Research article
15 May 2019
Research article
| 15 May 2019
A 10-year characterization of the Saharan Air Layer lidar ratio in the subtropical North Atlantic
Alberto Berjón et al.
Related authors
Carlos Toledano, Ramiro González, David Fuertes, Emilio Cuevas, Thomas F. Eck, Stelios Kazadzis, Natalia Kouremeti, Julian Gröbner, Philippe Goloub, Luc Blarel, Roberto Román, África Barreto, Alberto Berjón, Brent N. Holben, and Victoria E. Cachorro
Atmos. Chem. Phys., 18, 14555–14567, https://doi.org/10.5194/acp-18-14555-2018, https://doi.org/10.5194/acp-18-14555-2018, 2018
Short summary
Short summary
Most of the ground-based radiometric networks have their reference instruments and/or calibrate them at Mauna Loa or Izaña. The suitability of these high-mountain stations for absolute radiometric calibrations is investigated with the support of 20 years of first-class Sun photometer data from the AERONET and GAW-PFR networks. We analyze the number of calibration days at each site in a climatological sense and investigate the uncertainty of the calibrations based on long-term statistics.
Alberto Redondas, Saulius Nevas, Alberto Berjón, Meelis-Mait Sildoja, Sergio Fabian León-Luis, Virgilio Carreño, and Daniel Santana-Díaz
Atmos. Meas. Tech., 11, 3759–3768, https://doi.org/10.5194/amt-11-3759-2018, https://doi.org/10.5194/amt-11-3759-2018, 2018
Short summary
Short summary
We present the wavelength calibration of the travelling reference Brewer spectrometer of the Regional Brewer Calibration Center for Europe at PTB in Braunschweig. We compare these results to those of the standard procedure for the wavelength calibration of the Brewer. The results of the laser-based calibrations reproduce those obtained by the standard operational methodology and show that there is a underestimation of 0.8 %, due the use of the parametrized slit functions.
Javier López-Solano, Alberto Redondas, Thomas Carlund, Juan J. Rodriguez-Franco, Henri Diémoz, Sergio F. León-Luis, Bentorey Hernández-Cruz, Carmen Guirado-Fuentes, Natalia Kouremeti, Julian Gröbner, Stelios Kazadzis, Virgilio Carreño, Alberto Berjón, Daniel Santana-Díaz, Manuel Rodríguez-Valido, Veerle De Bock, Juan R. Moreta, John Rimmer, Andrew R. D. Smedley, Lamine Boulkelia, Nis Jepsen, Paul Eriksen, Alkiviadis F. Bais, Vadim Shirotov, José M. Vilaplana, Keith M. Wilson, and Tomi Karppinen
Atmos. Chem. Phys., 18, 3885–3902, https://doi.org/10.5194/acp-18-3885-2018, https://doi.org/10.5194/acp-18-3885-2018, 2018
Short summary
Short summary
The European Brewer Network (EUBREWNET, COST Action ES1207) is comprised of close to 50 instruments and currently provides near-real-time ozone and UV data. Aerosols also play key role in the Earth–atmosphere system and introduce a large uncertainty into our understanding of climate change. In this work we describe and validate a method to incorporate the measurement of aerosols in EUBREWNET. We find that this Brewer network can provide reliable aerosol data across Europe in the UV range.
David Fuertes, Carlos Toledano, Ramiro González, Alberto Berjón, Benjamín Torres, Victoria E. Cachorro, and Ángel M. de Frutos
Geosci. Instrum. Method. Data Syst., 7, 67–81, https://doi.org/10.5194/gi-7-67-2018, https://doi.org/10.5194/gi-7-67-2018, 2018
Short summary
Short summary
CÆLIS is a software system which aims at simplifying the management of a photometric ground-based network, providing tools by monitoring the instruments, processing the data in real time and offering the scientific community a new tool to work with the data. The present work describes the system architecture of CÆLIS and some examples of applications and data processing.
África Barreto, Roberto Román, Emilio Cuevas, Alberto J. Berjón, A. Fernando Almansa, Carlos Toledano, Ramiro González, Yballa Hernández, Luc Blarel, Philippe Goloub, Carmen Guirado, and Margarita Yela
Atmos. Meas. Tech., 10, 3007–3019, https://doi.org/10.5194/amt-10-3007-2017, https://doi.org/10.5194/amt-10-3007-2017, 2017
Short summary
Short summary
This work involves a first analysis of the systematic errors observed in the AOD retrieved at nighttime using the Sun–sky–lunar CE318-T photometer. In this respect, this paper is a first attempt to correct the AOD uncertainties that currently affect the lunar photometry by means of an empirical regression model. We have detected and corrected an important bias correlated to the Moon's phase and zenith angles, especially at longer wavelength channels.
E. Cuevas, C. Camino, A. Benedetti, S. Basart, E. Terradellas, J. M. Baldasano, J. J. Morcrette, B. Marticorena, P. Goloub, A. Mortier, A. Berjón, Y. Hernández, M. Gil-Ojeda, and M. Schulz
Atmos. Chem. Phys., 15, 3991–4024, https://doi.org/10.5194/acp-15-3991-2015, https://doi.org/10.5194/acp-15-3991-2015, 2015
Short summary
Short summary
Atmospheric mineral dust from a MACC-II short reanalysis (2007-2008) has been evaluated over northern Africa and the Middle East using satellite aerosol products, AERONET data, in situ PM10 concentrations, and extinction vertical profiles. The MACC-II AOD spatial and temporal variability shows good agreement with satellite sensors and AERONET. We find a good agreement in averaged extinction vertical profiles between MACC-II and lidars. MACC correctly reproduces daily to interannual PM10.
A. Barreto, E. Cuevas, B. Damiri, C. Guirado, T. Berkoff, A. J. Berjón, Y. Hernández, F. Almansa, and M. Gil
Atmos. Meas. Tech., 6, 585–598, https://doi.org/10.5194/amt-6-585-2013, https://doi.org/10.5194/amt-6-585-2013, 2013
Enza Di Tomaso, Jerónimo Escribano, Sara Basart, Paul Ginoux, Francesca Macchia, Francesca Barnaba, Francesco Benincasa, Pierre-Antoine Bretonnière, Arnau Buñuel, Miguel Castrillo, Emilio Cuevas, Paola Formenti, María Gonçalves, Oriol Jorba, Martina Klose, Lucia Mona, Gilbert Montané Pinto, Michail Mytilinaios, Vincenzo Obiso, Miriam Olid, Nick Schutgens, Athanasios Votsis, Ernest Werner, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 14, 2785–2816, https://doi.org/10.5194/essd-14-2785-2022, https://doi.org/10.5194/essd-14-2785-2022, 2022
Short summary
Short summary
MONARCH reanalysis of desert dust aerosols extends the existing observation-based information for mineral dust monitoring by providing 3-hourly upper-air, surface and total column key geophysical variables of the dust cycle over Northern Africa, the Middle East and Europe, at a 0.1° horizontal resolution in a rotated grid, from 2007 to 2016. This work provides evidence of the high accuracy of this data set and its suitability for air quality and health and climate service applications.
Gaia Pinardi, Michel Van Roozendael, François Hendrick, Andreas Richter, Pieter Valks, Ramina Alwarda, Kristof Bognar, Udo Frieß, José Granville, Myojeong Gu, Paul Johnston, Cristina Prados-Roman, Richard Querel, Kimberly Strong, Thomas Wagner, Folkard Wittrock, and Margarita Yela Gonzalez
Atmos. Meas. Tech., 15, 3439–3463, https://doi.org/10.5194/amt-15-3439-2022, https://doi.org/10.5194/amt-15-3439-2022, 2022
Short summary
Short summary
We report on the GOME-2A and GOME-2B OClO dataset (2007 to 2016, from the EUMETSAT's AC SAF) validation using data from nine NDACC zenith-scattered-light DOAS (ZSL-DOAS) instruments distributed in both the Arctic and Antarctic. Specific sensitivity tests are performed on the ground-based data to estimate the impact of the different OClO DOAS analysis settings and their typical errors. Good agreement is found for both the inter-annual variability and the overall OClO seasonal behavior.
África Barreto, Rosa D. García, Carmen Guirado-Fuentes, Emilio Cuevas, A. Fernando Almansa, Celia Milford, Carlos Toledano, Francisco J. Expósito, Juan P. Díaz, and Sergio F. León-Luis
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-231, https://doi.org/10.5194/acp-2022-231, 2022
Preprint under review for ACP
Short summary
Short summary
A comprehensive characterization of atmospheric aerosols in the Subtropical Eastern North Atlantic has been carried out in this paper using long-term ground- AERONET photometric observations from a unique network made up of four stations strategically located from the sea level to 3555 m height on the island of Tenerife over the period 2005–2020. This is a region that can be considered a key location to study the seasonal dependence in the dust transport from the Sahel-Sahara.
Roberto Román, Juan C. Antuña-Sánchez, Victoria E. Cachorro, Carlos Toledano, Benjamín Torres, David Mateos, David Fuertes, César López, Ramiro González, Tatyana Lapionok, Marcos Herreras-Giralda, Oleg Dubovik, and Ángel M. de Frutos
Atmos. Meas. Tech., 15, 407–433, https://doi.org/10.5194/amt-15-407-2022, https://doi.org/10.5194/amt-15-407-2022, 2022
Short summary
Short summary
An all-sky camera is used to obtain the relative sky radiance, and this radiance is used as input in an inversion code to obtain aerosol properties. This paper is really interesting because it pushes forward the use and capability of sky cameras for more advanced science purposes. Enhanced aerosol properties can be retrieved with accuracy using only an all-sky camera, but synergy with other instruments providing aerosol optical depth could even increase the power of these low-cost instruments.
África Barreto, Emilio Cuevas, Rosa D. García, Judit Carrillo, Joseph M. Prospero, Luka Ilić, Sara Basart, Alberto J. Berjón, Carlos L. Marrero, Yballa Hernández, Juan José Bustos, Slobodan Ničković, and Margarita Yela
Atmos. Chem. Phys., 22, 739–763, https://doi.org/10.5194/acp-22-739-2022, https://doi.org/10.5194/acp-22-739-2022, 2022
Short summary
Short summary
In this study, we categorise the different patterns of dust transport over the subtropical North Atlantic and for the first time robustly describe the dust vertical distribution in the Saharan Air Layer (SAL) over this region. Our results revealed the important role that both dust and water vapour play in the radiative balance in summer and winter and confirm the role of the SAL in the formation of mid-level clouds as a result of the activation of heterogeneous ice nucleation processes.
Moritz Haarig, Albert Ansmann, Ronny Engelmann, Holger Baars, Carlos Toledano, Benjamin Torres, Dietrich Althausen, Martin Radenz, and Ulla Wandinger
Atmos. Chem. Phys., 22, 355–369, https://doi.org/10.5194/acp-22-355-2022, https://doi.org/10.5194/acp-22-355-2022, 2022
Short summary
Short summary
The irregular shape of dust particles makes it difficult to treat them correctly in optical models. Atmospheric measurements of dust optical properties are therefore of great importance. The present study increases the space of observed parameters from 355 and 532 nm towards 1064 nm, which is of special importance for large dust particles. The lidar ratio influenced by mineralogy and the depolarization ratio influenced by shape are measured for the first time at all three wavelengths.
Qiansi Tu, Frank Hase, Matthias Schneider, Omaira García, Thomas Blumenstock, Tobias Borsdorff, Matthias Frey, Farahnaz Khosrawi, Alba Lorente, Carlos Alberti, Juan J. Bustos, André Butz, Virgilio Carreño, Emilio Cuevas, Roger Curcoll, Christopher J. Diekmann, Darko Dubravica, Benjamin Ertl, Carme Estruch, Sergio Fabián León-Luis, Carlos Marrero, Josep-Anton Morgui, Ramón Ramos, Christian Scharun, Carsten Schneider, Eliezer Sepúlveda, Carlos Toledano, and Carlos Torres
Atmos. Chem. Phys., 22, 295–317, https://doi.org/10.5194/acp-22-295-2022, https://doi.org/10.5194/acp-22-295-2022, 2022
Short summary
Short summary
We use different methane ground- and space-based remote sensing data sets for investigating the emission strength of three waste disposal sites close to Madrid. We present a method that uses wind-assigned anomalies for deriving emission strengths from satellite data and estimate their uncertainty to 9–14 %. The emission strengths estimated from the remote sensing data sets are significantly larger than the values published in the official register.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Omaira E. García, Matthias Schneider, Eliezer Sepúlveda, Frank Hase, Thomas Blumenstock, Emilio Cuevas, Ramón Ramos, Jochen Gross, Sabine Barthlott, Amelie N. Röhling, Esther Sanromá, Yenny González, Ángel J. Gómez-Peláez, Mónica Navarro-Comas, Olga Puentedura, Margarita Yela, Alberto Redondas, Virgilio Carreño, Sergio F. León-Luis, Enrique Reyes, Rosa D. García, Pedro P. Rivas, Pedro M. Romero-Campos, Carlos Torres, Natalia Prats, Miguel Hernández, and César López
Atmos. Chem. Phys., 21, 15519–15554, https://doi.org/10.5194/acp-21-15519-2021, https://doi.org/10.5194/acp-21-15519-2021, 2021
Short summary
Short summary
This paper analyses the potential of ground-based Fourier transform infrared (FTIR) solar observations to monitor atmospheric gaseous composition and investigate multiple climate processes. To this end, this work reviews the FTIR programme of one of most relevant ground-based FTIR stations at a global scale, the subtropical Izaña Observatory (IZO, Spain), going over its history during its first 20 years of operation (1999–2018) and exploring its great value for long-term climate research.
Juan C. Antuña-Sánchez, Roberto Román, Victoria E. Cachorro, Carlos Toledano, César López, Ramiro González, David Mateos, Abel Calle, and Ángel M. de Frutos
Atmos. Meas. Tech., 14, 2201–2217, https://doi.org/10.5194/amt-14-2201-2021, https://doi.org/10.5194/amt-14-2201-2021, 2021
Short summary
Short summary
This paper presents a new technique to exploit the potential of all-sky cameras. The sky radiance at three effective wavelengths is calculated and compared with alternative measurements and simulated data. The proposed method will be useful for the retrieval of aerosol and cloud properties.
Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Jean-Christopher Lambert, Henk J. Eskes, Kai-Uwe Eichmann, Ann Mari Fjæraa, José Granville, Sander Niemeijer, Alexander Cede, Martin Tiefengraber, François Hendrick, Andrea Pazmiño, Alkiviadis Bais, Ariane Bazureau, K. Folkert Boersma, Kristof Bognar, Angelika Dehn, Sebastian Donner, Aleksandr Elokhov, Manuel Gebetsberger, Florence Goutail, Michel Grutter de la Mora, Aleksandr Gruzdev, Myrto Gratsea, Georg H. Hansen, Hitoshi Irie, Nis Jepsen, Yugo Kanaya, Dimitris Karagkiozidis, Rigel Kivi, Karin Kreher, Pieternel F. Levelt, Cheng Liu, Moritz Müller, Monica Navarro Comas, Ankie J. M. Piters, Jean-Pierre Pommereau, Thierry Portafaix, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Julia Remmers, Andreas Richter, John Rimmer, Claudia Rivera Cárdenas, Lidia Saavedra de Miguel, Valery P. Sinyakov, Wolfgang Stremme, Kimberly Strong, Michel Van Roozendael, J. Pepijn Veefkind, Thomas Wagner, Folkard Wittrock, Margarita Yela González, and Claus Zehner
Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, https://doi.org/10.5194/amt-14-481-2021, 2021
Short summary
Short summary
This paper reports on the ground-based validation of the NO2 data produced operationally by the TROPOMI instrument on board the Sentinel-5 Precursor satellite. Tropospheric, stratospheric, and total NO2 columns are compared to measurements collected from MAX-DOAS, ZSL-DOAS, and PGN/Pandora instruments respectively. The products are found to satisfy mission requirements in general, though negative mean differences are found at sites with high pollution levels. Potential causes are discussed.
