/acp-21-2211-2021, 2021
Short summary
Short summary
We introduce an automated aerosol type classification method, SCAN. The output of SCAN is compared with two aerosol classification methods: (1) the Mahalanobis distance automatic aerosol type classification and (2) a neural network aerosol typing algorithm. A total of 97 free tropospheric aerosol layers from four EARLINET stations in the period 2014–2018 were classified.
Mayumi Yoshida, Keiya Yumimoto, Takashi M. Nagao, Taichu Y. Tanaka, Maki Kikuchi, and Hiroshi Murakami
Atmos. Chem. Phys., 21, 1797–1813, https://doi.org/10.5194/acp-21-1797-2021, https://doi.org/10.5194/acp-21-1797-2021, 2021
Short summary
Short summary
We developed a new aerosol satellite retrieval algorithm combining a numerical aerosol forecast. This is the first study that utilizes the assimilated model forecast of aerosol as an a priori estimate of the retrieval. Aerosol retrievals were improved by effectively incorporating both model and satellite information. By using the assimilated forecast as an a priori estimate, information from previous observations can be propagated to future retrievals, thus leading to better retrieval accuracy.
Yan Yu, Olga V. Kalashnikova, Michael J. Garay, Huikyo Lee, Myungje Choi, Gregory S. Okin, John E. Yorks, James R. Campbell, and Jared Marquis
Atmos. Chem. Phys., 21, 1427–1447, https://doi.org/10.5194/acp-21-1427-2021, https://doi.org/10.5194/acp-21-1427-2021, 2021
Short summary
Short summary
Given the current uncertainties in the simulated diurnal variability of global dust mobilization and concentration, observational characterization of the variations in dust mobilization and concentration will provide a valuable benchmark for evaluating and constraining such model simulations. The current study investigates the diurnal cycle of dust loading across the global tropics, subtropics, and mid-latitudes by analyzing aerosol observations from the International Space Station.
Jiecan Cui, Tenglong Shi, Yue Zhou, Dongyou Wu, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 21, 269–288, https://doi.org/10.5194/acp-21-269-2021, https://doi.org/10.5194/acp-21-269-2021, 2021
Short summary
Short summary
We make the first quantitative, remote-sensing-based, and hemisphere-scale assessment of radiative forcing (RF) due to light-absorbing particles (LAPs) in snow. We observed significant spatial variations in snow albedo reduction and RF due to LAPs throughout the Northern Hemisphere, with the lowest values occurring in the Arctic and the highest in northeastern China. We determined that the LAPs in snow play a critical role in spatial variability in Northern Hemisphere albedo reduction and RF.
Shuo Wang, Jason Blake Cohen, Chuyong Lin, and Weizhi Deng
Atmos. Chem. Phys., 20, 15401–15426, https://doi.org/10.5194/acp-20-15401-2020, https://doi.org/10.5194/acp-20-15401-2020, 2020
Short summary
Short summary
We analyze global measurements of aerosol height from fires. A plume rise model reproduces measurements with a low bias in five regions, while a statistical model based on satellite measurements of trace gasses co-emitted from the fires reproduces measurements without bias in eight regions. We propose that the magnitude of the pollutants emitted may impact their height and subsequent downwind transport. Using satellite data allows better modeling of the global aerosol distribution.
Goutam Choudhury, Bhishma Tyagi, Naresh Krishna Vissa, Jyotsna Singh, Chandan Sarangi, Sachchida Nand Tripathi, and Matthias Tesche
Atmos. Chem. Phys., 20, 15389–15399, https://doi.org/10.5194/acp-20-15389-2020, https://doi.org/10.5194/acp-20-15389-2020, 2020
Short summary
Short summary
This study uses 17 years (2001–2017) of observed rain rate, aerosol optical depth (AOD), meteorological reanalysis fields and outgoing long-wave radiation to investigate high precipitation events at the foothills of the Himalayas. Composite analysis of all data sets for high precipitation events (daily rainfall > 95th percentile) indicates clear and robust associations between high precipitation events, high aerosol loading and high moist static energy values.
Xiaoxia Shang, Elina Giannakaki, Stephanie Bohlmann, Maria Filioglou, Annika Saarto, Antti Ruuskanen, Ari Leskinen, Sami Romakkaniemi, and Mika Komppula
Atmos. Chem. Phys., 20, 15323–15339, https://doi.org/10.5194/acp-20-15323-2020, https://doi.org/10.5194/acp-20-15323-2020, 2020
Short summary
Short summary
Measurements of the multi-wavelength Raman polarization lidar PollyXT have been combined with measurements of pollen type and concentration using a traditional pollen sampler at a rural forest site in Kuopio, Finland. The depolarization ratio was enhanced when there were pollen grains in the atmosphere, illustrating the potential of lidar to track pollen grains in the atmosphere. The depolarization ratio of pure pollen particles was assessed for birch and pine pollen using a novel algorithm.
Yueming Cheng, Tie Dai, Jiming Li, and Guangyu Shi
Atmos. Chem. Phys., 20, 15307–15322, https://doi.org/10.5194/acp-20-15307-2020, https://doi.org/10.5194/acp-20-15307-2020, 2020
Short summary
Short summary
In this paper we present the analysis of the aerosol vertical features observed by CATS collected from 2015 to 2017 over three selected regions (North China, the Tibetan Plateau, and the Tarim Basin) over different timescales. This comprehensive information provides insights into the seasonal variations and diurnal cycles of the aerosol vertical features across East Asia.
