Articles | Volume 20, issue 23
Atmos. Chem. Phys., 20, 15003–15014, 2020
https://doi.org/10.5194/acp-20-15003-2020

Special issue: Regional assessment of air pollution and climate change over...

Atmos. Chem. Phys., 20, 15003–15014, 2020
https://doi.org/10.5194/acp-20-15003-2020
Research article
04 Dec 2020
Research article | 04 Dec 2020

Discrepancies between MICS-Asia III simulation and observation for surface ozone in the marine atmosphere over the northwestern Pacific Asian Rim region

Hajime Akimoto et al.

Related authors

Evaluation of NU-WRF model performance on air quality simulation under various model resolutions – an investigation within the framework of MICS-Asia Phase III
Zhining Tao, Mian Chin, Meng Gao, Tom Kucsera, Dongchul Kim, Huisheng Bian, Jun-ichi Kurokawa, Yuesi Wang, Zirui Liu, Gregory R. Carmichael, Zifa Wang, and Hajime Akimoto
Atmos. Chem. Phys., 20, 2319–2339, https://doi.org/10.5194/acp-20-2319-2020,https://doi.org/10.5194/acp-20-2319-2020, 2020
Short summary
Model evaluation and intercomparison of surface-level ozone and relevant species in East Asia in the context of MICS-Asia Phase III – Part 1: Overview
Jie Li, Tatsuya Nagashima, Lei Kong, Baozhu Ge, Kazuyo Yamaji, Joshua S. Fu, Xuemei Wang, Qi Fan, Syuichi Itahashi, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Meigen Zhang, Zhining Tao, Mizuo Kajino, Hong Liao, Meng Li, Jung-Hun Woo, Jun-ichi Kurokawa, Zhe Wang, Qizhong Wu, Hajime Akimoto, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 19, 12993–13015, https://doi.org/10.5194/acp-19-12993-2019,https://doi.org/10.5194/acp-19-12993-2019, 2019
Short summary
Comparison of surface ozone simulation among selected regional models in MICS-Asia III – effects of chemistry and vertical transport for the causes of difference
Hajime Akimoto, Tatsuya Nagashima, Jie Li, Joshua S. Fu, Dongsheng Ji, Jiani Tan, and Zifa Wang
Atmos. Chem. Phys., 19, 603–615, https://doi.org/10.5194/acp-19-603-2019,https://doi.org/10.5194/acp-19-603-2019, 2019
Short summary
Long-term change in the source contribution to surface ozone over Japan
Tatsuya Nagashima, Kengo Sudo, Hajime Akimoto, Junichi Kurokawa, and Toshimasa Ohara
Atmos. Chem. Phys., 17, 8231–8246, https://doi.org/10.5194/acp-17-8231-2017,https://doi.org/10.5194/acp-17-8231-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Discrepancy in assimilated atmospheric CO over East Asia in 2015–2020 by assimilating satellite and surface CO measurements
Zhaojun Tang, Jiaqi Chen, and Zhe Jiang
Atmos. Chem. Phys., 22, 7815–7826, https://doi.org/10.5194/acp-22-7815-2022,https://doi.org/10.5194/acp-22-7815-2022, 2022
Short summary
Potential environmental impact of bromoform from Asparagopsis farming in Australia
Yue Jia, Birgit Quack, Robert D. Kinley, Ignacio Pisso, and Susann Tegtmeier
Atmos. Chem. Phys., 22, 7631–7646, https://doi.org/10.5194/acp-22-7631-2022,https://doi.org/10.5194/acp-22-7631-2022, 2022
Short summary
Satellite soil moisture data assimilation impacts on modeling weather variables and ozone in the southeastern US – Part 2: Sensitivity to dry-deposition parameterizations
Min Huang, James H. Crawford, Gregory R. Carmichael, Kevin W. Bowman, Sujay V. Kumar, and Colm Sweeney
Atmos. Chem. Phys., 22, 7461–7487, https://doi.org/10.5194/acp-22-7461-2022,https://doi.org/10.5194/acp-22-7461-2022, 2022
Short summary
The impacts of marine-emitted halogens on OH radicals in East Asia during summer
Shidong Fan and Ying Li
Atmos. Chem. Phys., 22, 7331–7351, https://doi.org/10.5194/acp-22-7331-2022,https://doi.org/10.5194/acp-22-7331-2022, 2022
Short summary
Impact of eastern and central Pacific El Niño on lower tropospheric ozone in China
Zhongjing Jiang and Jing Li
Atmos. Chem. Phys., 22, 7273–7285, https://doi.org/10.5194/acp-22-7273-2022,https://doi.org/10.5194/acp-22-7273-2022, 2022
Short summary

Cited articles

ACAP: Monitoring data, available at: http://www.acap.asia, last access 10 January 2020. 
Akimoto, H.: Atmospheric Reaction Chemistry, Springer Japan, Tokyo, 2016. 
Akimoto, H., Mukai, H., Nishikawa, M., Murano, K., Hatakeyama, S. Liu, C.-M., Buhr, M. Hsu, K. J., Jaffe, D. A., Zhang, L., Honrath, R., Merrill, J. T., and Newell, R. J.: Long-range transport of ozone in the East Asian Pacific rim region, J. Geophys. Res., 101, 1999–2010, 1996. 
Akimoto, H., Nagashima, T., Li, J., Fu, J. S., Ji, D., Tan, J., and Wang, Z.: Comparison of surface ozone simulation among selected regional models in MICS-Asia III – effects of chemistry and vertical transport for the causes of difference, Atmos. Chem. Phys., 19, 603–615, https://doi.org/10.5194/acp-19-603-2019, 2019. 
Coleman, L., Varghese, S., Jennings, S. G., and O'Dowd, C. D.: Regional-scale ozone deposition to north-east Atlantic waters, Adv. Meteorol., 243701, 16 pp., https://doi.org/10.1155/2010/243701, 2010. 
Download
Short summary
In order to perform proper model simulation of ozone near the ground in the coastal area of northeastern Asia, it has been found that it is very important to select appropriate dry deposition velocities of ozone on the oceanic water of specific area of the northwestern Pacific. Empirical measurement of the mixing ratios and dry deposition flux of ozone over the ocean in this area is highly recommended.
Altmetrics
Final-revised paper
Preprint