Jan-Lukas Tirpitz, Udo Frieß, François Hendrick, Carlos Alberti, Marc Allaart, Arnoud Apituley, Alkis Bais, Steffen Beirle, Stijn Berkhout, Kristof Bognar, Tim Bösch, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Mirjam den Hoed, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Martina M. Friedrich, Arnoud Frumau, Lou Gast, Clio Gielen, Laura Gomez-Martín, Nan Hao, Arjan Hensen, Bas Henzing, Christian Hermans, Junli Jin, Karin Kreher, Jonas Kuhn, Johannes Lampel, Ang Li, Cheng Liu, Haoran Liu, Jianzhong Ma, Alexis Merlaud, Enno Peters, Gaia Pinardi, Ankie Piters, Ulrich Platt, Olga Puentedura, Andreas Richter, Stefan Schmitt, Elena Spinei, Deborah Stein Zweers, Kimberly Strong, Daan Swart, Frederik Tack, Martin Tiefengraber, René van der Hoff, Michel van Roozendael, Tim Vlemmix, Jan Vonk, Thomas Wagner, Yang Wang, Zhuoru Wang, Mark Wenig, Matthias Wiegner, Folkard Wittrock, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 14, 1–35, https://doi.org/10.5194/amt-14-1-2021, https://doi.org/10.5194/amt-14-1-2021, 2021
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a ground-based remote sensing measurement technique that derives atmospheric aerosol and trace gas vertical profiles from skylight spectra. In this study, consistency and reliability of MAX-DOAS profiles are assessed by applying nine different evaluation algorithms to spectral data recorded during an intercomparison campaign in the Netherlands and by comparing the results to colocated supporting observations.
Roberto Román, Ramiro González, Carlos Toledano, África Barreto, Daniel Pérez-Ramírez, Jose A. Benavent-Oltra, Francisco J. Olmo, Victoria E. Cachorro, Lucas Alados-Arboledas, and Ángel M. de Frutos
Atmos. Meas. Tech., 13, 6293–6310, https://doi.org/10.5194/amt-13-6293-2020, https://doi.org/10.5194/amt-13-6293-2020, 2020
Short summary
Short summary
Atmospheric-aerosol and gaseous properties can be derived at night-time if the lunar irradiance at the ground is measured. To this end, the knowledge of lunar irradiance at the top of the atmosphere is necessary. This extraterrestrial lunar irradiance is usually calculated by models since it varies with several geometric factors mainly depending on time and location. This paper proposes a correction to the most used lunar-irradiance model to be applied for atmospheric-aerosol characterization.
Ramiro González, Carlos Toledano, Roberto Román, David Fuertes, Alberto Berjón, David Mateos, Carmen Guirado-Fuentes, Cristian Velasco-Merino, Juan Carlos Antuña-Sánchez, Abel Calle, Victoria E. Cachorro, and Ángel M. de Frutos
Geosci. Instrum. Method. Data Syst., 9, 417–433, https://doi.org/10.5194/gi-9-417-2020, https://doi.org/10.5194/gi-9-417-2020, 2020
Short summary
Short summary
Aerosol optical depth (AOD) is a parameter widely used in remote sensing for the characterization of atmospheric aerosol particles. AERONET was created by NASA for aerosol monitoring as well as satellite and model validation. The University of Valladolid (UVa) has managed an AERONET calibration center since 2006. The CÆLIS software tool, developed by UVa, was created to manage the data generated by AERONET photometers. The AOD algorithm in CÆLIS is developed and validated in this work.
Yang Wang, Arnoud Apituley, Alkiviadis Bais, Steffen Beirle, Nuria Benavent, Alexander Borovski, Ilya Bruchkouski, Ka Lok Chan, Sebastian Donner, Theano Drosoglou, Henning Finkenzeller, Martina M. Friedrich, Udo Frieß, David Garcia-Nieto, Laura Gómez-Martín, François Hendrick, Andreas Hilboll, Junli Jin, Paul Johnston, Theodore K. Koenig, Karin Kreher, Vinod Kumar, Aleksandra Kyuberis, Johannes Lampel, Cheng Liu, Haoran Liu, Jianzhong Ma, Oleg L. Polyansky, Oleg Postylyakov, Richard Querel, Alfonso Saiz-Lopez, Stefan Schmitt, Xin Tian, Jan-Lukas Tirpitz, Michel Van Roozendael, Rainer Volkamer, Zhuoru Wang, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Thomas Wagner
Atmos. Meas. Tech., 13, 5087–5116, https://doi.org/10.5194/amt-13-5087-2020, https://doi.org/10.5194/amt-13-5087-2020, 2020
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Rosa Delia García-Cabrera, Emilio Cuevas-Agulló, África Barreto, Victoria Eugenia Cachorro, Mario Pó, Ramón Ramos, and Kees Hoogendijk
Atmos. Meas. Tech., 13, 2601–2621, https://doi.org/10.5194/amt-13-2601-2020, https://doi.org/10.5194/amt-13-2601-2020, 2020
Short summary
Short summary
Spectral direct UV–visible normal solar irradiance, measured with an EKO MS-711 grating spectroradiometer at the Izaña Atmospheric Observatory (Spain), has been used to determine aerosol optical depth (AOD) at several wavelengths, and has been compared to synchronous AOD measurements from a reference AERONET (Aerosol RObotic NETwork) Cimel sun photometer.
Karin Kreher, Michel Van Roozendael, Francois Hendrick, Arnoud Apituley, Ermioni Dimitropoulou, Udo Frieß, Andreas Richter, Thomas Wagner, Johannes Lampel, Nader Abuhassan, Li Ang, Monica Anguas, Alkis Bais, Nuria Benavent, Tim Bösch, Kristof Bognar, Alexander Borovski, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Henning Finkenzeller, David Garcia-Nieto, Clio Gielen, Laura Gómez-Martín, Nan Hao, Bas Henzing, Jay R. Herman, Christian Hermans, Syedul Hoque, Hitoshi Irie, Junli Jin, Paul Johnston, Junaid Khayyam Butt, Fahim Khokhar, Theodore K. Koenig, Jonas Kuhn, Vinod Kumar, Cheng Liu, Jianzhong Ma, Alexis Merlaud, Abhishek K. Mishra, Moritz Müller, Monica Navarro-Comas, Mareike Ostendorf, Andrea Pazmino, Enno Peters, Gaia Pinardi, Manuel Pinharanda, Ankie Piters, Ulrich Platt, Oleg Postylyakov, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Alfonso Saiz-Lopez, Anja Schönhardt, Stefan F. Schreier, André Seyler, Vinayak Sinha, Elena Spinei, Kimberly Strong, Frederik Tack, Xin Tian, Martin Tiefengraber, Jan-Lukas Tirpitz, Jeroen van Gent, Rainer Volkamer, Mihalis Vrekoussis, Shanshan Wang, Zhuoru Wang, Mark Wenig, Folkard Wittrock, Pinhua H. Xie, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 13, 2169–2208, https://doi.org/10.5194/amt-13-2169-2020, https://doi.org/10.5194/amt-13-2169-2020, 2020
Short summary
Short summary
In September 2016, 36 spectrometers from 24 institutes measured a number of key atmospheric pollutants during an instrument intercomparison campaign (CINDI-2) at Cabauw, the Netherlands. Here we report on the outcome of this intercomparison exercise. The three major goals were to characterise the differences between the participating instruments, to define a robust methodology for performance assessment, and to contribute to the harmonisation of the measurement settings and retrieval methods.
Carlos Toledano, Benjamín Torres, Cristian Velasco-Merino, Dietrich Althausen, Silke Groß, Matthias Wiegner, Bernadett Weinzierl, Josef Gasteiger, Albert Ansmann, Ramiro González, David Mateos, David Farrel, Thomas Müller, Moritz Haarig, and Victoria E. Cachorro
Atmos. Chem. Phys., 19, 14571–14583, https://doi.org/10.5194/acp-19-14571-2019, https://doi.org/10.5194/acp-19-14571-2019, 2019
Short summary
Short summary
Ground-based sun photometers have been used to analyze the properties of long-range transported Saharan dust over Barbados. The measurements were carried out as part of the Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE), carried out in the Caribbean in 2013. A variety of instruments, ground-based and airborne, were used in this research. In this paper, the sun photometer data are presented and related to data collected from other co-located instruments.
Jose Antonio Benavent-Oltra, Roberto Román, Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Pablo Ortiz-Amezcua, Andrés Esteban Bedoya-Velásquez, Gregori de Arruda Moreira, África Barreto, Anton Lopatin, David Fuertes, Milagros Herrera, Benjamin Torres, Oleg Dubovik, Juan Luis Guerrero-Rascado, Philippe Goloub, Francisco Jose Olmo-Reyes, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 19, 14149–14171, https://doi.org/10.5194/acp-19-14149-2019, https://doi.org/10.5194/acp-19-14149-2019, 2019
Short summary
Short summary
In this paper, we use the GRASP algorithm combining different
remote-sensing measurements to obtain the aerosol vertical and column properties, both during the day and at night-time. The column properties are compared with AERONET products, and the vertical properties retrieved by GRASP are compared with in situ measurements at high-altitude stations. As an originality, we proposed three new schemes to retrieve the night-time aerosol properties.
Huizheng Che, Xiangao Xia, Hujia Zhao, Oleg Dubovik, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Victor Estelles, Yaqiang Wang, Jun Zhu, Bing Qi, Wei Gong, Honglong Yang, Renjian Zhang, Leiku Yang, Jing Chen, Hong Wang, Yu Zheng, Ke Gui, Xiaochun Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 11843–11864, https://doi.org/10.5194/acp-19-11843-2019, https://doi.org/10.5194/acp-19-11843-2019, 2019
Short summary
Short summary
A full-scale description of ground-based aerosol microphysical and optical properties over China is presented. Moreover, the results have also provided significant information about optical and radiative aerosol properties for different types of sites covering a broad expanse of China. The results have considerable value for ground-truthing satellite observations and validating aerosol models.
Huizheng Che, Ke Gui, Xiangao Xia, Yaqiang Wang, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Hong Wang, Yu Zheng, Hujia Zhao, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 10497–10523, https://doi.org/10.5194/acp-19-10497-2019, https://doi.org/10.5194/acp-19-10497-2019, 2019
Short summary
Short summary
A comprehensive assessment of the global and regional AOD trends over the past 37 years (1980–2016) is presented. AOD observations from both AERONET and CARSNET were used for the first time to assess the performance of the MERRA-2 AOD dataset on a global scale. Based on statistical models, we found the meteorological parameters explained a larger proportion of the regional AOD variability (20.4 %–2.8 %) when compared with emission factors (0 %%–56 %).
Emilio Cuevas, Pedro Miguel Romero-Campos, Natalia Kouremeti, Stelios Kazadzis, Petri Räisänen, Rosa Delia García, Africa Barreto, Carmen Guirado-Fuentes, Ramón Ramos, Carlos Toledano, Fernando Almansa, and Julian Gröbner
Atmos. Meas. Tech., 12, 4309–4337, https://doi.org/10.5194/amt-12-4309-2019, https://doi.org/10.5194/amt-12-4309-2019, 2019
Short summary
Short summary
A comprehensive comparison of more than 70 000 synchronous 1 min aerosol optical depth (AOD) data from 3 Global Atmosphere Watch precision filter radiometers (GAW-PFR) and 15 Aerosol Robotic Network Cimel radiometers (AERONET-Cimel) was performed for the four
nearwavelengths (380, 440, 500 and 870 nm) in the period 2005–2015. The goal of this study is to assess whether their long term AOD data are comparable and consistent.
Thomas Wagner, Steffen Beirle, Nuria Benavent, Tim Bösch, Ka Lok Chan, Sebastian Donner, Steffen Dörner, Caroline Fayt, Udo Frieß, David García-Nieto, Clio Gielen, David González-Bartolome, Laura Gomez, François Hendrick, Bas Henzing, Jun Li Jin, Johannes Lampel, Jianzhong Ma, Kornelia Mies, Mónica Navarro, Enno Peters, Gaia Pinardi, Olga Puentedura, Janis Puķīte, Julia Remmers, Andreas Richter, Alfonso Saiz-Lopez, Reza Shaiganfar, Holger Sihler, Michel Van Roozendael, Yang Wang, and Margarita Yela
Atmos. Meas. Tech., 12, 2745–2817, https://doi.org/10.5194/amt-12-2745-2019, https://doi.org/10.5194/amt-12-2745-2019, 2019
Short summary
Short summary
In this study the consistency between MAX-DOAS measurements and radiative transfer simulations of the atmospheric O4 absorption is investigated. The study is based on measurements (2 selected days during the MADCAT campaign) as well as synthetic spectra. The uncertainties of all relevant aspects (spectral retrieval and radiative transfer simulations) are quantified. For one of the selected days, measurements and simulations do not agree within their uncertainties.
Angel J. Gomez-Pelaez, Ramon Ramos, Emilio Cuevas, Vanessa Gomez-Trueba, and Enrique Reyes
Atmos. Meas. Tech., 12, 2043–2066, https://doi.org/10.5194/amt-12-2043-2019, https://doi.org/10.5194/amt-12-2043-2019, 2019
Short summary
Short summary
In 2015, a CO2/CH4/CO CRDS was installed at Izaña station (Tenerife). We present the acceptance tests, the processing of raw data applied, the ambient measurements performed, and their comparison with other continuous in situ measurements. We determine linear relationships between flow rate, CRDS inlet pressure, and CRDS outlet valve aperture; a slight CO2 correction that takes into account changes in the inlet pressure/flow rate and its origin; and the H2O correction for CO in a novel way.
Rosa Delia García, Emilio Cuevas, Ramón Ramos, Victoria Eugenia Cachorro, Alberto Redondas, and José A. Moreno-Ruiz
Geosci. Instrum. Method. Data Syst., 8, 77–96, https://doi.org/10.5194/gi-8-77-2019, https://doi.org/10.5194/gi-8-77-2019, 2019
Short summary
Short summary
IZA is a high-mountain station located in Tenerife (Canary Islands, Spain, at 28.3º N, 16.5º W; 2373 m a.s.l.) and is a representative site of the subtropical North Atlantic free troposphere. It contributes with basic-BSRN radiation measurements, such as, global shortwave radiation, direct radiation, diffuse radiation and longwave downward radiation and extended-BSRN measurements, including ultraviolet ranges, shortwave upward radiation and longwave upward radiation.