Sophie Vandenbussche, Sieglinde Callewaert, Kerstin Schepanski, and Martine De Mazière
Atmos. Chem. Phys., 20, 15127–15146, https://doi.org/10.5194/acp-20-15127-2020, https://doi.org/10.5194/acp-20-15127-2020, 2020
Short summary
Short summary
Mineral dust aerosols blown mostly from desert areas are a key player in the climate system. We use a new desert dust aerosol low-altitude concentration data set as well as additional information on the surface state and low-altitude winds to infer desert dust emission and source maps over North Africa. With 9 years of data, we observe a full seasonal cycle of dust emissions, differentiating morning and afternoon/evening emissions and providing a first glance at long-term changes.
Ourania Soupiona, Alexandros Papayannis, Panagiotis Kokkalis, Romanos Foskinis, Guadalupe Sánchez Hernández, Pablo Ortiz-Amezcua, Maria Mylonaki, Christina-Anna Papanikolaou, Nikolaos Papagiannopoulos, Stefanos Samaras, Silke Groß, Rodanthi-Elisavet Mamouri, Lucas Alados-Arboledas, Aldo Amodeo, and Basil Psiloglou
Atmos. Chem. Phys., 20, 15147–15166, https://doi.org/10.5194/acp-20-15147-2020, https://doi.org/10.5194/acp-20-15147-2020, 2020
Short summary
Short summary
51 dust events over the Mediterranean from EARLINET were studied regarding the aerosol geometrical, optical and microphysical properties and radiative forcing. We found δp532 values of 0.24–0.28, LR532 values of 49–52 sr and AOT532 of 0.11–0.40. The aerosol mixing state was also examined. Depending on the dust properties, intensity and solar zenith angle, the estimated solar radiative forcing ranged from −59 to −22 W m−2 at the surface and from −24 to −1 W m−2 at the TOA (cooling effect).
Zhuang Wang, Cheng Liu, Zhouqing Xie, Qihou Hu, Meinrat O. Andreae, Yunsheng Dong, Chun Zhao, Ting Liu, Yizhi Zhu, Haoran Liu, Chengzhi Xing, Wei Tan, Xiangguang Ji, Jinan Lin, and Jianguo Liu
Atmos. Chem. Phys., 20, 14917–14932, https://doi.org/10.5194/acp-20-14917-2020, https://doi.org/10.5194/acp-20-14917-2020, 2020
Short summary
Short summary
Significant stratification of aerosols was observed in North China. Polluted dust dominated above the PBL, and anthropogenic aerosols prevailed within the PBL, which is mainly driven by meteorological conditions. The key role of the elevated dust is to alter atmospheric thermodynamics and stability, causing the suppression of turbulence exchange and a decrease in PBL height, especially during the dissipation stage, thereby inhibiting dissipation of persistent heavy surface haze pollution.
Mariana Adam, Doina Nicolae, Iwona S. Stachlewska, Alexandros Papayannis, and Dimitris Balis
Atmos. Chem. Phys., 20, 13905–13927, https://doi.org/10.5194/acp-20-13905-2020, https://doi.org/10.5194/acp-20-13905-2020, 2020
Short summary
Short summary
Biomass burning events measured by EARLINET are analysed using intensive parameters. The pollution layers are labelled smoke layers if fires were found along the air-mass back trajectory. The number of contributing fires to the smoke measurements is quantified. It is shown that most of the time we measure mixed smoke. The methodology provides three research directions: fires measured by several stations, long-range transport from N. America, and an analysis function of continental sources.
Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter J. T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020, https://doi.org/10.5194/acp-20-12431-2020, 2020
Short summary
Short summary
We intercompare 14 different datasets of satellite observations of aerosol. Such measurements are challenging but also provide the best opportunity to globally observe an atmospheric component strongly related to air pollution and climate change. Our study shows that most datasets perform similarly well on a global scale but that locally errors can be quite different. We develop a technique to estimate satellite errors everywhere, even in the absence of surface reference data.
Manuel Gutleben, Silke Groß, Martin Wirth, and Bernhard Mayer
Atmos. Chem. Phys., 20, 12313–12327, https://doi.org/10.5194/acp-20-12313-2020, https://doi.org/10.5194/acp-20-12313-2020, 2020
Short summary
Short summary
Airborne lidar measurements in the vicinity of Barbados are used to investigate radiative effects of long-range-transported Saharan air layers. Derived atmospheric heating rates indicate that observed enhanced water vapor concentrations inside these layers are the main drivers for dust vertical mixing inside the layers. Additionally, they may play a major role for the suppression of subjacent convective cloud development.
Li Li, Zhengqiang Li, Wenyuan Chang, Yang Ou, Philippe Goloub, Chengzhe Li, Kaitao Li, Qiaoyun Hu, Jianping Wang, and Manfred Wendisch
Atmos. Chem. Phys., 20, 10845–10864, https://doi.org/10.5194/acp-20-10845-2020, https://doi.org/10.5194/acp-20-10845-2020, 2020
Short summary
Short summary
Dust Aerosol Observation-Kashi (DAO-K) campaign was conducted near the Taklimakan Desert in April 2019 to obtain comprehensive aerosol, atmosphere, and surface parameters. Estimations of aerosol solar radiative forcing by a radiative transfer (RT) model were improved based on the measured aerosol parameters, additionally considering atmospheric profiles and diurnal variations of surface albedo. RT simulations agree well with simultaneous irradiance observations, even in dust-polluted conditions.
