Articles | Volume 20, issue 10
https://doi.org/10.5194/acp-20-6115-2020
https://doi.org/10.5194/acp-20-6115-2020
Research article
 | 
26 May 2020
Research article |  | 26 May 2020

Molecular composition and photochemical evolution of water-soluble organic carbon (WSOC) extracted from field biomass burning aerosols using high-resolution mass spectrometry

Jing Cai, Xiangying Zeng, Guorui Zhi, Sasho Gligorovski, Guoying Sheng, Zhiqiang Yu, Xinming Wang, and Ping'an Peng

Related authors

The Speciated Isoprene Emission Model with the MEGAN Algorithm for China (SieMAC)
Shengjun Xi, Yuhang Wang, Xiangyang Yuan, Zhaozhong Feng, Fanghe Zhao, Yanli Zhang, and Xinming Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2899,https://doi.org/10.5194/egusphere-2025-2899, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Atmospheric chemical processing dictates aerosol aluminum solubility: insights from field measurement at two locations in northern China
Tianyu Zhang, Yizhu Chen, Huanhuan Zhang, Lei Liu, Chengpeng Huang, Zhengyang Fang, Yifan Zhang, Fu Wang, Lan Luo, Guohua Zhang, Xinming Wang, and Mingjin Tang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2235,https://doi.org/10.5194/egusphere-2025-2235, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Long–term Trends in PM2.5 Chemical Composition and Its Impact on Aerosol Properties: Field Observations from 2007 to 2020 in Pearl River Delta, South China
Yunfeng He, Xiang Ding, Quanfu He, Yuqing Zhang, Duohong Chen, Tao Zhang, Kong Yang, Junqi Wang, Qian Cheng, Hao Jiang, Zirui Wang, Ping Liu, Xinming Wang, and Michael Boy
EGUsphere, https://doi.org/10.5194/egusphere-2025-2204,https://doi.org/10.5194/egusphere-2025-2204, 2025
Short summary
Calibrating adsorptive and reactive losses of monoterpenes and sesquiterpenes in dynamic chambers using deuterated surrogates
Jianqiang Zeng, Yanli Zhang, Haofan Ran, Weihua Pang, Hao Guo, Zhaobin Mu, Wei Song, and Xinming Wang
Atmos. Meas. Tech., 18, 1811–1821, https://doi.org/10.5194/amt-18-1811-2025,https://doi.org/10.5194/amt-18-1811-2025, 2025
Short summary
Atmospheric Implications of Ocean-Atmosphere Physicochemical Interactions
Yiqun Wang and Sasho Gligorovski
EGUsphere, https://doi.org/10.5194/egusphere-2025-1472,https://doi.org/10.5194/egusphere-2025-1472, 2025
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The role of surface-active macromolecules in the ice-nucleating ability of lignin, Snomax, and agricultural soil extracts
Kathleen A. Alden, Paul Bieber, Anna J. Miller, Nicole Link, Benjamin J. Murray, and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 25, 6179–6195, https://doi.org/10.5194/acp-25-6179-2025,https://doi.org/10.5194/acp-25-6179-2025, 2025
Short summary
Secondary organic aerosol formation from nitrate radical oxidation of styrene: aerosol yields, chemical composition, and hydrolysis of organic nitrates
Yuchen Wang, Xiang Zhang, Yuanlong Huang, Yutong Liang, and Nga L. Ng
Atmos. Chem. Phys., 25, 5215–5231, https://doi.org/10.5194/acp-25-5215-2025,https://doi.org/10.5194/acp-25-5215-2025, 2025
Short summary
Hydrogen peroxide photoformation in particulate matter and its contribution to S(IV) oxidation during winter in Fairbanks, Alaska
Michael Oluwatoyin Sunday, Laura Marie Dahler Heinlein, Junwei He, Allison Moon, Sukriti Kapur, Ting Fang, Kasey C. Edwards, Fangzhou Guo, Jack Dibb, James H. Flynn III, Becky Alexander, Manabu Shiraiwa, and Cort Anastasio
Atmos. Chem. Phys., 25, 5087–5100, https://doi.org/10.5194/acp-25-5087-2025,https://doi.org/10.5194/acp-25-5087-2025, 2025
Short summary
The importance of burning conditions on the composition of domestic biomass-burning organic aerosol and the impact of atmospheric ageing
Rhianna L. Evans, Daniel J. Bryant, Aristeidis Voliotis, Dawei Hu, Huihui Wu, Sara Aisyah Syafira, Osayomwanbor E. Oghama, Gordon McFiggans, Jacqueline F. Hamilton, and Andrew R. Rickard
Atmos. Chem. Phys., 25, 4367–4389, https://doi.org/10.5194/acp-25-4367-2025,https://doi.org/10.5194/acp-25-4367-2025, 2025
Short summary
Heterogeneous phototransformation of halogenated polycyclic aromatic hydrocarbons: influencing factors, mechanisms and products
Yueyao Yang, Yahui Liu, Guohua Zhu, Bingcheng Lin, Shanshan Zhang, Xin Li, Fangxi Xu, He Niu, Rong Jin, and Minghui Zheng
Atmos. Chem. Phys., 25, 3981–3994, https://doi.org/10.5194/acp-25-3981-2025,https://doi.org/10.5194/acp-25-3981-2025, 2025
Short summary

Cited articles

Altieri, K. E., Seitzinger, S. P., Carlton, A. G., Turpin, B. J., Klein, G. C., and Marshall, A. G.: Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry, Atmos. Environ., 42, 1476–1490, 2008. 
Altieri, K. E., Turpin, B. J., and Seitzinger, S. P.: Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry, Atmos. Chem. Phys., 9, 2533–2542, https://doi.org/10.5194/acp-9-2533-2009, 2009a. 
Altieri, K. E., Turpin, B. J., and Seitzinger, S. P.: Composition of Dissolved Organic Nitrogen in Continental Precipitation Investigated by Ultra-High Resolution FT-ICR Mass Spectrometry, Environ. Sci. Technol., 43, 6950–6955, https://doi.org/10.1021/es9007849, 2009b. 
Anastasio, C., Faust, B. C., and Rao, C. J.: Aromatic carbonyl compounds as aqueous-phase photochemical sources of hydrogen peroxide in acidic sulfate aerosols, fogs, and clouds. 1. Non-phenolic methoxybenzaldehydes and methoxyacetophenones with reductants (phenols), Environ. Sci. Technol., 31, 218–232, 1997. 
Download
Short summary
The composition and light-induced evolution of a water-soluble organic carbon mixture from fresh biomass burning aerosols was investigated with direct infusion electrospray ionisation high-resolution mass spectrometry (HRMS) and liquid chromatography coupled with HRMS. Our findings indicate that the water-soluble organic fraction of combustion-derived aerosols has the potential to form more oxidised organic matter, contributing to the highly oxygenated nature of atmospheric organic aerosols.
Share
Altmetrics
Final-revised paper
Preprint