Carlos Toledano, Ramiro González, David Fuertes, Emilio Cuevas, Thomas F. Eck, Stelios Kazadzis, Natalia Kouremeti, Julian Gröbner, Philippe Goloub, Luc Blarel, Roberto Román, África Barreto, Alberto Berjón, Brent N. Holben, and Victoria E. Cachorro
Atmos. Chem. Phys., 18, 14555–14567, https://doi.org/10.5194/acp-18-14555-2018, https://doi.org/10.5194/acp-18-14555-2018, 2018
Short summary
Short summary
Most of the ground-based radiometric networks have their reference instruments and/or calibrate them at Mauna Loa or Izaña. The suitability of these high-mountain stations for absolute radiometric calibrations is investigated with the support of 20 years of first-class Sun photometer data from the AERONET and GAW-PFR networks. We analyze the number of calibration days at each site in a climatological sense and investigate the uncertainty of the calibrations based on long-term statistics.
Amelie Driemel, John Augustine, Klaus Behrens, Sergio Colle, Christopher Cox, Emilio Cuevas-Agulló, Fred M. Denn, Thierry Duprat, Masato Fukuda, Hannes Grobe, Martial Haeffelin, Gary Hodges, Nicole Hyett, Osamu Ijima, Ain Kallis, Wouter Knap, Vasilii Kustov, Charles N. Long, David Longenecker, Angelo Lupi, Marion Maturilli, Mohamed Mimouni, Lucky Ntsangwane, Hiroyuki Ogihara, Xabier Olano, Marc Olefs, Masao Omori, Lance Passamani, Enio Bueno Pereira, Holger Schmithüsen, Stefanie Schumacher, Rainer Sieger, Jonathan Tamlyn, Roland Vogt, Laurent Vuilleumier, Xiangao Xia, Atsumu Ohmura, and Gert König-Langlo
Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, https://doi.org/10.5194/essd-10-1491-2018, 2018
Short summary
Short summary
The Baseline Surface Radiation Network (BSRN) collects and centrally archives high-quality ground-based radiation measurements in 1 min resolution. More than 10 300 months, i.e., > 850 years, of high-radiation data in 1 min resolution from the years 1992 to 2017 are available. The network currently comprises 59 stations collectively representing all seven continents as well as island-based stations in the Pacific, Atlantic, Indian and Arctic oceans.
Angela Benedetti, Jeffrey S. Reid, Peter Knippertz, John H. Marsham, Francesca Di Giuseppe, Samuel Rémy, Sara Basart, Olivier Boucher, Ian M. Brooks, Laurent Menut, Lucia Mona, Paolo Laj, Gelsomina Pappalardo, Alfred Wiedensohler, Alexander Baklanov, Malcolm Brooks, Peter R. Colarco, Emilio Cuevas, Arlindo da Silva, Jeronimo Escribano, Johannes Flemming, Nicolas Huneeus, Oriol Jorba, Stelios Kazadzis, Stefan Kinne, Thomas Popp, Patricia K. Quinn, Thomas T. Sekiyama, Taichu Tanaka, and Enric Terradellas
Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, https://doi.org/10.5194/acp-18-10615-2018, 2018
Short summary
Short summary
Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centers. This development is due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation authorities, solar energy plant managers, climate service providers, and health professionals. This paper describes the advances in the field and sets out requirements for observations for the sustainability of these activities.
Cristian Velasco-Merino, David Mateos, Carlos Toledano, Joseph M. Prospero, Jack Molinie, Lovely Euphrasie-Clotilde, Ramiro González, Victoria E. Cachorro, Abel Calle, and Angel M. de Frutos
Atmos. Chem. Phys., 18, 9411–9424, https://doi.org/10.5194/acp-18-9411-2018, https://doi.org/10.5194/acp-18-9411-2018, 2018
Short summary
Short summary
We present the first comparison of columnar aerosol properties recorded by sun photometry of Saharan dust between western Africa and Caribbean Basin. A comprehensive climatology of 20 years of data is presented in the two areas. To our knowledge, we present the first global climatology of columnar aerosols in the Caribbean Basin. Changes after transport in aerosol load, size distribution, shape, and absorbing and scattering variables are quantified using long-term records between 1996 and 2014.
Alberto Redondas, Saulius Nevas, Alberto Berjón, Meelis-Mait Sildoja, Sergio Fabian León-Luis, Virgilio Carreño, and Daniel Santana-Díaz
Atmos. Meas. Tech., 11, 3759–3768, https://doi.org/10.5194/amt-11-3759-2018, https://doi.org/10.5194/amt-11-3759-2018, 2018
Short summary
Short summary
We present the wavelength calibration of the travelling reference Brewer spectrometer of the Regional Brewer Calibration Center for Europe at PTB in Braunschweig. We compare these results to those of the standard procedure for the wavelength calibration of the Brewer. The results of the laser-based calibrations reproduce those obtained by the standard operational methodology and show that there is a underestimation of 0.8 %, due the use of the parametrized slit functions.
Cristina Prados-Roman, Laura Gómez-Martín, Olga Puentedura, Mónica Navarro-Comas, Javier Iglesias, José Ramón de Mingo, Manuel Pérez, Héctor Ochoa, María Elena Barlasina, Gerardo Carbajal, and Margarita Yela
Atmos. Chem. Phys., 18, 8549–8570, https://doi.org/10.5194/acp-18-8549-2018, https://doi.org/10.5194/acp-18-8549-2018, 2018
Short summary
Short summary
Despite the efforts of the scientific community, the abundance and distribution of reactive bromine (BrOx) in the Antarctic troposphere is still poorly characterized. This work presents the first ground-based observations of tropospheric BrO from the Antarctic sites of Belgrano and Marambio. The 2015 measurements reported are also the first contemporary observations of BrO vertical profiles from two Antarctic sites and depict the geographical heterogeneity of BrOx in the Antarctic troposphere.
Rosa Delia García, Africa Barreto, Emilio Cuevas, Julian Gröbner, Omaira Elena García, Angel Gómez-Peláez, Pedro Miguel Romero-Campos, Alberto Redondas, Victoria Eugenia Cachorro, and Ramon Ramos
Geosci. Model Dev., 11, 2139–2152, https://doi.org/10.5194/gmd-11-2139-2018, https://doi.org/10.5194/gmd-11-2139-2018, 2018
Short summary
Short summary
A 7-year comparison study between measured and simulated longwave
downward radiation under cloud-free conditions has been performed at BSRN Izaña. Results show an excellent agreement with a mean bias (simulated–measured) less than 1.1 % and RMSE less than 1 %, which are within the instrumental error (2 %).
Juan Carlos Antuña-Marrero, Victoria Cachorro Revilla, Frank García Parrado, Ángel de Frutos Baraja, Albeth Rodríguez Vega, David Mateos, René Estevan Arredondo, and Carlos Toledano
Atmos. Meas. Tech., 11, 2279–2293, https://doi.org/10.5194/amt-11-2279-2018, https://doi.org/10.5194/amt-11-2279-2018, 2018
Short summary
Short summary
Comparing AOD measurements from MODIS (Terra and Aqua), sun photometer and pyrheliometers broadband instruments in Cuba.
Javier López-Solano, Alberto Redondas, Thomas Carlund, Juan J. Rodriguez-Franco, Henri Diémoz, Sergio F. León-Luis, Bentorey Hernández-Cruz, Carmen Guirado-Fuentes, Natalia Kouremeti, Julian Gröbner, Stelios Kazadzis, Virgilio Carreño, Alberto Berjón, Daniel Santana-Díaz, Manuel Rodríguez-Valido, Veerle De Bock, Juan R. Moreta, John Rimmer, Andrew R. D. Smedley, Lamine Boulkelia, Nis Jepsen, Paul Eriksen, Alkiviadis F. Bais, Vadim Shirotov, José M. Vilaplana, Keith M. Wilson, and Tomi Karppinen
Atmos. Chem. Phys., 18, 3885–3902, https://doi.org/10.5194/acp-18-3885-2018, https://doi.org/10.5194/acp-18-3885-2018, 2018
Short summary
Short summary
The European Brewer Network (EUBREWNET, COST Action ES1207) is comprised of close to 50 instruments and currently provides near-real-time ozone and UV data. Aerosols also play key role in the Earth–atmosphere system and introduce a large uncertainty into our understanding of climate change. In this work we describe and validate a method to incorporate the measurement of aerosols in EUBREWNET. We find that this Brewer network can provide reliable aerosol data across Europe in the UV range.
Stelios Kazadzis, Natalia Kouremeti, Henri Diémoz, Julian Gröbner, Bruce W. Forgan, Monica Campanelli, Victor Estellés, Kathleen Lantz, Joseph Michalsky, Thomas Carlund, Emilio Cuevas, Carlos Toledano, Ralf Becker, Stephan Nyeki, Panagiotis G. Kosmopoulos, Viktar Tatsiankou, Laurent Vuilleumier, Frederick M. Denn, Nozomu Ohkawara, Osamu Ijima, Philippe Goloub, Panagiotis I. Raptis, Michael Milner, Klaus Behrens, Africa Barreto, Giovanni Martucci, Emiel Hall, James Wendell, Bryan E. Fabbri, and Christoph Wehrli
Atmos. Chem. Phys., 18, 3185–3201, https://doi.org/10.5194/acp-18-3185-2018, https://doi.org/10.5194/acp-18-3185-2018, 2018
Short summary
Short summary
Aerosol optical depth measured from ground-based sun photometers is the most important parameter for studying the changes in the Earth's radiation balance due to aerosols. Representatives for various sun photometer types belonging to individual institutions or international aerosol networks gather every 5 years, for 3 weeks, in Davos, Switzerland, in order to compare their aeorosol optical depth retrievals. This work presents the results of the latest (fourth) filter radiometer intercomparison.
David Fuertes, Carlos Toledano, Ramiro González, Alberto Berjón, Benjamín Torres, Victoria E. Cachorro, and Ángel M. de Frutos
Geosci. Instrum. Method. Data Syst., 7, 67–81, https://doi.org/10.5194/gi-7-67-2018, https://doi.org/10.5194/gi-7-67-2018, 2018
Short summary
Short summary
CÆLIS is a software system which aims at simplifying the management of a photometric ground-based network, providing tools by monitoring the instruments, processing the data in real time and offering the scientific community a new tool to work with the data. The present work describes the system architecture of CÆLIS and some examples of applications and data processing.
Huizheng Che, Bing Qi, Hujia Zhao, Xiangao Xia, Thomas F. Eck, Philippe Goloub, Oleg Dubovik, Victor Estelles, Emilio Cuevas-Agulló, Luc Blarel, Yunfei Wu, Jun Zhu, Rongguang Du, Yaqiang Wang, Hong Wang, Ke Gui, Jie Yu, Yu Zheng, Tianze Sun, Quanliang Chen, Guangyu Shi, and Xiaoye Zhang
Atmos. Chem. Phys., 18, 405–425, https://doi.org/10.5194/acp-18-405-2018, https://doi.org/10.5194/acp-18-405-2018, 2018
Short summary
Short summary
Sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify aerosols based on size and absorption. This study contributes to our understanding of aerosols and regional climate/air quality, and the results will be useful for validating satellite retrievals and for improving climate models and remote sensing.
Margarita Yela, Manuel Gil-Ojeda, Mónica Navarro-Comas, David Gonzalez-Bartolomé, Olga Puentedura, Bernd Funke, Javier Iglesias, Santiago Rodríguez, Omaira García, Héctor Ochoa, and Guillermo Deferrari
Atmos. Chem. Phys., 17, 13373–13389, https://doi.org/10.5194/acp-17-13373-2017, https://doi.org/10.5194/acp-17-13373-2017, 2017
Short summary
Short summary
The paper focuses on stratospheric trends of NO2, a species involved in the ozone equilibrium, using data from four NDACC stations. The global stratospheric NO2 trend has not yet been established conclusively. We analyse DOAS data from stations in the Northern Hemisphere and Southern Hemisphere during 1993–2014. The most relevant finding is the hemispheric asymmetry found in the sign of the NO2 trend, providing further evidence of changes in the stratosphere dynamics on the global scale.
Benjamin Torres, Oleg Dubovik, David Fuertes, Gregory Schuster, Victoria Eugenia Cachorro, Tatsiana Lapyonok, Philippe Goloub, Luc Blarel, Africa Barreto, Marc Mallet, Carlos Toledano, and Didier Tanré
Atmos. Meas. Tech., 10, 3743–3781, https://doi.org/10.5194/amt-10-3743-2017, https://doi.org/10.5194/amt-10-3743-2017, 2017
Short summary
Short summary
This study evaluates the potential of using only aerosol optical depth measurements to characterise the microphysical and optical properties of atmospheric aerosols. With this aim, we used the recently developed GRASP algorithm. The practical motivation for the present study is the large amount of optical-depth-only measurements that exist in the ground-based networks. The retrievals could complete an existing data set of aerosol properties that is key to understanding aerosol climate effects.
Alberto Cazorla, Juan Andrés Casquero-Vera, Roberto Román, Juan Luis Guerrero-Rascado, Carlos Toledano, Victoria E. Cachorro, José Antonio G. Orza, María Luisa Cancillo, Antonio Serrano, Gloria Titos, Marco Pandolfi, Andres Alastuey, Natalie Hanrieder, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 17, 11861–11876, https://doi.org/10.5194/acp-17-11861-2017, https://doi.org/10.5194/acp-17-11861-2017, 2017
Short summary
Short summary
This work presents a method for the calibration and automated quality assurance of inversion of ceilometer profiles that is applied to the Iberian Ceilometer Network (ICENET). A cast study during an unusually intense dust outbreak affecting the Iberian Peninsula is shown. Results reveal that it is possible to obtain a quantitative optical aerosol characterization with ceilometers over large areas, and this information has a great potential for alert systems and model assimilation and evaluation.
Moritz Haarig, Albert Ansmann, Dietrich Althausen, André Klepel, Silke Groß, Volker Freudenthaler, Carlos Toledano, Rodanthi-Elisavet Mamouri, David A. Farrell, Damien A. Prescod, Eleni Marinou, Sharon P. Burton, Josef Gasteiger, Ronny Engelmann, and Holger Baars
Atmos. Chem. Phys., 17, 10767–10794, https://doi.org/10.5194/acp-17-10767-2017, https://doi.org/10.5194/acp-17-10767-2017, 2017
Short summary
Short summary
Our measurements performed with a lidar on Barbados give a vertical profile of Saharan dust, which was transported over 5000 km across the Atlantic. The new triple-wavelength depolarization technique reveals more information about the shape and size of dust, which will improve our understanding of the aging process of dust in the atmosphere and its representation in dust models. Changing properties of dust particles influence the solar radiation and the cloud properties and thus our climate.
África Barreto, Roberto Román, Emilio Cuevas, Alberto J. Berjón, A. Fernando Almansa, Carlos Toledano, Ramiro González, Yballa Hernández, Luc Blarel, Philippe Goloub, Carmen Guirado, and Margarita Yela
Atmos. Meas. Tech., 10, 3007–3019, https://doi.org/10.5194/amt-10-3007-2017, https://doi.org/10.5194/amt-10-3007-2017, 2017
Short summary
Short summary
This work involves a first analysis of the systematic errors observed in the AOD retrieved at nighttime using the Sun–sky–lunar CE318-T photometer. In this respect, this paper is a first attempt to correct the AOD uncertainties that currently affect the lunar photometry by means of an empirical regression model. We have detected and corrected an important bias correlated to the Moon's phase and zenith angles, especially at longer wavelength channels.