Cited articles
Ackermann, J.: The extinction-to-backscatter ratio of tropospheric aerosol:
A numerical study, J. Atmos. Ocean. Tech., 15, 1043–1050,
https://doi.org/10.1175/1520-0426(1998)015<1043:Tetbro>2.0.Co;2, 1998.
Alexander, S. P. and Protat, A.: Vertical Profiling of Aerosols With a
Combined Raman-Elastic Backscatter Lidar in the Remote Southern Ocean Marine
Boundary Layer (43–66∘ S, 132–150∘ E), J.
Geophys. Res.-Atmos., 124, 12107–12125,
https://doi.org/10.1029/2019jd030628, 2019.
Amiridis, V., Balis, D. S., Giannakaki, E., Stohl, A., Kazadzis, S., Koukouli, M. E., and Zanis, P.: Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements, Atmos. Chem. Phys., 9, 2431–2440, https://doi.org/10.5194/acp-9-2431-2009, 2009.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from
biomass burning, Global Biogeochem. Cy., 15, 955–966,
https://doi.org/10.1029/2000gb001382, 2001.
Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann,
W., and Michaelis, W.: Combined Raman Elastic-Backscatter Lidar for Vertical
Profiling of Moisture, Aerosol Extinction, Backscatter, and Lidar Ratio,
Appl. Phys. B, 55, 18–28,
https://doi.org/10.1007/Bf00348608, 1992.
Behrendt, A. and Nakamura, T.: Calculation of the calibration constant of
polarization lidar and its dependency on atmospheric temperature, Opt.
Express, 10, 805–817, https://doi.org/10.1364/oe.10.000805, 2002.
Cai, C., Geng, F., Tie, X., Yu, Q., and An, J.: Characteristics and source
apportionment of VOCs measured in Shanghai, China, Atmos. Environ.,
44, 5005–5014, https://doi.org/10.1016/j.atmosenv.2010.07.059, 2010.
Chen, Z., Liu, W., Heese, B., Althausen, D., Baars, H., Cheng, T., Shu, X.,
and Zhang, T.: Aerosol optical properties observed by combined Raman-elastic
backscatter lidar in winter 2009 in Pearl River Delta, south China, J.
Geophys. Res.-Atmos., 119, 2496–2510,
https://doi.org/10.1002/2013jd020200, 2014.
Cheng, T., Xu, C., Duan, J., Wang, Y., Leng, C., Tao, J., Che, H., He, Q.,
Wu, Y., Zhang, R., Li, X., Chen, J., Kong, L., and Yu, X.: Seasonal
variation and difference of aerosol optical properties in columnar and
surface atmospheres over Shanghai, Atmos. Environ., 123, 315–326,
https://doi.org/10.1016/j.atmosenv.2015.05.029, 2015.
Chow, J. C., Watson, J. G., Doraiswamy, P., Chen, L.-W. A., Sodeman, D. A.,
Lowenthal, D. H., Park, K., Arnott, W. P., and Motallebi, N.: Aerosol light
absorption, black carbon, and elemental carbon at the Fresno Supersite,
California, Atmos. Res., 93, 874–887,
https://doi.org/10.1016/j.atmosres.2009.04.010, 2009.
D'Amico, G., Amodeo, A., Mattis, I., Freudenthaler, V., and Pappalardo, G.: EARLINET Single Calculus Chain – technical – Part 1: Pre-processing of raw lidar data, Atmos. Meas. Tech., 9, 491–507, https://doi.org/10.5194/amt-9-491-2016, 2016.
Fan, S., Liu, C., Xie, Z., Dong, Y., Hu, Q., Fan, G., Chen, Z., Zhang, T.,
Duan, J., Zhang, P., and Liu, J.: Scanning vertical distributions of typical
aerosols along the Yangtze River using elastic lidar, Sci. Total Environ.,
628/629, 631–641, https://doi.org/10.1016/j.scitotenv.2018.02.099, 2018.
Fernald, F. G.: Analysis of atmospheric lidar observations: some comments,
OSA Proc., 23, 652–653, 1984.
Ferrare, R. A., Turner, D. D., Brasseur, L. H., Feltz, W. F., Dubovik, O.,
and Tooman, T. P.: Raman lidar measurements of the aerosol
extinction-to-backscatter ratio over the Southern Great Plains, J.
Geophys. Res.-Atmos., 106, 20333–20347,
https://doi.org/10.1029/2000jd000144, 2001.
Franke, K., Ansmann, A., Muller, D., Althausen, D., Wagner, A., and Scheele,
R.: One-year observations of particle lidar ratio over the tropical Indian
Ocean with Raman lidar, Geophys. Res. Lett., 28, 4559–4562,
https://doi.org/10.1029/2001gl013671, 2001.
Fu, Q., Thorsen, T. J., Su, J., Ge, J. M., and Huang, J. P.: Test of
Mie-based single-scattering properties of non-spherical dust aerosols in
radiative flux calculations, J. Quant. Spectrosc.
Ra., 110, 1640–1653,
https://doi.org/10.1016/j.jqsrt.2009.03.010, 2009.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy,
L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Giannakaki, E., van Zyl, P. G., Müller, D., Balis, D., and Komppula, M.: Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements, Atmos. Chem. Phys., 16, 8109–8123, https://doi.org/10.5194/acp-16-8109-2016, 2016.