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J. R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette Joseph, Rigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin-Ya Ogino, Nozomu Ohkawara, Ankie J. M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter von der Gathen, Jacquelyn C. Witte, and Margarita Yela
Atmos. Meas. Tech., 10, 2455–2475, https://doi.org/10.5194/amt-10-2455-2017, https://doi.org/10.5194/amt-10-2455-2017, 2017
Short summary
Short summary
It is essential to understand the data quality of +10-year OMI ozone product and impacts of the “row anomaly” (RA). We validate the OMI Ozone Profile (PROFOZ) product from Oct 2004 to Dec 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability.
Enno Peters, Gaia Pinardi, André Seyler, Andreas Richter, Folkard Wittrock, Tim Bösch, Michel Van Roozendael, François Hendrick, Theano Drosoglou, Alkiviadis F. Bais, Yugo Kanaya, Xiaoyi Zhao, Kimberly Strong, Johannes Lampel, Rainer Volkamer, Theodore Koenig, Ivan Ortega, Olga Puentedura, Mónica Navarro-Comas, Laura Gómez, Margarita Yela González, Ankie Piters, Julia Remmers, Yang Wang, Thomas Wagner, Shanshan Wang, Alfonso Saiz-Lopez, David García-Nieto, Carlos A. Cuevas, Nuria Benavent, Richard Querel, Paul Johnston, Oleg Postylyakov, Alexander Borovski, Alexander Elokhov, Ilya Bruchkouski, Haoran Liu, Cheng Liu, Qianqian Hong, Claudia Rivera, Michel Grutter, Wolfgang Stremme, M. Fahim Khokhar, Junaid Khayyam, and John P. Burrows
Atmos. Meas. Tech., 10, 955–978, https://doi.org/10.5194/amt-10-955-2017, https://doi.org/10.5194/amt-10-955-2017, 2017
Short summary
Short summary
This work is about harmonization of differential optical absorption spectroscopy retrieval codes, which is a remote sensing technique widely used to derive atmospheric trace gas amounts. The study is based on ground-based measurements performed during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany, in summer 2013. In total, 17 international groups working in the field of the DOAS technique participated in this study.
Rosa Delia García, Emilio Cuevas, Omaira Elena García, Ramón Ramos, Pedro Miguel Romero-Campos, Fernado de Ory, Victoria Eugenia Cachorro, and Angel de Frutos
Atmos. Meas. Tech., 10, 731–743, https://doi.org/10.5194/amt-10-731-2017, https://doi.org/10.5194/amt-10-731-2017, 2017
Short summary
Short summary
A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory. We compare global solar radiation (GSR) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer and a bimetallic pyranometer, and with GSR estimated from sunshine duration performed with a CS sunshine recorder.
A. Fernando Almansa, Emilio Cuevas, Benjamín Torres, África Barreto, Rosa D. García, Victoria E. Cachorro, Ángel M. de Frutos, César López, and Ramón Ramos
Atmos. Meas. Tech., 10, 565–579, https://doi.org/10.5194/amt-10-565-2017, https://doi.org/10.5194/amt-10-565-2017, 2017
Short summary
Short summary
This study presents a new zenith-looking narrow-band radiometer-based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring. The ZEN system comprises a robust and automated radiometer (ZEN-R41), and a lookup table methodology for AOD retrieval (ZEN-LUT). Our results suggest that ZEN is a suitable system to fill the current observational gaps and to complement observations performed by sun-photometer networks in order to improve mineral dust monitoring in remote locations.
Silke Groß, Josef Gasteiger, Volker Freudenthaler, Thomas Müller, Daniel Sauer, Carlos Toledano, and Albert Ansmann
Atmos. Chem. Phys., 16, 11535–11546, https://doi.org/10.5194/acp-16-11535-2016, https://doi.org/10.5194/acp-16-11535-2016, 2016
Short summary
Short summary
Dual-wavelength depolarization sensitive Raman lidar measurements were used to characterize the optical properties of the dust loaded convective boundary layer over the Caribbean. Furthermore we derived the dust volume fraction and dust mass concentration within the convective boundary layer.
Victoria E. Cachorro, Maria A. Burgos, David Mateos, Carlos Toledano, Yasmine Bennouna, Benjamín Torres, Ángel M. de Frutos, and Álvaro Herguedas
Atmos. Chem. Phys., 16, 8227–8248, https://doi.org/10.5194/acp-16-8227-2016, https://doi.org/10.5194/acp-16-8227-2016, 2016
Short summary
Short summary
This study presents the first desert dust (DD) long-term inventory simultaneously using columnar aerosol optical depth (AOD) and the Ångström exponent and surface particulate-matter (PM) concentrations. The DD contribution to the aerosol load is evaluated in the period 2003–2014 for columnar and surface data, analysing the correlation between DD contributions to AOD and PM10. Saharan mineral dust can explain up to 30 % of the total aerosol load decrease observed in the study area.
E. Cuevas, Á. J. Gómez-Peláez, S. Rodríguez, E. Terradellas, S. Basart, R. D. García, O. E. García, and S. Alonso-Pérez
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-287, https://doi.org/10.5194/acp-2016-287, 2016
Revised manuscript not accepted
Short summary
Short summary
We revise the North African Dipole Intensity (NAFDI) index, and explain and quantify its relationship with the Saharan Heat Low (SHL) and mid-latitude Rossby waves. An analysis of aerosol optical depth anomalies over Northern Africa is performed for each phase of NAFDI/SHL. A comprehensive top-down conceptual model is introduced to explain the relationships between the NAFDI, the SHL and the mid-latitude Rossby waves and their impact in dust mobilization and transport in Northern Africa.
N. Huneeus, S. Basart, S. Fiedler, J.-J. Morcrette, A. Benedetti, J. Mulcahy, E. Terradellas, C. Pérez García-Pando, G. Pejanovic, S. Nickovic, P. Arsenovic, M. Schulz, E. Cuevas, J. M. Baldasano, J. Pey, S. Remy, and B. Cvetkovic
Atmos. Chem. Phys., 16, 4967–4986, https://doi.org/10.5194/acp-16-4967-2016, https://doi.org/10.5194/acp-16-4967-2016, 2016
Short summary
Short summary
Five dust models are evaluated regarding their performance in predicting an intense Saharan dust outbreak affecting western and northern Europe (NE). Models predict the onset and evolution of the event for all analysed lead times. On average, differences among the models are larger than differences in lead times for each model. The models tend to underestimate the long-range transport towards NE. This is partly due to difficulties in simulating the vertical dust distribution and horizontal wind.
Yenny González, Matthias Schneider, Christoph Dyroff, Sergio Rodríguez, Emanuel Christner, Omaira Elena García, Emilio Cuevas, Juan Jose Bustos, Ramon Ramos, Carmen Guirado-Fuentes, Sabine Barthlott, Andreas Wiegele, and Eliezer Sepúlveda
Atmos. Chem. Phys., 16, 4251–4269, https://doi.org/10.5194/acp-16-4251-2016, https://doi.org/10.5194/acp-16-4251-2016, 2016
Short summary
Short summary
Measurements of water vapour isotopologues, dust, and a back trajectory model were used to identify moisture pathways in the subtropical North Atlantic. Dry air masses, from condensation at low temperatures, are transported from high altitudes and latitudes. The humid sources are related to the mixture, with lower and more humid air during transport. Rain re-evaporation was an occasional source of moisture. In summer, an important humidity source is the strong dry convection over the Sahara.
África Barreto, Emilio Cuevas, María-José Granados-Muñoz, Lucas Alados-Arboledas, Pedro M. Romero, Julian Gröbner, Natalia Kouremeti, Antonio F. Almansa, Tom Stone, Carlos Toledano, Roberto Román, Mikhail Sorokin, Brent Holben, Marius Canini, and Margarita Yela
Atmos. Meas. Tech., 9, 631–654, https://doi.org/10.5194/amt-9-631-2016, https://doi.org/10.5194/amt-9-631-2016, 2016
Short summary
Short summary
This paper presents the new photometer CE318-T, able to perform daytime and
night-time photometric measurements using the sun and the moon as light
sources. This new device permits a complete cycle of diurnal aerosol and water vapour measurements to be extracted, valuable to enhance atmospheric monitoring. We have also highlighted the ability of this new device to capture short-term atmospheric variations, critical for climate studies.
R. D. García, O. E. García, E. Cuevas, V. E. Cachorro, A. Barreto, C. Guirado-Fuentes, N. Kouremeti, J. J. Bustos, P. M. Romero-Campos, and A. M. de Frutos
Atmos. Meas. Tech., 9, 53–62, https://doi.org/10.5194/amt-9-53-2016, https://doi.org/10.5194/amt-9-53-2016, 2016
Short summary
Short summary
This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a precision filter radiometer (PFR) between 2003 and 2013.
H. Eskes, V. Huijnen, A. Arola, A. Benedictow, A.-M. Blechschmidt, E. Botek, O. Boucher, I. Bouarar, S. Chabrillat, E. Cuevas, R. Engelen, H. Flentje, A. Gaudel, J. Griesfeller, L. Jones, J. Kapsomenakis, E. Katragkou, S. Kinne, B. Langerock, M. Razinger, A. Richter, M. Schultz, M. Schulz, N. Sudarchikova, V. Thouret, M. Vrekoussis, A. Wagner, and C. Zerefos
Geosci. Model Dev., 8, 3523–3543, https://doi.org/10.5194/gmd-8-3523-2015, https://doi.org/10.5194/gmd-8-3523-2015, 2015
Short summary
Short summary
The MACC project is preparing the operational atmosphere service of the European Copernicus Programme, and uses data assimilation to combine atmospheric models with available observations. Our paper provides an overview of the aerosol and trace gas validation activity of MACC. Topics are the validation requirements, the measurement data, the assimilation systems, the upgrade procedure, operational aspects and the scoring methods. A summary is provided of recent results, including special events.
S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schäfler, A. Ansmann, and B. Weinzierl
Atmos. Chem. Phys., 15, 11067–11080, https://doi.org/10.5194/acp-15-11067-2015, https://doi.org/10.5194/acp-15-11067-2015, 2015
Short summary
Short summary
In June and July 2013 dual-wavelength lidar measurements were performed in Barbados to study long-range transported Saharan dust across the Atlantic Ocean and investigate transport-induced changes. The focus of our measurements is the intensive optical properties, the lidar ratio and the particle linear depolarization ratio. While the lidar ratio shows no differences compared to the values of fresh Saharan dust, the particle linear depolarization ratio shows slight differences.
M. Gil-Ojeda, M. Navarro-Comas, L. Gómez-Martín, J. A. Adame, A. Saiz-Lopez, C. A. Cuevas, Y. González, O. Puentedura, E. Cuevas, J.-F. Lamarque, D. Kinninson, and S. Tilmes
Atmos. Chem. Phys., 15, 10567–10579, https://doi.org/10.5194/acp-15-10567-2015, https://doi.org/10.5194/acp-15-10567-2015, 2015
Short summary
Short summary
The NO2 seasonal evolution in the free troposphere (FT) has been established for the first time, based on a remote sensing technique (MAXDOAS) and thus avoiding the problems of the local pollution of in situ instruments. A clear seasonality has been found, with background levels of 20-40pptv. Evidence has been found on fast, direct injection of surface air into the free troposphere. This result might have implications on the FT distribution of halogens and other species with marine sources.
F. Chouza, O. Reitebuch, S. Groß, S. Rahm, V. Freudenthaler, C. Toledano, and B. Weinzierl
Atmos. Meas. Tech., 8, 2909–2926, https://doi.org/10.5194/amt-8-2909-2015, https://doi.org/10.5194/amt-8-2909-2015, 2015
S. Rodríguez, E. Cuevas, J. M. Prospero, A. Alastuey, X. Querol, J. López-Solano, M. I. García, and S. Alonso-Pérez
Atmos. Chem. Phys., 15, 7471–7486, https://doi.org/10.5194/acp-15-7471-2015, https://doi.org/10.5194/acp-15-7471-2015, 2015
Short summary
Short summary
Long-term 28-year variability of Saharan dust export to the Atlantic is correlated with large-scale meteorology in North Africa, particularly with the intensity of the Saharan high to tropical low dipole-like pattern, the so-called North African Dipole. Variability in the dipole intensity is connected with winds, monsoon rain band and latitudinal shifts of the Saharan air layer. Variability in the dipole intensity suggests connections with ENSO and the Sahel drought.
E. Cuevas, C. Camino, A. Benedetti, S. Basart, E. Terradellas, J. M. Baldasano, J. J. Morcrette, B. Marticorena, P. Goloub, A. Mortier, A. Berjón, Y. Hernández, M. Gil-Ojeda, and M. Schulz
Atmos. Chem. Phys., 15, 3991–4024, https://doi.org/10.5194/acp-15-3991-2015, https://doi.org/10.5194/acp-15-3991-2015, 2015
Short summary
Short summary
Atmospheric mineral dust from a MACC-II short reanalysis (2007-2008) has been evaluated over northern Africa and the Middle East using satellite aerosol products, AERONET data, in situ PM10 concentrations, and extinction vertical profiles. The MACC-II AOD spatial and temporal variability shows good agreement with satellite sensors and AERONET. We find a good agreement in averaged extinction vertical profiles between MACC-II and lidars. MACC correctly reproduces daily to interannual PM10.
H. Lyamani, A. Valenzuela, D. Perez-Ramirez, C. Toledano, M. J. Granados-Muñoz, F. J. Olmo, and L. Alados-Arboledas
Atmos. Chem. Phys., 15, 2473–2486, https://doi.org/10.5194/acp-15-2473-2015, https://doi.org/10.5194/acp-15-2473-2015, 2015
Short summary
Short summary
High aerosol loads over Alborán were mainly associated with desert dust transport and occasional advection from central European urban-industrial areas. The fine particle load observed over Alborán was surprisingly similar to that obtained over the other three nearest AERONET stations, suggesting homogeneous spatial distribution of fine particle loads over the four studied sites in spite of the large differences in local sources.
D. Mateos, M. Antón, C. Toledano, V. E. Cachorro, L. Alados-Arboledas, M. Sorribas, M. J. Costa, and J. M. Baldasano
Atmos. Chem. Phys., 14, 13497–13514, https://doi.org/10.5194/acp-14-13497-2014, https://doi.org/10.5194/acp-14-13497-2014, 2014
Short summary
Short summary
A long-term analysis of aerosol radiative effects over the Iberian Peninsula is carried out. A reduction of aerosol effects on solar radiation at the surface is observed in the 2000s. Aerosol forcing efficiency is stronger for small and absorbing particles. The contributions of the ultraviolet, visible, and near-infrared spectral intervals to the total shortwave efficiency vary with the aerosol types, producing the visible range the dominant contribution for all aerosol types.
A. Barreto, E. Cuevas, P. Pallé, P. M. Romero, C. Guirado, C. J. Wehrli, and F. Almansa
Atmos. Meas. Tech., 7, 4103–4116, https://doi.org/10.5194/amt-7-4103-2014, https://doi.org/10.5194/amt-7-4103-2014, 2014
C. Guirado, E. Cuevas, V. E. Cachorro, C. Toledano, S. Alonso-Pérez, J. J. Bustos, S. Basart, P. M. Romero, C. Camino, M. Mimouni, L. Zeudmi, P. Goloub, J. M. Baldasano, and A. M. de Frutos
Atmos. Chem. Phys., 14, 11753–11773, https://doi.org/10.5194/acp-14-11753-2014, https://doi.org/10.5194/acp-14-11753-2014, 2014
Short summary
Short summary
Tamanrasset, in the heart of the Sahara, is a key site for aerosol research. The analysis of more than 2 years (2006-2009) of AERONET and KCICLO-corrected sun photometer measurements shows that atmospheric aerosols at Tamanrasset are modulated by the Convective Boundary Layer leading to pure Saharan dust conditions (April-September) and very clear sky conditions (November-February). Dust potential sources and anthropogenic fine aerosols arriving at Tamanrasset are also identified.
L. Gomez, M. Navarro-Comas, O. Puentedura, Y. Gonzalez, E. Cuevas, and M. Gil-Ojeda
Atmos. Meas. Tech., 7, 3373–3386, https://doi.org/10.5194/amt-7-3373-2014, https://doi.org/10.5194/amt-7-3373-2014, 2014
R. D. García, E. Cuevas, O. E. García, V. E. Cachorro, P. Pallé, J. J. Bustos, P. M. Romero-Campos, and A. M. de Frutos
Atmos. Meas. Tech., 7, 3139–3150, https://doi.org/10.5194/amt-7-3139-2014, https://doi.org/10.5194/amt-7-3139-2014, 2014
Y. S. Bennouna, V. Cachorro, M. A. Burgos, C. Toledano, B. Torres, and A. de Frutos
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-7-5829-2014, https://doi.org/10.5194/amtd-7-5829-2014, 2014
Revised manuscript not accepted
H. Che, X. Xia, J. Zhu, Z. Li, O. Dubovik, B. Holben, P. Goloub, H. Chen, V. Estelles, E. Cuevas-Agulló, L. Blarel, H. Wang, H. Zhao, X. Zhang, Y. Wang, J. Sun, R. Tao, X. Zhang, and G. Shi
Atmos. Chem. Phys., 14, 2125–2138, https://doi.org/10.5194/acp-14-2125-2014, https://doi.org/10.5194/acp-14-2125-2014, 2014
B. Torres, O. Dubovik, C. Toledano, A. Berjon, V. E. Cachorro, T. Lapyonok, P. Litvinov, and P. Goloub
Atmos. Chem. Phys., 14, 847–875, https://doi.org/10.5194/acp-14-847-2014, https://doi.org/10.5194/acp-14-847-2014, 2014
Y.-C. Chen, B. Hamre, Ø. Frette, S. Blindheim, K. Stebel, P. Sobolewski, C. Toledano, and J. J. Stamnes
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-6-10761-2013, https://doi.org/10.5194/amtd-6-10761-2013, 2013
Preprint withdrawn
B. Torres, C. Toledano, A. Berjón, D. Fuertes, V. Molina, R. Gonzalez, M. Canini, V. E. Cachorro, P. Goloub, T. Podvin, L. Blarel, O. Dubovik, Y. Bennouna, and A. M. de Frutos
Atmos. Meas. Tech., 6, 2207–2220, https://doi.org/10.5194/amt-6-2207-2013, https://doi.org/10.5194/amt-6-2207-2013, 2013
A. Barreto, E. Cuevas, B. Damiri, P. M. Romero, and F. Almansa
Atmos. Meas. Tech., 6, 2159–2167, https://doi.org/10.5194/amt-6-2159-2013, https://doi.org/10.5194/amt-6-2159-2013, 2013
A. Barreto, E. Cuevas, B. Damiri, C. Guirado, T. Berkoff, A. J. Berjón, Y. Hernández, F. Almansa, and M. Gil
Atmos. Meas. Tech., 6, 585–598, https://doi.org/10.5194/amt-6-585-2013, https://doi.org/10.5194/amt-6-585-2013, 2013
E. Cuevas, Y. González, S. Rodríguez, J. C. Guerra, A. J. Gómez-Peláez, S. Alonso-Pérez, J. Bustos, and C. Milford
Atmos. Chem. Phys., 13, 1973–1998, https://doi.org/10.5194/acp-13-1973-2013, https://doi.org/10.5194/acp-13-1973-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Dust transport and advection measurement with spaceborne lidars ALADIN and CALIOP and model reanalysis data
Record-breaking dust loading during two mega dust storm events over northern China in March 2021: aerosol optical and radiative properties and meteorological drivers
Wintertime Saharan dust transport towards the Caribbean: an airborne lidar case study during EUREC4A
Evaluation of aerosol number concentrations from CALIPSO with ATom airborne in situ measurements
Zonal variations in the vertical distribution of atmospheric aerosols over the Indian region and the consequent radiative effects
Global maps of aerosol single scattering albedo using combined CERES-MODIS retrieval
The characterization of long-range transported North American biomass burning plumes: what can a multi-wavelength Mie–Raman-polarization-fluorescence lidar provide?
Fluorescence lidar observations of wildfire smoke inside cirrus: a contribution to smoke–cirrus interaction research
A novel method of identifying and analysing oil smoke plumes based on MODIS and CALIPSO satellite data
Pollen observations at four EARLINET stations during the ACTRIS-COVID-19 campaign
Identifying chemical aerosol signatures using optical suborbital observations: how much can optical properties tell us about aerosol composition?
Quantification of the dust optical depth across spatiotemporal scales with the MIDAS global dataset (2003–2017)
Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 2: Long-wave and net dust direct radiative effect
Comment on “Short-cut transport path for Asian dust directly to the Arctic: a case Study” by Huang et al. (2015) in Environ. Res. Lett.
Statistical validation of Aeolus L2A particle backscatter coefficient retrievals over ACTRIS/EARLINET stations on the Iberian Peninsula
Inferring iron-oxide species content in atmospheric mineral dust from DSCOVR EPIC observations
Mesoscale spatio-temporal variability of airborne lidar-derived aerosol properties in the Barbados region during EUREC4A
Long-term characterisation of the vertical structure of the Saharan Air Layer over the Canary Islands using lidar and radiosonde profiles: implications for radiative and cloud processes over the subtropical Atlantic Ocean
Observed slump of sea land breeze in Brisbane under the effect of aerosols from remote transport during 2019 Australian mega fire events
Measurement report: Vehicle-based multi-lidar observational study of the effect of meteorological elements on the three-dimensional distribution of particles in the western Guangdong–Hong Kong–Macao Greater Bay Area
Aerosol Atmospheric Rivers: Climatology, Event Characteristics, and Detection Algorithm Sensitivities
Marine aerosol properties over the Southern Ocean in relation to the wintertime meteorological conditions
The spatiotemporal relationship between PM2.5 and aerosol optical depth in China: influencing factors and implications for satellite PM2.5 estimations using MAIAC aerosol optical depth
Measurement report: Characterization of the vertical distribution of airborne Pinus pollen in the atmosphere with lidar-derived profiles – a modeling case study in the region of Barcelona, NE Spain
Investigation of near-global daytime boundary layer height using high-resolution radiosondes: first results and comparison with ERA5, MERRA-2, JRA-55, and NCEP-2 reanalyses
Estimation of the vertical distribution of particle matter (PM2.5) concentration and its transport flux from lidar measurements based on machine learning algorithms
Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses, with implications for the impact of regional biomass burning processes
Canadian and Alaskan wildfire smoke particle properties, their evolution, and controlling factors, from satellite observations
Three-dimensional climatology, trends, and meteorological drivers of global and regional tropospheric type-dependent aerosols: insights from 13 years (2007–2019) of CALIOP observations
Aerosol properties and aerosol–radiation interactions in clear-sky conditions over Germany
Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: regional and interannual variability
Aerosol optical properties derived from POLDER-3/PARASOL (2005–2013) over the Western Mediterranean Sea – Part 2: Spatial distribution and temporal variability
Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020
Multi-dimensional satellite observations of aerosol properties and aerosol types over three major urban clusters in eastern China
Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 1: Methodology
Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 2: Case studies
Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011
Estimating radiative forcing efficiency of dust aerosol based on direct satellite observations: case studies over the Sahara and Taklimakan Desert
Satellite-based estimation of the impacts of summertime wildfires on PM2.5 concentration in the United States
Airborne and ground-based measurements of aerosol optical depth of freshly emitted anthropogenic plumes in the Athabasca Oil Sands Region
Cloud drop number concentrations over the western North Atlantic Ocean: seasonal cycle, aerosol interrelationships, and other influential factors
Separating emission and meteorological contributions to long-term PM2.5 trends over eastern China during 2000–2018
Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun–sky photometer measurements
Restoring the top-of-atmosphere reflectance during solar eclipses: a proof of concept with the UV absorbing aerosol index measured by TROPOMI
Assessing the contribution of the ENSO and MJO to Australian dust activity based on satellite- and ground-based observations
Aerosol above-cloud direct radiative effect and properties in the Namibian region during the AErosol, RadiatiOn, and CLOuds in southern Africa (AEROCLO-sA) field campaign – Multi-Viewing, Multi-Channel, Multi-Polarization (3MI) airborne simulator and sun photometer measurements
Himawari-8-derived diurnal variations in ground-level PM2.5 pollution across China using the fast space-time Light Gradient Boosting Machine (LightGBM)
Lidar depolarization ratio of atmospheric pollen at multiple wavelengths
Lidar vertical observation network and data assimilation reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations over the North China Plain
Guangyao Dai, Kangwen Sun, Xiaoye Wang, Songhua Wu, Xiangying E, Qi Liu, and Bingyi Liu
Atmos. Chem. Phys., 22, 7975–7993, https://doi.org/10.5194/acp-22-7975-2022, https://doi.org/10.5194/acp-22-7975-2022, 2022
Short summary
Short summary
In this paper, a Sahara dust event is tracked with the spaceborne lidars ALADIN and CALIOP and the models ECMWF and HYSPLIT. The performance of ALADIN and CALIOP on tracking the dust event and on the observations of dust optical properties and wind fields during the dust transport is evaluated. The dust mass advection is defined, which is calculated with the combination of data from ALADIN and CALIOP coupled with the products from models to describe the dust transport quantitatively.
Ke Gui, Wenrui Yao, Huizheng Che, Linchang An, Yu Zheng, Lei Li, Hujia Zhao, Lei Zhang, Junting Zhong, Yaqiang Wang, and Xiaoye Zhang
Atmos. Chem. Phys., 22, 7905–7932, https://doi.org/10.5194/acp-22-7905-2022, https://doi.org/10.5194/acp-22-7905-2022, 2022
Short summary
Short summary
This study investigates the aerosol optical and radiative properties and meteorological drivers during two mega SDS events over Northern China in March 2021. The MODIS-retrieved DOD data registered these two events as the most intense episode in the same period in history over the past 20 years. These two extreme SDS events were associated with both atmospheric circulation extremes and local meteorological anomalies that favor enhanced dust emissions in the Gobi Desert.
Manuel Gutleben, Silke Groß, Christian Heske, and Martin Wirth
Atmos. Chem. Phys., 22, 7319–7330, https://doi.org/10.5194/acp-22-7319-2022, https://doi.org/10.5194/acp-22-7319-2022, 2022
Short summary
Short summary
The main transportation route of Saharan mineral dust particles leads over the subtropical Atlantic Ocean and is subject to a seasonal variation. This study investigates the characteristics of wintertime transatlantic dust transport towards the Caribbean by means of airborne lidar measurements. It is found that dust particles are transported at low atmospheric altitudes (<3.5 km) embedded in a relatively moist mixture with two other particle types, namely marine and biomass-burning particles.
Goutam Choudhury, Albert Ansmann, and Matthias Tesche
Atmos. Chem. Phys., 22, 7143–7161, https://doi.org/10.5194/acp-22-7143-2022, https://doi.org/10.5194/acp-22-7143-2022, 2022
Short summary
Short summary
Lidars provide height-resolved type-specific aerosol properties and are key in studying vertically collocated aerosols and clouds. In this study, we compare the aerosol number concentrations derived from spaceborne lidar with the in situ flight measurements. Our results show a reasonable agreement between both datasets. Such an agreement has not been achieved yet. It shows the potential of spaceborne lidar in studying aerosol–cloud interactions, which is needed to improve our climate forecasts.
Nair K. Kala, Narayana Sarma Anand, Mohanan R. Manoj, Harshavardhana S. Pathak, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 6067–6085, https://doi.org/10.5194/acp-22-6067-2022, https://doi.org/10.5194/acp-22-6067-2022, 2022
Short summary
Short summary
We present the 3-D distribution of atmospheric aerosols and highlight its variation with respect to longitudes over the Indian mainland and the surrounding oceans using long-term satellite observations and realistic synthesised data. The atmospheric heating due to the 3-D distribution of aerosols is estimated using radiative transfer calculations. We believe that our findings will have strong implications for aerosol–radiation interactions in regional climate simulations.
Archana Devi and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 5365–5376, https://doi.org/10.5194/acp-22-5365-2022, https://doi.org/10.5194/acp-22-5365-2022, 2022
Short summary
Short summary
Global maps of aerosol absorption were generated using a multi-satellite retrieval algorithm. The retrieved values were validated with available aircraft-based measurements and compared with other global datasets. Seasonal and spatial distributions of aerosol absorption over various regions are also presented. The global maps of single scattering albedo with improved accuracy provide important input to climate models for assessing the climatic impact of aerosols on regional and global scales.
Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, and Thierry Podvin
Atmos. Chem. Phys., 22, 5399–5414, https://doi.org/10.5194/acp-22-5399-2022, https://doi.org/10.5194/acp-22-5399-2022, 2022
Short summary
Short summary
Our lidar observations show that the optical properties of wildfire smoke particles are highly varied after long-range transport. The variabilities are probably relevant to vegetation type, combustion condition and the aging process, which alter the smoke particle properties, as well as their impact on cloud processes and properties. The lidar fluorescence channel provides a good opportunity for smoke characterization and heterogenous ice crystal formation.
Igor Veselovskii, Qiaoyun Hu, Albert Ansmann, Philippe Goloub, Thierry Podvin, and Mikhail Korenskiy
Atmos. Chem. Phys., 22, 5209–5221, https://doi.org/10.5194/acp-22-5209-2022, https://doi.org/10.5194/acp-22-5209-2022, 2022
Short summary
Short summary
A remote sensing method based on fluorescence lidar measurements can detect and quantify the smoke content in the upper troposphere and inside cirrus clouds. Based on two case studies, we demonstrate that the fluorescence lidar technique provides the possibility to estimate the smoke surface area concentration within freshly formed cirrus layers. This value was used in a smoke ice nucleating particle parameterization scheme to predict ice crystal number concentrations in cirrus generation cells.
Alexandru Mereuţă, Nicolae Ajtai, Andrei T. Radovici, Nikolaos Papagiannopoulos, Lucia T. Deaconu, Camelia S. Botezan, Horaţiu I. Ştefănie, Doina Nicolae, and Alexandru Ozunu
Atmos. Chem. Phys., 22, 5071–5098, https://doi.org/10.5194/acp-22-5071-2022, https://doi.org/10.5194/acp-22-5071-2022, 2022
Short summary
Short summary
In this study we analysed oil smoke plumes from 30 major industrial events within a 12-year timeframe. To our knowledge, this is the first study of its kind that uses a synergetic approach based on satellite remote sensing techniques. Satellite data offer access to these events, which are mainly located in war-prone or hazardous areas. Our study highlights the need for improved aerosol models and algorithms for these types of aerosols with implications on air quality and climate change.