Gobbi, G. P.: Polarization lidar returns from aerosols and thin clouds: a
framework for the analysis, Appl. Opt., 37, 5505–5508,
https://doi.org/10.1364/ao.37.005505, 1998.
Gong, W., Liu, B., Ma, Y., and Zhang, M.: Mie LIDAR Observations of
Tropospheric Aerosol over Wuhan, Atmosphere, 6, 1129–1140,
https://doi.org/10.3390/atmos6081129, 2015.
Hänel, A., Baars, H., Althausen, D., Ansmann, A., Engelmann, R., and
Sun, J. Y.: One-year aerosol profiling with EUCAARI Raman lidar at
Shangdianzi GAW station: Beijing plume and seasonal variations, J.
Geophys. Res.-Atmos., 117, D13201,
https://doi.org/10.1029/2012jd017577, 2012.
He, Q., Zhao, X., Lu, J., Zhou, G., Yang, H., Gao, W., Yu, W., and Cheng,
T.: Impacts of biomass-burning on aerosol properties of a severe haze event
over Shanghai, Particuology, 20, 52–60,
https://doi.org/10.1016/j.partic.2014.11.004, 2015.
He, Q. S., Li, C. C., Mao, J. T., Lau, A. K. H., and Li, P. R.: A study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong Kong, Atmos. Chem. Phys., 6, 3243–3256, https://doi.org/10.5194/acp-6-3243-2006, 2006.
Hess, M., Koepke, P., and Schult, I.: Optical properties of aerosols and
clouds: The software package OPAC, B. Am. Meteorol. Soc., 79, 831–844,
https://doi.org/10.1175/1520-0477(1998)079<0831:Opoaac>2.0.Co;2, 1998.
Hu, Q., Goloub, P., Veselovskii, I., Bravo-Aranda, J.-A., Popovici, I. E., Podvin, T., Haeffelin, M., Lopatin, A., Dubovik, O., Pietras, C., Huang, X., Torres, B., and Chen, C.: Long-range-transported Canadian smoke plumes in the lower stratosphere over northern France, Atmos. Chem. Phys., 19, 1173–1193, https://doi.org/10.5194/acp-19-1173-2019, 2019.
Huang, J., Lin, B., Minnis, P., Wang, T., Wang, X., Hu, Y., Yi, Y., and
Ayers, J. K.: Satellite-based assessment of possible dust aerosols
semi-direct effect on cloud water path over East Asia, Geophys. Res.
Lett., 33, L19802, https://doi.org/10.1029/2006gl026561, 2006.
Huang, J. P., Wang, T. H., Wang, W. C., Li, Z. Q., and Yan, H. R.: Climate
effects of dust aerosols over East Asian arid and semiarid regions, J.
Geophys. Res.-Atmos., 119, 11398–11416, https://doi.org/10.1002/2014jd021796,
2014.
Huang, K., Zhuang, G., Lin, Y., Fu, J. S., Wang, Q., Liu, T., Zhang, R., Jiang, Y., Deng, C., Fu, Q., Hsu, N. C., and Cao, B.: Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai, Atmos. Chem. Phys., 12, 105–124, https://doi.org/10.5194/acp-12-105-2012, 2012.
Jacobson, M. Z.: Studying the effects of aerosols on vertical photolysis
rate coefficient and temperature profiles over an urban airshed, J.
Geophys. Res.-Atmos., 103, 10593–10604,
https://doi.org/10.1029/98jd00287, 1998.
Jacobson, M. Z. and Kaufman, Y. J.: Wind reduction by aerosol particles, Geophys. Res. Lett., 33, L24814, https://doi.org/10.1029/2006gl027838, 2006.
Kai, K., Nagata, Y., Tsunematsu, N., Matsumura, T., Kim, H.-S., Matsumoto,
T., Hu, S., Zhou, H., Abo, M., and Nagai, T.: The Structure of the Dust
Layer over the Taklimakan Deser during the Dust Storm in April 2002 as
Observed Using a Depolarization Lidar, J. Meteorol. Soc. Jpn., 86, 1–16,
https://doi.org/10.2151/jmsj.86.1, 2008.
Kalluri, R. O. R., Zhang, X., Bi, L., Zhao, J., Yu, L., and Kotalo, R. G.:
Carbonaceous aerosol emission reduction over Shandong province and the
impact of air pollution control as observed from synthetic satellite data,
Atmos. Environ., 222, 117150,
https://doi.org/10.1016/j.atmosenv.2019.117150, 2020.
Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and Magill, B. E.: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, 2018.
Liu, D., Kanitz, T., Ciapponi, A., Mondello, A., D'Ottavi, A., Mateo, A. B.,
Straume, A.-G., Voland, C., Bon, D., Checa, E., Alvarez, E., Bellucci, I.,
Do Carmo, J. P., Brewster, J., Marshall, J., Schillinger, M., Hannington,
M., Rennie, M., Reitebuch, O., Lecrenier, O., Bravetti, P., Sacchieri, V.,
De Sanctis, V., Lefebvre, A., Parrinello, T., Wernham, D., Wang, Y., Wu, Y.,
Gross, B., and Moshary, F.: ESA’s Lidar Missions Aeolus and EarthCARE, The 29th International Laser Radar Conference (ILRC 29), 24-28 June 2019, Hefei, Peoples R China, 237, 01006, https://doi.org/10.1051/epjconf/202023701006, 2020a.