Xiaoxia Shang, Holger Baars, Iwona S. Stachlewska, Ina Mattis, and Mika Komppula
Atmos. Chem. Phys., 22, 3931–3944, https://doi.org/10.5194/acp-22-3931-2022, https://doi.org/10.5194/acp-22-3931-2022, 2022
Short summary
Short summary
This study reports pollen observations at four lidar stations (Hohenpeißenberg, Germany; Kuopio, Finland; Leipzig, Germany; and Warsaw, Poland) during the intensive observation campaign organized in May 2020. A novel simple method for the characterization of the pure pollen is proposed, based on lidar measurements. It was applied to evaluate the pollen depolarization ratio and for the aerosol classifications.
Meloë S. F. Kacenelenbogen, Qian Tan, Sharon P. Burton, Otto P. Hasekamp, Karl D. Froyd, Yohei Shinozuka, Andreas J. Beyersdorf, Luke Ziemba, Kenneth L. Thornhill, Jack E. Dibb, Taylor Shingler, Armin Sorooshian, Reed W. Espinosa, Vanderlei Martins, Jose L. Jimenez, Pedro Campuzano-Jost, Joshua P. Schwarz, Matthew S. Johnson, Jens Redemann, and Gregory L. Schuster
Atmos. Chem. Phys., 22, 3713–3742, https://doi.org/10.5194/acp-22-3713-2022, https://doi.org/10.5194/acp-22-3713-2022, 2022
Short summary
Short summary
The impact of aerosols on Earth's radiation budget and human health is important and strongly depends on their composition. One desire of our scientific community is to derive the composition of the aerosol from satellite sensors. However, satellites observe aerosol optical properties (and not aerosol composition) based on remote sensing instrumentation. This study assesses how much aerosol optical properties can tell us about aerosol composition.
Antonis Gkikas, Emmanouil Proestakis, Vassilis Amiridis, Stelios Kazadzis, Enza Di Tomaso, Eleni Marinou, Nikos Hatzianastassiou, Jasper F. Kok, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 22, 3553–3578, https://doi.org/10.5194/acp-22-3553-2022, https://doi.org/10.5194/acp-22-3553-2022, 2022
Short summary
Short summary
We present a comprehensive climatological analysis of dust optical depth (DOD) relying on the MIDAS dataset. MIDAS provides columnar mid-visible (550 nm) DOD at fine spatial resolution (0.1° × 0.1°) over a 15-year period (2003–2017). In the current study, the analysis is performed at various spatial (from regional to global) and temporal (from months to years) scales. More specifically, focus is given to specific regions hosting the major dust sources as well as downwind areas of the planet.
Michaël Sicard, Carmen Córdoba-Jabonero, María-Ángeles López-Cayuela, Albert Ansmann, Adolfo Comerón, María-Paz Zorzano, Alejandro Rodríguez-Gómez, and Constantino Muñoz-Porcar
Atmos. Chem. Phys., 22, 1921–1937, https://doi.org/10.5194/acp-22-1921-2022, https://doi.org/10.5194/acp-22-1921-2022, 2022
Short summary
Short summary
This paper completes the companion paper of Córdoba-Jabonero et al. (2021). We estimate the total direct radiative effect produced by mineral dust particles during the June 2019 mega-heatwave at two sites in Spain and Germany. The results show that the dust particles in the atmosphere contribute to cooling the surface (less radiation reaches the surface) and that the heatwave (parametrized by high surface and air temperatures) contributes to reducing this cooling.
Keyvan Ranjbar, Norm T. O'Neill, and Yasmin Aboel-Fetouh
Atmos. Chem. Phys., 22, 1757–1760, https://doi.org/10.5194/acp-22-1757-2022, https://doi.org/10.5194/acp-22-1757-2022, 2022
Short summary
Short summary
We argue that the illustration employed by Huang et al. (2015) to demonstrate the transport of Asian dust to the high Arctic was, in fact, largely a cloud event and that the actual impact of Asian dust was measurable but much weaker than what they proposed and had occurred a day earlier (in agreement with the transport model they had employed to predict the transport path to the high Arctic).
Jesús Abril-Gago, Juan Luis Guerrero-Rascado, Maria João Costa, Juan Antonio Bravo-Aranda, Michaël Sicard, Diego Bermejo-Pantaleón, Daniele Bortoli, María José Granados-Muñoz, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Adolfo Comerón, Pablo Ortiz-Amezcua, Vanda Salgueiro, Marta María Jiménez-Martín, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 22, 1425–1451, https://doi.org/10.5194/acp-22-1425-2022, https://doi.org/10.5194/acp-22-1425-2022, 2022
Short summary
Short summary
A validation of Aeolus reprocessed optical products is carried out via an intercomparison with ground-based measurements taken at several ACTRIS/EARLINET stations in western Europe. Case studies and a statistical analysis are presented. The stations are located in a hot spot between Africa and the rest of Europe, which guarantees a variety of aerosol types, from mineral dust layers to continental/anthropogenic aerosol, and allows us to test Aeolus performance under different scenarios.
Sujung Go, Alexei Lyapustin, Gregory L. Schuster, Myungje Choi, Paul Ginoux, Mian Chin, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, Arlindo da Silva, Brent Holben, and Jeffrey S. Reid
Atmos. Chem. Phys., 22, 1395–1423, https://doi.org/10.5194/acp-22-1395-2022, https://doi.org/10.5194/acp-22-1395-2022, 2022
Short summary
Short summary
This paper presents a retrieval algorithm of iron-oxide species (hematite, goethite) content in the atmosphere from DSCOVR EPIC observations. Our results display variations within the published range of hematite and goethite over the main dust-source regions but show significant seasonal and spatial variability. This implies a single-viewing satellite instrument with UV–visible channels may provide essential information on shortwave dust direct radiative effects for climate modeling.
Patrick Chazette, Alexandre Baron, and Cyrille Flamant
Atmos. Chem. Phys., 22, 1271–1292, https://doi.org/10.5194/acp-22-1271-2022, https://doi.org/10.5194/acp-22-1271-2022, 2022
Short summary
Short summary
Within the framework of the international EUREC4A project, horizontal lidar measurements were carried out over Barbados from the French research aircraft ATR-42. These measurements highlighted the strong heterogeneity of the aerosol field (mainly dust and biomass burning aerosols) and therefore of the associated optical properties. This heterogeneity varies according to meteorological conditions and could significantly modulate the climatic impact of aerosols trapped over the tropical Atlantic.
África Barreto, Emilio Cuevas, Rosa D. García, Judit Carrillo, Joseph M. Prospero, Luka Ilić, Sara Basart, Alberto J. Berjón, Carlos L. Marrero, Yballa Hernández, Juan José Bustos, Slobodan Ničković, and Margarita Yela
Atmos. Chem. Phys., 22, 739–763, https://doi.org/10.5194/acp-22-739-2022, https://doi.org/10.5194/acp-22-739-2022, 2022
Short summary
Short summary
In this study, we categorise the different patterns of dust transport over the subtropical North Atlantic and for the first time robustly describe the dust vertical distribution in the Saharan Air Layer (SAL) over this region. Our results revealed the important role that both dust and water vapour play in the radiative balance in summer and winter and confirm the role of the SAL in the formation of mid-level clouds as a result of the activation of heterogeneous ice nucleation processes.
Lixing Shen, Chuanfeng Zhao, Xingchuan Yang, Yikun Yang, and Ping Zhou
Atmos. Chem. Phys., 22, 419–439, https://doi.org/10.5194/acp-22-419-2022, https://doi.org/10.5194/acp-22-419-2022, 2022
Short summary
Short summary
Using multi-year data, this study reveals the slump of sea land breeze (SLB) at Brisbane during mega fires and investigates the impact of fire-induced aerosols on SLB. Different aerosols have different impacts on sea wind (SW) and land wind (LW). Aerosols cause the decrease of SW, partially offset by the warming effect of black carbon (BC). The large-scale cooling effect of aerosols on sea surface temperature (SST) and the burst of BC contribute to the slump of LW.
Xinqi Xu, Jielan Xie, Yuman Li, Shengjie Miao, and Shaojia Fan
Atmos. Chem. Phys., 22, 139–153, https://doi.org/10.5194/acp-22-139-2022, https://doi.org/10.5194/acp-22-139-2022, 2022
Short summary
Short summary
The effect of meteorological elements on the three-dimensional distribution structure of particles was studied by making vehicle-based multi-lidar observations in the western Guangdong–Hong Kong–Macao Greater Bay Area of China. Results showed that distribution of particles was closely related to horizontal wind speed and direction, vertical wind speed, and temperature. A model for meteorological elements affecting the vertical distribution of urban particles was offered in this study.
Sudip Chakraborty, Bin Guan, Duane Waliser, and Arlindo da Silva
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-941, https://doi.org/10.5194/acp-2021-941, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
This study explores extreme aerosol transport events by aerosol atmospheric rivers (AAR) and show 1) characteristics of individual AARs such as length, width, length/width ratio, transport strength, and dominant transport direction, 2) seasonal variations, 3) relationship to the spatial distribution of surface emissions, 4) vertical profiles of wind, aerosol mixing ratio, and aerosol mass fluxes, and 5) the major planetary-scale aerosol transport pathways.
Manu Anna Thomas, Abhay Devasthale, and Michael Kahnert
Atmos. Chem. Phys., 22, 119–137, https://doi.org/10.5194/acp-22-119-2022, https://doi.org/10.5194/acp-22-119-2022, 2022
Short summary
Short summary
The Southern Ocean (SO) covers a large area of our planet and its boundary layer is dominated by sea salt aerosols during winter. These aerosols have large implications for the regional climate through their direct and indirect effects. Using satellite and reanalysis data, we document if and how the aerosol properties over the SO are dependent on different local meteorological parameters. Such an observational assessment is necessary to improve the understanding of atmospheric aerosol processes.
Qingqing He, Mengya Wang, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 18375–18391, https://doi.org/10.5194/acp-21-18375-2021, https://doi.org/10.5194/acp-21-18375-2021, 2021
Short summary
Short summary
We explore the spatiotemporal relationship between PM2.5 and AOD over China using a multi-scale analysis with MODIS MAIAC 1 km aerosol observations and ground measurements. The impact factors (vertical distribution, relative humidity and terrain) on the relationship are quantitatively studied. Our results provide significant information on PM2.5 and AOD, which is informative for mapping high-resolution PM2.5 and furthering the understanding of aerosol properties and the PM2.5 pollution status.
Michaël Sicard, Oriol Jorba, Jiang Ji Ho, Rebeca Izquierdo, Concepción De Linares, Marta Alarcón, Adolfo Comerón, and Jordina Belmonte
Atmos. Chem. Phys., 21, 17807–17832, https://doi.org/10.5194/acp-21-17807-2021, https://doi.org/10.5194/acp-21-17807-2021, 2021
Short summary
Short summary
This paper investigates the mechanisms involved in the dispersion, structure, and mixing in the vertical column of atmospheric pollen, using observations of pollen concentration obtained at the ground and its stratification in the atmosphere measured by a lidar (laser radar), as well as an atmospheric transport model and a simplified pollen module developed especially for this study. The largest pollen concentration difference between the ground and the layers above is observed during nighttime.
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary
Short summary
The planetary boundary layer (PBL) is the lowest part of the troposphere, and boundary layer height (BLH) is the depth of the PBL and is of critical importance to the dispersion of air pollution. The study presents the first near-global BLH climatology by using high-resolution (5-10 m) radiosonde measurements. The variations in BLH exhibit large spatial and temporal dependence, with a peak at 17:00 local solar time. The most promising reanalysis product is ERA-5 in terms of modeling BLH.
Yingying Ma, Yang Zhu, Boming Liu, Hui Li, Shikuan Jin, Yiqun Zhang, Ruonan Fan, and Wei Gong
Atmos. Chem. Phys., 21, 17003–17016, https://doi.org/10.5194/acp-21-17003-2021, https://doi.org/10.5194/acp-21-17003-2021, 2021
Short summary
Short summary
The vertical distribution of the aerosol extinction coefficient (EC) measured by lidar systems has been used to retrieve the profile of particle matter with a diameter of less than 2.5 μm (PM2.5). However, the traditional linear model cannot consider the influence of multiple meteorological variables sufficiently, which then causes low inversion accuracy. In this study, the machine learning algorithms which can input multiple features are used to solve this constraint.
Shixian Zhai, Daniel J. Jacob, Jared F. Brewer, Ke Li, Jonathan M. Moch, Jhoon Kim, Seoyoung Lee, Hyunkwang Lim, Hyun Chul Lee, Su Keun Kuk, Rokjin J. Park, Jaein I. Jeong, Xuan Wang, Pengfei Liu, Gan Luo, Fangqun Yu, Jun Meng, Randall V. Martin, Katherine R. Travis, Johnathan W. Hair, Bruce E. Anderson, Jack E. Dibb, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jung-Hun Woo, Younha Kim, Qiang Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 16775–16791, https://doi.org/10.5194/acp-21-16775-2021, https://doi.org/10.5194/acp-21-16775-2021, 2021
Short summary
Short summary
Geostationary satellite aerosol optical depth (AOD) has tremendous potential for monitoring surface fine particulate matter (PM2.5). Our study explored the physical relationship between AOD and PM2.5 by integrating data from surface networks, aircraft, and satellites with the GEOS-Chem chemical transport model. We quantitatively showed that accurate simulation of aerosol size distributions, boundary layer depths, relative humidity, coarse particles, and diurnal variations in PM2.5 are essential.
Peng Xian, Jianglong Zhang, Travis D. Toth, Blake Sorenson, Peter R. Colarco, Zak Kipling, Norm T. O'Neill, Edward J. Hyer, James R. Campell, Jeffrey S. Reid, and Keyvan Ranjbar
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-805, https://doi.org/10.5194/acp-2021-805, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
The study provides a baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics over 2003–2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning’s large interannual variability and increasing summer trend have important implications for the Arctic climate.
Katherine T. Junghenn Noyes, Ralph A. Kahn, James A. Limbacher, and Zhanqing Li
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-863, https://doi.org/10.5194/acp-2021-863, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
We compare retrievals on wildfire smoke particle size, shape, and light-absorption from the MISR satellite instrument to modeling and other satellite data on land cover type, drought conditions, meteorology, and estimates of fire intensity (fire radiative power, or FRP). We find statistically significant differences in the particle properties based on burning conditions and land cover type, and interpret how changes in these properties point to specific aerosol aging mechanisms.
Ke Gui, Huizheng Che, Yu Zheng, Hujia Zhao, Wenrui Yao, Lei Li, Lei Zhang, Hong Wang, Yaqiang Wang, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 15309–15336, https://doi.org/10.5194/acp-21-15309-2021, https://doi.org/10.5194/acp-21-15309-2021, 2021
Short summary
Short summary
This study utilized the globally gridded aerosol extinction data from CALIOP during 2007–2019 to investigate the 3D climatology, trends, and meteorological drivers of tropospheric type-dependent aerosols. Results revealed that the planetary boundary layer (PBL) and the free troposphere contribute 62.08 % and 37.92 %, respectively, of the global tropospheric TAOD. Trends in
CALIOP-derived aerosol loading, in particular those partitioned in the PBL, can be explained to a large extent by meteorology.