Liu, J., Zheng, Y., Li, Z., Flynn, C., and Cribb, M.: Seasonal variations of
aerosol optical properties, vertical distribution and associated radiative
effects in the Yangtze Delta region of China, J. Geophys.
Res.-Atmos., 117, D00K38, https://doi.org/10.1029/2011jd016490,
2012.
Liu, Q., He, Q., Fang, S., Guang, Y., Ma, C., Chen, Y., Kang, Y., Pan, H.,
Zhang, H., and Yao, Y.: Vertical distribution of ambient aerosol extinctive
properties during haze and haze-free periods based on the Micro-Pulse Lidar
observation in Shanghai, Sci. Total Environ., 574, 1502–1511,
https://doi.org/10.1016/j.scitotenv.2016.08.152, 2017.
Liu, Y., Zhu, Q., Huang, J., Hua, S., and Jia, R.: Impact of dust-polluted
convective clouds over the Tibetan Plateau on downstream precipitation,
Atmos. Environ., 209, 67–77,
https://doi.org/10.1016/j.atmosenv.2019.04.001, 2019a.
Liu, Y., Hua, S., Jia, R., and Huang, J. P.: Effect of Aerosols on the
Ice Cloud Properties Over the Tibetan Plateau, J. Geophys.
Res.-Atmos., 124, 9594–9608, https://doi.org/10.1029/2019jd030463, 2019b.
Lu, X., Mao, F., Pan, Z., Gong, W., Zhu, Y., and Yang, J.: Enhancement of
Atmospheric Stability by Anomalous Elevated Aerosols During Winter in China,
J. Geophys. Res.-Atmos., 125, e2019JD031734, https://doi.org/10.1029/2019jd031734,
2020.
Luo, B., Minnett, P. J., Szczodrak, M., Nalli, N. R., and Morris, V. R.:
Accuracy Assessment of MERRA-2 and ERA-Interim Sea Surface Temperature, Air
Temperature, and Humidity Profiles over the Atlantic Ocean Using AEROSE
Measurements, J. Climate, 33, 6889–6909,
https://doi.org/10.1175/jcli-d-19-0955.1, 2020.
Lv, L., Xiang, Y., Zhang, T., Chai, W., and Liu, W.: Comprehensive study of
regional haze in the North China Plain with synergistic measurement from
multiple mobile vehicle-based lidars and a lidar network, Sci. Total Environ.,
721, 137773, https://doi.org/10.1016/j.scitotenv.2020.137773, 2020.
Ma, X., Wang, C., Han, G., Ma, Y., Li, S., Gong, W., and Chen, J.: Regional
Atmospheric Aerosol Pollution Detection Based on LiDAR Remote Sensing,
Remote Sens., 11, 2339, https://doi.org/10.3390/rs11202339, 2019.
Masonis, S. J.: An intercomparison of aerosol light extinction and
180∘ backscatter as derived using in situ instruments and Raman
lidar during the INDOEX field campaign, J. Geophys. Res.,
107, 8014, https://doi.org/10.1029/2000jd000035, 2002.
McComiskey, A., Schwartz, S. E., Schmid, B., Guan, H., Lewis, E. R.,
Ricchiazzi, P., and Ogren, J. A.: Direct aerosol forcing: Calculation from
observables and sensitivities to inputs, J. Geophys. Res.,
113, D09202, https://doi.org/10.1029/2007jd009170, 2008.
Mehta, M., Singh, N., and Anshumali: Global trends of columnar and
vertically distributed properties of aerosols with emphasis on dust,
polluted dust and smoke – inferences from 10-year long CALIOP observations,
Remote Sens. Environ., 208, 120–132,
https://doi.org/10.1016/j.rse.2018.02.017, 2018.
Mishchenko, M. I., Cairns, B., Hansen, J. E., Travis, L. D., Burg, R.,
Kaufman, Y. J., Vanderlei Martins, J., and Shettle, E. P.: Monitoring of
aerosol forcing of climate from space: analysis of measurement requirements,
J. Quant. Spectrosc. Ra., 88, 149–161,
https://doi.org/10.1016/j.jqsrt.2004.03.030, 2004.
Müller, D.: Saharan dust over a central European EARLINET-AERONET site:
Combined observations with Raman lidar and Sun photometer, J.
Geophys. Res., 108, 4345, https://doi.org/10.1029/2002jd002918, 2003.
Müller, D., Ansmann, A., Mattis, I., Tesche, M., Wandinger, U.,
Althausen, D., and Pisani, G.: Aerosol-type-dependent lidar ratios observed
with Raman lidar, J. Geophys. Res., 112, D16202,
https://doi.org/10.1029/2006jd008292, 2007.
Murayama, T., Okamoto, H., Kaneyasu, N., Kamataki, H., and Miura, K.:
Application of lidar depolarization measurement in the atmospheric boundary
layer: Effects of dust and sea-salt particles, J. Geophys.
Res.-Atmos., 104, 31781–31792,
https://doi.org/10.1029/1999jd900503, 1999.
Murayama, T., Müller, D., Wada, K., Shimizu, A., Sekiguchi, M., and
Tsukamoto, T.: Characterization of Asian dust and Siberian smoke with
multi-wavelength Raman lidar over Tokyo, Japan in spring 2003, Geophys.
Res. Lett., 31,
L23103,
https://doi.org/10.1029/2004gl021105, 2004.
Newsom, R. K., Turner, D. D., Mielke, B., Clayton, M., Ferrare, R., and
Sivaraman, C.: Simultaneous analog and photon counting detection for Raman
lidar, Appl. Opt., 48, 3903–3914, https://doi.org/10.1364/ao.48.003903, 2009.
Nicolae, D., Donovan, D., Zadelhoff, G.-J., Daou, D., Wandinger, U.,
Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F.,
Landulfo, E., McCormick, M. P., Senff, C., Veselovskii, I., and Wandinger,
U.: Earthcare atlid extinction and backscatter retrieval algorithms,
The 28th International Laser Radar Conference, 25–30 June 2017, Politehnica Univ Bucharest, Bucharest, ROMANIA, 176, 02022, https://doi.org/10.1051/epjconf/201817602022, 2018.
Nie, W., Ding, A. J., Xie, Y. N., Xu, Z., Mao, H., Kerminen, V.-M., Zheng, L. F., Qi, X. M., Huang, X., Yang, X.-Q., Sun, J. N., Herrmann, E., Petäjä, T., Kulmala, M., and Fu, C. B.: Influence of biomass burning plumes on HONO chemistry in eastern China, Atmos. Chem. Phys., 15, 1147–1159, https://doi.org/10.5194/acp-15-1147-2015, 2015.
Noh, Y. M., Kim, Y. J., Choi, B. C., and Murayama, T.: Aerosol lidar ratio
characteristics measured by a multi-wavelength Raman lidar system at Anmyeon
Island, Korea, Atmos. Res., 86, 76–87,
https://doi.org/10.1016/j.atmosres.2007.03.006, 2007.
Noh, Y. M., Kim, Y. J., and Müller, D.: Seasonal characteristics of
lidar ratios measured with a Raman lidar at Gwangju, Korea in spring and
autumn, Atmos. Environ., 42, 2208–2224,
https://doi.org/10.1016/j.atmosenv.2007.11.045, 2008.
Novitsky, E. J. and Philbrick, C. R.: Multistatic lidar profiling of urban
atmospheric aerosols, J. Geophys. Res.-Atmos., 110, D07S11,
https://doi.org/10.1029/2004jd004723, 2005.
Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare,
R. A., Lee, K.-P., Hostetler, C. A., Kittaka, C., Rogers, R. R., Kuehn, R.
E., and Liu, Z.: The CALIPSO Automated Aerosol Classification and Lidar
Ratio Selection Algorithm, J. Atmos. Ocean. Tech., 26, 1994–2014,
https://doi.org/10.1175/2009jtecha1231.1, 2009.
Painemal, D., Clayton, M., Ferrare, R., Burton, S., Josset, D., and Vaughan, M.: Novel aerosol extinction coefficients and lidar ratios over the ocean from CALIPSO–CloudSat: evaluation and global statistics, Atmos. Meas. Tech., 12, 2201–2217, https://doi.org/10.5194/amt-12-2201-2019, 2019.
Papagiannopoulos, N., Mona, L., Amodeo, A., D'Amico, G., Gumà Claramunt, P., Pappalardo, G., Alados-Arboledas, L., Guerrero-Rascado, J. L., Amiridis, V., Kokkalis, P., Apituley, A., Baars, H., Schwarz, A., Wandinger, U., Binietoglou, I., Nicolae, D., Bortoli, D., Comerón, A., Rodríguez-Gómez, A., Sicard, M., Papayannis, A., and Wiegner, M.: An automatic observation-based aerosol typing method for EARLINET, Atmos. Chem. Phys., 18, 15879–15901, https://doi.org/10.5194/acp-18-15879-2018, 2018.
Pappalardo, G., Amodeo, A., Pandolfi, M., Wandinger, U., Ansmann, A.,
Bosenberg, J., Matthias, V., Amiridis, V., De Tomasi, F., Frioud, M.,
Larlori, M., Komguem, L., Papayannis, A., Rocadenbosch, F., and Wang, X.:
Aerosol lidar intercomparison in the framework of the EARLINET project. 3.
Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio,
Appl. Opt., 43, 5370–5385, https://doi.org/10.1364/ao.43.005370, 2004.
Pietruczuk, A. and Podgorski, J.: The lidar ratio derived from
sun-photometer measurements at Belsk Geophysical Observatory, Acta
Geophys., 57, 476–493, https://doi.org/10.2478/s11600-009-0006-9, 2009.
Qi, Y., Ge, J., and Huang, J.: Spatial and temporal distribution of MODIS
and MISR aerosol optical depth over northern China and comparison with
AERONET, Chinese Sci. Bull., 58, 2497–2506,
https://doi.org/10.1007/s11434-013-5678-5, 2013.
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T.,
Washington, W. M., Fu, Q., Sikka, D. R., and Wild, M.: Atmospheric brown
clouds: impacts on South Asian climate and hydrological cycle, P. Natl.
Acad. Sci. USA, 102, 5326–5333, https://doi.org/10.1073/pnas.0500656102,
2005.
Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K.
A., Boone, C., and Pumphrey, H.: Asian monsoon transport of pollution to the
stratosphere, Science, 328, 611–613,
https://doi.org/10.1126/science.1182274, 2010.
Reagan, J. A., Apte, M. V., Ben-David, A., and Herman, B. M.: Assessment of
Aerosol Extinction to Backscatter Ratio Measurements Made at 694.3 Nm in
Tucson, Arizona, Aerosol Sci. Tech., 8, 215–226,
https://doi.org/10.1080/02786828808959184, 1988.