Jonas Witthuhn, Anja Hünerbein, Florian Filipitsch, Stefan Wacker, Stefanie Meilinger, and Hartwig Deneke
Atmos. Chem. Phys., 21, 14591–14630, https://doi.org/10.5194/acp-21-14591-2021, https://doi.org/10.5194/acp-21-14591-2021, 2021
Short summary
Short summary
Knowledge of aerosol–radiation interactions is important for understanding the climate system and for the renewable energy sector. Here, two complementary approaches are used to assess the consistency of the underlying aerosol properties and the resulting radiative effect in clear-sky conditions over Germany in 2015. An approach based on clear-sky models and broadband irradiance observations is contrasted to the use of explicit radiative transfer simulations using CAMS reanalysis data.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Paul Ginoux, and Jerry Shen
Atmos. Chem. Phys., 21, 13369–13395, https://doi.org/10.5194/acp-21-13369-2021, https://doi.org/10.5194/acp-21-13369-2021, 2021
Short summary
Short summary
We present a satellite-derived global dust climatological record over the last two decades, including the monthly mean visible dust optical depth (DAOD) and vertical distribution of dust extinction coefficient at a 2º × 5º spatial resolution derived from CALIOP and MODIS. In addition, the CALIOP climatological dataset also includes dust vertical extinction profiles. Based on these two datasets, we carried out a comprehensive comparative study of the spatial and temporal climatology of dust.
Isabelle Chiapello, Paola Formenti, Lydie Mbemba Kabuiku, Fabrice Ducos, Didier Tanré, and François Dulac
Atmos. Chem. Phys., 21, 12715–12737, https://doi.org/10.5194/acp-21-12715-2021, https://doi.org/10.5194/acp-21-12715-2021, 2021
Short summary
Short summary
The Mediterranean atmosphere is impacted by a variety of particle pollution, which exerts a complex pressure on climate and air quality. We analyze the 2005–2013 POLDER-3 satellite advanced aerosol data set over the Western Mediterranean Sea. Aerosols' spatial distribution and temporal evolution suggests a large-scale improvement of air quality related to the fine aerosol component, most probably resulting from reduction of anthropogenic particle emissions in the surrounding European countries.
Hongbin Yu, Qian Tan, Lillian Zhou, Yaping Zhou, Huisheng Bian, Mian Chin, Claire L. Ryder, Robert C. Levy, Yaswant Pradhan, Yingxi Shi, Qianqian Song, Zhibo Zhang, Peter R. Colarco, Dongchul Kim, Lorraine A. Remer, Tianle Yuan, Olga Mayol-Bracero, and Brent N. Holben
Atmos. Chem. Phys., 21, 12359–12383, https://doi.org/10.5194/acp-21-12359-2021, https://doi.org/10.5194/acp-21-12359-2021, 2021
Short summary
Short summary
This study characterizes a historic African dust intrusion into the Caribbean Basin in June 2020 using satellites and NASA GEOS. Dust emissions in West Africa were large albeit not extreme. However, a unique synoptic system accumulated the dust near the coast for about 4 d before it was ventilated. Although GEOS reproduced satellite-observed plume tracks well, it substantially underestimated dust emissions and did not lift up dust high enough for ensuing long-range transport.
Yuqin Liu, Tao Lin, Juan Hong, Yonghong Wang, Lamei Shi, Yiyi Huang, Xian Wu, Hao Zhou, Jiahua Zhang, and Gerrit de Leeuw
Atmos. Chem. Phys., 21, 12331–12358, https://doi.org/10.5194/acp-21-12331-2021, https://doi.org/10.5194/acp-21-12331-2021, 2021
Short summary
Short summary
The four-dimensional variation of aerosol properties over the BTH, YRD and PRD (east China) were investigated using satellite observations from 2007 to 2020. Distinct differences between the aerosol optical depth and vertical distribution of the occurrence of aerosol types over these regions depend on season, aerosol loading and meteorological conditions. Day–night differences between the vertical distribution of aerosol types suggest effects of boundary layer dynamics and aerosol transport.
Ákos Horváth, James L. Carr, Olga A. Girina, Dong L. Wu, Alexey A. Bril, Alexey A. Mazurov, Dmitry V. Melnikov, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 21, 12189–12206, https://doi.org/10.5194/acp-21-12189-2021, https://doi.org/10.5194/acp-21-12189-2021, 2021
Short summary
Short summary
We give a detailed description of a new technique to estimate the height of volcanic eruption columns from near-limb geostationary imagery. Such oblique angle observations offer spectacular side views of eruption columns protruding from the Earth ellipsoid and thereby facilitate a height-by-angle estimation method. Due to its purely geometric nature, the new technique is unaffected by the limitations of traditional brightness-temperature-based height retrievals.
Ákos Horváth, Olga A. Girina, James L. Carr, Dong L. Wu, Alexey A. Bril, Alexey A. Mazurov, Dmitry V. Melnikov, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 21, 12207–12226, https://doi.org/10.5194/acp-21-12207-2021, https://doi.org/10.5194/acp-21-12207-2021, 2021
Short summary
Short summary
We demonstrate the side view plume height estimation technique described in Part 1 on seven volcanic eruptions from 2019 and 2020, including the 2019 Raikoke eruption. We explore the strengths and limitations of the new technique in comparison to height estimation from brightness temperatures, stereo observations, and ground-based video footage.
Daniel Pérez-Ramírez, David N. Whiteman, Igor Veselovskii, Richard Ferrare, Gloria Titos, María José Granados-Muñoz, Guadalupe Sánchez-Hernández, and Francisco Navas-Guzmán
Atmos. Chem. Phys., 21, 12021–12048, https://doi.org/10.5194/acp-21-12021-2021, https://doi.org/10.5194/acp-21-12021-2021, 2021
Short summary
Short summary
This paper shows how aerosol hygroscopicity enhances the vertical profile of aerosol backscattering and extinction. The study is possible thanks to the large set of remote sensing instruments and focuses on the the Baltimore–Washington DC metropolitan area during hot and humid summer days with very relevant anthropogenic emission aerosol sources. The results illustrate how the combination of aerosol emissions and meteorological conditions ultimately alters the aerosol radiative forcing.
Lin Tian, Lin Chen, Peng Zhang, and Lei Bi
Atmos. Chem. Phys., 21, 11669–11687, https://doi.org/10.5194/acp-21-11669-2021, https://doi.org/10.5194/acp-21-11669-2021, 2021
Short summary
Short summary
The result shows dust aerosols from the Taklimakan Desert have higher aerosol scattering during dust storm cases of this paper, and this caused higher negative direct radiative forcing efficiency (DRFEdust) than aerosols from the Sahara.
The microphysical properties and particle shapes of dust aerosol significantly influence DRFEdust. The satellite-based equi-albedo method has a unique advantage in DRFEdust estimation: it could validate the results derived from the numerical model directly.
Zhixin Xue, Pawan Gupta, and Sundar Christopher
Atmos. Chem. Phys., 21, 11243–11256, https://doi.org/10.5194/acp-21-11243-2021, https://doi.org/10.5194/acp-21-11243-2021, 2021
Short summary
Short summary
Frequent and widespread wildfires in the northwestern United States and Canada have become the
new normalduring the Northern Hemisphere summer months, which degrades particulate matter air quality in the United States significantly. Using satellite data, we show that smoke aerosols caused significant pollution changes over half of the United States. We estimate that nearly 29 states have increased PM2.5 during the fire-active year when compared to fire-inactive years.
Konstantin Baibakov, Samuel LeBlanc, Keyvan Ranjbar, Norman T. O'Neill, Mengistu Wolde, Jens Redemann, Kristina Pistone, Shao-Meng Li, John Liggio, Katherine Hayden, Tak W. Chan, Michael J. Wheeler, Leonid Nichman, Connor Flynn, and Roy Johnson
Atmos. Chem. Phys., 21, 10671–10687, https://doi.org/10.5194/acp-21-10671-2021, https://doi.org/10.5194/acp-21-10671-2021, 2021
Short summary
Short summary
We find that the airborne measurements of the vertical extinction due to aerosols (aerosol optical depth, AOD) obtained in the Athabasca Oil Sands Region (AOSR) can significantly exceed ground-based values. This can have an effect on estimating the AOSR radiative impact and is relevant to satellite validation based on ground-based measurements. We also show that the AOD can marginally increase as the plumes are being transported away from the source and the new particles are being formed.
Hossein Dadashazar, David Painemal, Majid Alipanah, Michael Brunke, Seethala Chellappan, Andrea F. Corral, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Claire Robinson, Amy Jo Scarino, Michael Shook, Kenneth Sinclair, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Xubin Zeng, Luke Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 21, 10499–10526, https://doi.org/10.5194/acp-21-10499-2021, https://doi.org/10.5194/acp-21-10499-2021, 2021
Short summary
Short summary
This study investigates the seasonal cycle of cloud drop number concentration (Nd) over the western North Atlantic Ocean (WNAO) using multiple datasets. Reasons for the puzzling discrepancy between the seasonal cycles of Nd and aerosol concentration were identified. Results indicate that Nd is highest in winter (when aerosol proxy values are often lowest) due to conditions both linked to cold-air outbreaks and that promote greater droplet activation.
Qingyang Xiao, Yixuan Zheng, Guannan Geng, Cuihong Chen, Xiaomeng Huang, Huizheng Che, Xiaoye Zhang, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 21, 9475–9496, https://doi.org/10.5194/acp-21-9475-2021, https://doi.org/10.5194/acp-21-9475-2021, 2021
Short summary
Short summary
We used both statistical methods and a chemical transport model to assess the contribution of meteorology and emissions to PM2.5 during 2000–2018. Both methods revealed that emissions dominated the long-term PM2.5 trend with notable meteorological effects ranged up to 37.9 % of regional annual average PM2.5. The meteorological contribution became more beneficial to PM2.5 control in southern China but more unfavorable in northern China during the studied period.
Jose Antonio Benavent-Oltra, Juan Andrés Casquero-Vera, Roberto Román, Hassan Lyamani, Daniel Pérez-Ramírez, María José Granados-Muñoz, Milagros Herrera, Alberto Cazorla, Gloria Titos, Pablo Ortiz-Amezcua, Andrés Esteban Bedoya-Velásquez, Gregori de Arruda Moreira, Noemí Pérez, Andrés Alastuey, Oleg Dubovik, Juan Luis Guerrero-Rascado, Francisco José Olmo-Reyes, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 21, 9269–9287, https://doi.org/10.5194/acp-21-9269-2021, https://doi.org/10.5194/acp-21-9269-2021, 2021
Short summary
Short summary
In this paper, we use the GRASP algorithm combining different remote sensing measurements to obtain the aerosol vertical and column properties during the SLOPE I and II campaigns. We show an overview of aerosol properties retrieved by GRASP during these campaigns and evaluate the retrievals of aerosol properties using the in situ measurements performed at a high-altitude station and airborne flights. For the first time we present an evaluation of the absorption coefficient by GRASP.
Victor Trees, Ping Wang, and Piet Stammes
Atmos. Chem. Phys., 21, 8593–8614, https://doi.org/10.5194/acp-21-8593-2021, https://doi.org/10.5194/acp-21-8593-2021, 2021
Short summary
Short summary
Given the time and location of a point on the Earth's surface, we explain how to compute the wavelength-dependent obscuration during solar eclipses. We restore the top-of-atmosphere reflectances and the absorbing aerosol index in the partial Moon shadow during the solar eclipses on 26 December 2019 and 21 June 2020 measured by TROPOMI. This correction method resolves eclipse anomalies and allows for study of the effect of solar eclipses on the composition of the Earth's atmosphere from space.
Yan Yu and Paul Ginoux
Atmos. Chem. Phys., 21, 8511–8530, https://doi.org/10.5194/acp-21-8511-2021, https://doi.org/10.5194/acp-21-8511-2021, 2021
Short summary
Short summary
Despite Australian dust’s critical role in the regional climate and surrounding marine ecosystems, the controlling factors of its spatiotemporal variations are not fully understood. This study establishes the connection between large-scale climate variability and regional dust emission, leading to a better understanding of the spatiotemporal variation in dust activity and improved prediction of dust's climate and ecological influences.
Aurélien Chauvigné, Fabien Waquet, Frédérique Auriol, Luc Blarel, Cyril Delegove, Oleg Dubovik, Cyrille Flamant, Marco Gaetani, Philippe Goloub, Rodrigue Loisil, Marc Mallet, Jean-Marc Nicolas, Frédéric Parol, Fanny Peers, Benjamin Torres, and Paola Formenti
Atmos. Chem. Phys., 21, 8233–8253, https://doi.org/10.5194/acp-21-8233-2021, https://doi.org/10.5194/acp-21-8233-2021, 2021
Short summary
Short summary
This work presents aerosol above-cloud properties close to the Namibian coast from a combination of airborne passive remote sensing. The complete analysis of aerosol and cloud optical properties and their microphysical and radiative properties allows us to better identify the impacts of biomass burning emissions. This work also gives a complete overview of the key parameters for constraining climate models in case aerosol and cloud coexist in the troposphere.
Jing Wei, Zhanqing Li, Rachel T. Pinker, Jun Wang, Lin Sun, Wenhao Xue, Runze Li, and Maureen Cribb
Atmos. Chem. Phys., 21, 7863–7880, https://doi.org/10.5194/acp-21-7863-2021, https://doi.org/10.5194/acp-21-7863-2021, 2021
Short summary
Short summary
This study developed a space-time Light Gradient Boosting Machine (STLG) model to derive the high-temporal-resolution (1 h) and high-quality PM2.5 dataset in China (i.e., ChinaHighPM2.5) at a 5 km spatial resolution from the Himawari-8 Advanced Himawari Imager aerosol products. Our model outperforms most previous related studies with a much lower computation burden in terms of speed and memory, making it most suitable for real-time air pollution monitoring in China.
Stephanie Bohlmann, Xiaoxia Shang, Ville Vakkari, Elina Giannakaki, Ari Leskinen, Kari E. J. Lehtinen, Sanna Pätsi, and Mika Komppula
Atmos. Chem. Phys., 21, 7083–7097, https://doi.org/10.5194/acp-21-7083-2021, https://doi.org/10.5194/acp-21-7083-2021, 2021
Short summary
Short summary
Measurements of the multi-wavelength Raman polarization lidar PollyXT and a Halo Photonics StreamLine Doppler lidar have been combined with measurements of pollen type and concentration using a traditional pollen trap at the rural forest site in Vehmasmäki, Finland. Depolarization ratios were measured at three wavelengths. High depolarization ratios were detected during an event with high birch and spruce pollen concentrations and a wavelength dependence of the depolarization ratio was observed.
Yan Xiang, Tianshu Zhang, Chaoqun Ma, Lihui Lv, Jianguo Liu, Wenqing Liu, and Yafang Cheng
Atmos. Chem. Phys., 21, 7023–7037, https://doi.org/10.5194/acp-21-7023-2021, https://doi.org/10.5194/acp-21-7023-2021, 2021
Short summary
Short summary
For the first time, a vertical observation network consisting of 13 aerosol lidars and more than 1000 ground observation stations were combined with a data assimilation technique to reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations during extreme heavy aerosol pollution on the North China Plain.