Reid, J. S., Hobbs, P. V., Ferek, R. J., Blake, D. R., Martins, J. V.,
Dunlap, M. R., and Liousse, C.: Physical, chemical, and optical properties
of regional hazes dominated by smoke in Brazil, J. Geophys.
Res.-Atmos., 103, 32059–32080, https://doi.org/10.1029/98jd00458,
1998.
Sajadi, M. M., Habibzadeh, P., Vintzileos, A., Shokouhi, S.,
Miralles-Wilhelm, F., and Amoroso, A.: Temperature, Humidity, and Latitude
Analysis to Estimate Potential Spread and Seasonality of Coronavirus Disease
2019 (COVID-19), JAMA Netw. Open., 3, e2011834,
https://doi.org/10.1001/jamanetworkopen.2020.11834, 2020.
Salemink, H. W. M., Schotanus, P., and Bergwerff, J. B.: Quantitative Lidar
at 532nm for Vertical Extinction Profiles and the Effect of Relative
Humidity, Appl. Phys. B, 34, 187–189, https://doi.org/10.1007/BF00697633, 1984.
Shaik, D. S., Kant, Y., Mitra, D., Singh, A., Chandola, H. C., Sateesh, M.,
Babu, S. S., and Chauhan, P.: Impact of biomass burning on regional aerosol
optical properties: A case study over northern India, J. Environ. Manage., 244,
328–343, https://doi.org/10.1016/j.jenvman.2019.04.025, 2019.
Sicard, M., Rocadenbosch, F., Reba, M. N. M., Comerón, A., Tomás, S., García-Vízcaino, D., Batet, O., Barrios, R., Kumar, D., and Baldasano, J. M.: Seasonal variability of aerosol optical properties observed by means of a Raman lidar at an EARLINET site over Northeastern Spain, Atmos. Chem. Phys., 11, 175–190, https://doi.org/10.5194/acp-11-175-2011, 2011.
Singh, U. N., Pappalardo, G., Mizutani, K., Amodeo, A., Mona, L., and
Pandolfi, M.: Systematic measurements of the aerosol
extinction-to-backscatter ratio, P. Soc. Photo-Opt. Ins., 5653, 77–87, 2005.
Song, H.-J., Kim, S., Lee, H., and Kim, K.-H.: Climatology of Tropospheric
Relative Humidity over the Korean Peninsula from Radiosonde and ECMWF
Reanalysis, Atmosphere, 11, 704, https://doi.org/10.3390/atmos11070704, 2020.
Takamura, T., Sasano, Y., and Hayasaka, T.: Tropospheric aerosol optical
properties derived from lidar, sun photometer, and optical particle counter
measurements, Appl. Opt., 33, 7132–7140, https://doi.org/10.1364/AO.33.007132,
1994.
Tesche, M., Ansmann, A., Muller, D., Althausen, D., Engelmann, R., Hu, M.,
and Zhang, Y.: Particle backscatter, extinction, and lidar ratio profiling
with Raman lidar in south and north China, Appl. Opt., 46, 6302–6308,
https://doi.org/10.1364/ao.46.006302, 2007.
Vadrevu, K. P., Ellicott, E., Badarinath, K. V., and Vermote, E.: MODIS
derived fire characteristics and aerosol optical depth variations during the
agricultural residue burning season, north India, Environ. Pollut., 159,
1560–1569, https://doi.org/10.1016/j.envpol.2011.03.001, 2011.
Walker, M., Venable, D., and Whiteman, D. N.: Gluing for Raman lidar systems
using the lamp mapping technique, Appl. Opt., 53, 8535–8543,
https://doi.org/10.1364/AO.53.008535, 2014.
Wandinger, U., Freudenthaler, V., Baars, H., Amodeo, A., Engelmann, R., Mattis, I., Groß, S., Pappalardo, G., Giunta, A., D'Amico, G., Chaikovsky, A., Osipenko, F., Slesar, A., Nicolae, D., Belegante, L., Talianu, C., Serikov, I., Linné, H., Jansen, F., Apituley, A., Wilson, K. M., de Graaf, M., Trickl, T., Giehl, H., Adam, M., Comerón, A., Muñoz-Porcar, C., Rocadenbosch, F., Sicard, M., Tomás, S., Lange, D., Kumar, D., Pujadas, M., Molero, F., Fernández, A. J., Alados-Arboledas, L., Bravo-Aranda, J. A., Navas-Guzmán, F., Guerrero-Rascado, J. L., Granados-Muñoz, M. J., Preißler, J., Wagner, F., Gausa, M., Grigorov, I., Stoyanov, D., Iarlori, M., Rizi, V., Spinelli, N., Boselli, A., Wang, X., Lo Feudo, T., Perrone, M. R., De Tomasi, F., and Burlizzi, P.: EARLINET instrument intercomparison campaigns: overview on strategy and results, Atmos. Meas. Tech., 9, 1001–1023, https://doi.org/10.5194/amt-9-1001-2016, 2016.
Wang, H., He, Q., Chen, Y., and Kang, Y.: Characterization of black carbon
concentrations of haze with different intensities in Shanghai by a
three-year field measurement, Atmos. Environ., 99, 536–545,
https://doi.org/10.1016/j.atmosenv.2014.10.025, 2014.
Wang, L., Lyu, B., and Bai, Y.: Aerosol vertical profile variations with
seasons, air mass movements and local PM2.5 levels in three large China
cities, Atmos. Environ., 224, 117329,
https://doi.org/10.1016/j.atmosenv.2020.117329, 2020a.
Wang, W., Huang, J., Zhou, T., Bi, J., Lin, L., Chen, Y., Huang, Z., and Su,
J.: Estimation of radiative effect of a heavy dust storm over northwest
China using Fu-Liou model and ground measurements, J. Quant.
Spectrosc. Ra., 122, 114–126,
https://doi.org/10.1016/j.jqsrt.2012.10.018, 2013.
Wang, W., Gong, W., Mao, F., Pan, Z., and Liu, B.: Measurement and Study of
Lidar Ratio by Using a Raman Lidar in Central China, Int. J. Environ. Res.
Pu., 13, 508, https://doi.org/10.3390/ijerph13050508, 2016.
Wei, C., Wang, M. H., Fu, Q. Y., Dai, C., Huang, R., and Bao, Q.: Temporal
Characteristics and Potential Sources of Black Carbon in Megacity Shanghai,
China, J. Geophys. Res.-Atmos., 125, e2019JD031827,
https://doi.org/10.1029/2019jd031827, 2020.
Welton, E. J., Campbell, J. R., Spinhirne, J. D., and Scott, V. S.: Global
monitoring of clouds and aerosols using a network of micro-pulse lidar
systems, Proc. Spie., 4153, 151–158, https://doi.org/10.1117/12.417040, 2001.
Wu, J., Kong, S., Wu, F., Cheng, Y., Zheng, S., Qin, S., Liu, X., Yan, Q.,
Zheng, H., Zheng, M., Yan, Y., Liu, D., Ding, S., Zhao, D., Shen, G., Zhao,
T., and Qi, S.: The moving of high emission for biomass burning in China:
View from multi-year emission estimation and human-driven forces, Environ.
Int., 142, 105812, https://doi.org/10.1016/j.envint.2020.105812, 2020.
Xiao, M., Yu, Z., Kong, D., Gu, X., Mammarella, I., Montagnani, L., Arain,
M. A., Merbold, L., Magliulo, V., Lohila, A., Buchmann, N., Wolf, S.,
Gharun, M., Hörtnagl, L., Beringer, J., and Gioli, B.: Stomatal response
to decreased relative humidity constrains the acceleration of terrestrial
evapotranspiration, Environ. Res. Lett., 15, 094066,
https://doi.org/10.1088/1748-9326/ab9967, 2020.
Xu, J., Wang, Q., Deng, C., McNeill, V. F., Fankhauser, A., Wang, F., Zheng,
X., Shen, J., Huang, K., and Zhuang, G.: Insights into the characteristics
and sources of primary and secondary organic carbon: High time resolution
observation in urban Shanghai, Environ. Pollut., 233, 1177–1187,
https://doi.org/10.1016/j.envpol.2017.10.003, 2018.
Yan, H. and Wang, T.: Ten Years of Aerosol Effects on Single-Layer Overcast
Clouds over the US Southern Great Plains and the China Loess Plateau,
Adv. Meteorol., 2020, 1–15, https://doi.org/10.1155/2020/6719160,
2020.
Young, S. A., Cutten, D. R., Lynch, M. J., and Davies, J. E.: Lidar-Derived
Variations in the Backscatter-to-Extinction Ratio in Southern-Hemisphere
Coastal Maritime Aerosols, Atmos. Environ., 27, 1541–1551,
https://doi.org/10.1016/0960-1686(93)90154-Q, 1993.
Zarzycki, C. M. and Bond, T. C.: How much can the vertical distribution of
black carbon affect its global direct radiative forcing?, Geophys.
Res. Lett., 37, L20807, https://doi.org/10.1029/2010gl044555, 2010.
Zhang, L., Qiao, L., Lan, J., Yan, Y., and Wang, L.: Three-years monitoring
of PM2.5 and scattering coefficients in Shanghai, China, Chemosphere, 253,
126613, https://doi.org/10.1016/j.chemosphere.2020.126613, 2020.
Zhao, H., Mao, J. D., Zhou, C. Y., and Gong, X.: A method of determining
multi-wavelength lidar ratios combining aerodynamic particle sizer
spectrometer and sun-photometer, J. Quant. Spectrosc.
Ra., 217, 224–228,
https://doi.org/10.1016/j.jqsrt.2018.05.030, 2018.
Zhao, L., Wang, W., Hao, T., Qu, W., Sheng, L., Luo, C., An, X., and Zhou,
Y.: The autumn haze-fog episode enhanced by the transport of dust aerosols
in the Tianjin area, Atmos. Environ., 237, 117669,
https://doi.org/10.1016/j.atmosenv.2020.117669, 2020.
Short summary
The variation in aerosol 355 nm lidar ratio and its influence factors were analyzed in Shanghai. About 90 % of the lidar ratio was distributed in 10 sr–80 sr, with an average of 41.0±22.5 sr, and the lidar ratio decreased with the increase in height. Due to aerosol radiative effects, the vertical slope of the lidar ratio presented a decreasing trend with increasing atmospheric turbidity. A large lidar ratio above 1 km was related to biomass burning aerosols and high relative humidity.
The variation in aerosol 355 nm lidar ratio and its influence factors were analyzed in Shanghai....
Altmetrics
Final-revised paper
Preprint