Cited articles
Ackermann, J.: The Extinction-to-Backscatter Ratio of Tropospheric Aerosol: A
Numerical Study, J. Atmos. Ocean. Tech., 15, 1043–1050,
https://doi.org/10.1175/1520-0426(1998)015<1043:TETBRO>2.0.CO;2, 1998. a, b
Alonso-Pérez, S., Cuevas, E., Perez, C., Querol, X., Baldasano, J.,
Draxler, R., and Bustos, J. D.: Trend changes of African airmass intrusions
in the marine boundary layer over the subtropical Eastern North Atlantic
region in winter, Tellus B, 63, 255–265,
https://doi.org/10.1111/j.1600-0889.2011.00524.x, 2011. a
Amiridis, V., Wandinger, U., Marinou, E., Giannakaki, E., Tsekeri, A.,
Basart, S., Kazadzis, S., Gkikas, A., Taylor, M., Baldasano, J., and Ansmann,
A.: Optimizing CALIPSO Saharan dust retrievals, Atmos. Chem. Phys., 13,
12089–12106, https://doi.org/10.5194/acp-13-12089-2013, 2013. a, b
Ansmann, A.: Ground-truth aerosol lidar observations: Can the Klett solutions
obtained from ground and space be equal for the same aerosol case?, Appl.
Opt., 45, 3367–3371, https://doi.org/10.1364/AO.45.003367, 2006. a, b
Ansmann, A., Petzold, A., Kandler, K., Tegen, I., Wendisch, M., Müller,
D., Weinzierl, B., Müller, T., and Heintzenberg, J.: Saharan Mineral Dust
Experiments SAMUM-1 and SAMUM-2: what have we learned?, Tellus B, 63,
403–429, https://doi.org/10.1111/j.1600-0889.2011.00555.x, 2011. a
Ansmann, A., Müller, D., Wandinger, U., and Mamouri, R.: Lidar profiling
of aerosol optical and microphysical properties from space: overview, review,
and outlook, in: Lidar Remote Sensing for Industry and Environment
Monitoring, 879502, https://doi.org/10.1117/12.2028112, 2013. a
Balis, D. S., Amiridis, V., Nickovic, S., Papayannis, A., and Zerefos, C.:
Optical properties of Saharan dust layers as detected by a Raman lidar at
Thessaloniki, Greece, Geophys. Res. Lett., 31, L13104,
https://doi.org/10.1029/2004GL019881, 2004. a, b
Barnaba, F. and Gobbi, G. P.: Lidar estimation of tropospheric aerosol
extinction, surface area and volume: Maritime and desert-dust cases, J.
Geophys. Res., 106, 3005–3018, https://doi.org/10.1029/2000JD900492, 2001. a, b
Barreto, A., Cuevas, E., Pallé, P., Romero, P. M., Guirado, C., Wehrli,
C. J., and Almansa, F.: Recovering long-term aerosol optical depth series
(1976–2012) from an astronomical potassium-based resonance scattering
spectrometer, Atmos. Meas. Tech., 7, 4103–4116,
https://doi.org/10.5194/amt-7-4103-2014, 2014. a
Basart, S., Pérez, C., Cuevas, E., Baldasano, J. M., and Gobbi, G. P.:
Aerosol characterization in Northern Africa, Northeastern Atlantic,
Mediterranean Basin and Middle East from direct-sun AERONET observations,
Atmos. Chem. Phys., 9, 8265–8282, https://doi.org/10.5194/acp-9-8265-2009,
2009. a, b
Bösenberg, J. and Hoff, R.: Plan for the implementation of the GAW
Aerosol Lidar Observation Network GALION, Tech. Rep. WMO/GAW No. 178, World
Meteorological Organization, available at:
http://library.wmo.int/pmb_ged/wmo-td_1443.pdf (last access: 12
December 2018), 2007. a
Bréon, F.-M.: Aerosol extinction-to-backscatter ratio derived from
passive satellite measurements, Atmos. Chem. Phys., 13, 8947–8954,
https://doi.org/10.5194/acp-13-8947-2013, 2013. a
Campbell, J. R., Hlavka, D. L., Welton, E. J., Flynn, C. J., Turner, D. D.,
Spinhirne, J. D., Scott, V. S., and Hwang, I. H.: Full-Time, Eye-Safe Cloud
and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program
Sites: Instruments and Data Processing, J. Atmos. Ocean. Tech., 19, 431–442,
https://doi.org/10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2, 2002. a, b
Carrillo, J., Guerra, J. C., Cuevas, E., and Barrancos, J.: Characterization
of the Marine Boundary Layer and the Trade-Wind Inversion over the
Sub-tropical North Atlantic, Bound.-Lay. Meteorol., 158, 311–330,
https://doi.org/10.1007/s10546-015-0081-1, 2016. a, b
Cattrall, C., Reagan, J., Thome, K., and Dubovik, O.: Variability of aerosol
and spectral lidar and backscatter and extinction ratios of key aerosol types
derived from selected Aerosol Robotic Network locations, J. Geophys.
Res.-Atmos., 110, D10S11, https://doi.org/10.1029/2004JD005124, 2005. a
Clothiaux, E. E., Mace, G. G., Ackerman, T. P., Kane, T. J., Spinhirne,
J. D., and Scott, V. S.: An Automated Algorithm for Detection of Hydrometeor
Returns in Micropulse Lidar Data, J. Atmos. Ocean. Tech., 15, 1035–1042,
https://doi.org/10.1175/1520-0426(1998)015<1035:AAAFDO>2.0.CO;2, 1998. a
Córdoba-Jabonero, C., Sorribas, M., Guerrero-Rascado, J. L., Adame, J.
A., Hernández, Y., Lyamani, H., Cachorro, V., Gil, M., Alados-Arboledas,
L., Cuevas, E., and de la Morena, B.: Synergetic monitoring of Saharan dust
plumes and potential impact on surface: a case study of dust transport from
Canary Islands to Iberian Peninsula, Atmos. Chem. Phys., 11, 3067–3091,
https://doi.org/10.5194/acp-11-3067-2011, 2011. a
Cordoba-Jabonero, C., Adame, J., Grau, D., Cuevas, E., and Gil-Ojeda, M.:
Lidar ratio discrimination retrieval in a two-layer aerosol system from
elastic lidar measurements in synergy with sun-photometry data, in:
Conference Proceedings of the 1st International Conference on Atmospheric
Dust – DUST 2014, vol. 1, 243–248, https://doi.org/10.14644/dust.2014.040, 2014. a, b, c
Cuevas, E., González, Y., Rodríguez, S., Guerra, J. C.,
Gómez-Peláez, A. J., Alonso-Pérez, S., Bustos, J., and Milford,
C.: Assessment of atmospheric processes driving ozone variations in the
subtropical North Atlantic free troposphere, Atmos. Chem. Phys., 13,
1973–1998, https://doi.org/10.5194/acp-13-1973-2013, 2013. a
Cuevas, E., Camino, C., Benedetti, A., Basart, S., Terradellas, E.,
Baldasano, J. M., Morcrette, J. J., Marticorena, B., Goloub, P., Mortier, A.,
Berjón, A., Hernández, Y., Gil-Ojeda, M., and Schulz, M.: The MACC-II
2007–2008 reanalysis: atmospheric dust evaluation and characterization over
northern Africa and the Middle East, Atmos. Chem. Phys., 15, 3991–4024,
https://doi.org/10.5194/acp-15-3991-2015, 2015a. a, b, c, d, e
Cuevas, E., Milford, C., Bustos, J., del Campo-Hernández, R., García,
O., García, R., Gómez-Peláez, A., Ramos, R., Redondas, A., Reyes,
E., Romero-Campos, S. R. P., Schneider, M., Belmonte, J., Gil-Ojeda, M.,
Almansa, F., Alonso-Pérez, S., Barreto, A., Guirado-Fuentes, Y. G.-M. C.,
López-Solano, C., Afonso, S., Bayo, C., Berjón, A., Bethencourt, J.,
Camino, C., Carreño, V., Castro, N., Cruz, A., Damas, M., Ory-Ajamil,
F. D., García, M., de Mesa, C. F., González, Y., Hernández, C.,
Hernández, Y., Hernández, M., Hernández-Cruz, B., Jover, M.,
Kühl, S., López-Fernández, R., López-Solano, J., Peris, A.,
Rodríguez-Franco, J., Sálamo, C., Sepulveda, E. S., and Sierra, M.:
Izaña Atmospheric Res earch Center Activity Report 2012–2014, Tech. Rep.
WMO/GAW No. 219, World Meteorological Organization & Izaña Atmospheric
Resear Center (AEMET), available at:
https://library.wmo.int/pmb_ged/gaw_219_en.pdf (last access: 12
December 2018), 2015b. a
Cuevas, E., Gómez-Peláez, A., Rodríguez, S., Terradellas, E.,
Basart, S., García, R., García, O., and Alonso-Pérez, S.: The
pulsating nature of large-scale Saharan dust transport as a result of
interplays between mid-latitude Rossby waves and the North African Dipole
Intensity, Atmos. Environ., 167, 586–602,
https://doi.org/10.1016/j.atmosenv.2017.08.059, 2017a. a
Cuevas, E., Milford, C., Bustos, J., del Campo-Hernández, R., García,
O., García, R., Gómez-Peláez, A., Guirado-Fuentes, C., Marrero,
C., Prats, N., Ramos, R., Redondas, A., Reyes, E., Romero-Campos, S. R. P.,
Schneider, M., Belmonte, J., Yela, M., Almansa, F., Barreto, A.,
López-Solano, C., Basart, S., Terradellas, E., Afonso, S., Bayo, C.,
Berjón, A., Bethencourt, J., Carreño, V., Castro, N., Cruz, A.,
Damas, M., Ory-Ajamil, F. D., García, M., Gómez-Trueba, V.,
González, Y., Hernández, C., Hernández, Y., Hernández-Cruz,
B., Jover, M., León-Luís, S., López-Fernández, R.,
López-Solano, J., Rodríguez, E., Rodríguez-Franco, J.,
Rodríguez-Valido, M., Sálamo, C., Sanromá, E., Santana, D.,
Tomás, F. S., Sepúlveda, E., Sierra, M., and Sosa, E.: Izaña
Atmospheric Research Center Activity Report 2015–2016, Tech. Rep. WMO/GAW
No. 236, World Meteorological Organization & Izaña Atmospheric Resear
Center (AEMET), available at:
https://library.wmo.int/doc_num.php?explnum_id=4139 (last access: 12
December 2018), 2017b. a
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of
aerosol optical properties from Sun and sky radiance measurements, J.
Geophys. Res.-Atmos., 105, 20673–20696, https://doi.org/10.1029/2000JD900282, 2000. a
Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang,
P., Eck, T. F., Volten, H., Muñoz, O., Veihelmann, B., van der Zande,
W. J., Leon, J.-F., Sorokin, M., and Slutsker, I.: Application of spheroid
models to account for aerosol particle nonsphericity in remote sensing of
desert dust, J. Geophys. Res.-Atmos., 111, D11208,
https://doi.org/10.1029/2005JD006619, 2006. a
Endlich, R., Ludwig, F., and Uthe, E.: An automatic method for determining
the mixing depth from lidar observations, Atmos. Environ., 13, 1051–1056,
https://doi.org/10.1016/0004-6981(79)90015-5, 1979. a
Evans, B. T. N.: Sensitivity of the backscatter/extinction ratio to changes
in aerosol properties: implications for lidar, Appl. Optics, 27, 3299–3305,
https://doi.org/10.1364/AO.27.003299, 1988. a
Fernald, F. G.: Analysis of atmospheric lidar observations: some comments,
Appl. Optics, 23, 652–653, https://doi.org/10.1364/AO.23.000652, 1984. a, b, c, d
García, M. I., Rodríguez, S., and Alastuey, A.: Impact of North
America on the aerosol composition in the North Atlantic free troposphere,
Atmos. Chem. Phys., 17, 7387–7404, https://doi.org/10.5194/acp-17-7387-2017,
2017. a, b
Groß, S., Esselborn, M., Weinzierl, B., Wirth, M., Fix, A., and Petzold,
A.: Aerosol classification by airborne high spectral resolution lidar
observations, Atmos. Chem. Phys., 13, 2487-2505,
https://doi.org/10.5194/acp-13-2487-2013, 2013. a, b, c, d
Haarig, M., Ansmann, A., Gasteiger, J., Kandler, K., Althausen, D., Baars,
H., Radenz, M., and Farrell, D. A.: Dry versus wet marine particle optical
properties: RH dependence of depolarization ratio, backscatter, and
extinction from multiwavelength lidar measurements during SALTRACE, Atmos.
Chem. Phys., 17, 14199–14217, https://doi.org/10.5194/acp-17-14199-2017,
2017. a
Heintzenberg, J.: The SAMUM-1 experiment over Southern Morocco: overview and
introduction, Tellus B, 61, 2–11, https://doi.org/10.1111/j.1600-0889.2008.00403.x,
2009. a
Holben, B., Eck, T., Slutsker, I., Tanré, D., Buis, J., Setzer, A.,
Vermote, E., Reagan, J., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak,
I., and Smirnov, A.: AERONET – A Federated Instrument Network and Data
Archive for Aerosol Characterization, Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998. a
Holben, B. N., Eck, T. F., Slutsker, I., Smirnov, A., Sinyuk, A., Schafer,
J., Giles, D., and Dubovik, O.: Aeronet's Version 2.0 quality assurance
criteria, in: Proceedings of the SPIE, 64080Q, https://doi.org/10.1117/12.706524, 2006. a
Kanamitsu, M.: Description of the NMC Global Data Assimilation and Forecast
System, B. Am. Meteorol. Soc., 4, 335–342,
https://doi.org/10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2, 1989. a
Karyampudi, V. M., Palm, S. P., Reagen, J. A., Fang, H., Grant, W. B., Hoff,
R. M., Pierce, H. F., Torres, O., Browell, E. V., and Melfi, S. H.:
Validation of the Saharan Dust plume conceptual model using Lidar, Meteosat,
and ECMWF Data, B. Am. Meteorol. Soc., 80, 1045–1075,
https://doi.org/10.1175/1520-0477(1999)080<1045:VOTSDP>2.0.CO;2, 1999. a, b
Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M.,
Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and
Magill, B. E.: The CALIPSO version 4 automated aerosol classification and
lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107–6135,
https://doi.org/10.5194/amt-11-6107-2018, 2018. a, b
Klett, J. D.: Lidar inversion with variable backscatter/extinction ratios,
Appl. Optics, 24, 1638–1643, https://doi.org/10.1364/AO.24.001638, 1985. a, b, c, d
Kovalev, V.: Solutions in Lidar Profiling of the Atmosphere, John Wiley &
Sons Inc., 2015. a
Kovalev, V. A.: Sensitivity of the lidar solution to errors of the aerosol
backscatter-to-extinction ratio: Influence of a monotonic change in the
aerosol extinction coefficient, Appl. Optics, 34, 3457–3462,
https://doi.org/10.1364/AO.34.003457, 1995. a
Kovalev, V. A. and Eichinger, W. E.: Elastic Lidar: Theory, Practice, and
Analysis Methods, Wiley-Blackwell, https://doi.org/10.1002/0471643173, 2005. a, b, c
Landulfo, E., Papayannis, A., Torres, A. S., Uehara, S. T., Pozzetti, L.
M. V., Alencar de Matos, C., Sawamura, P., Morinobu Nakaema, W., and
de Jesus, W.: A Four-Year Lidar – Sun Photometer Aerosol Study at São
Paulo, Brazil, J. Atmos. Ocean. Tech., 25, 1463–1468,
https://doi.org/10.1175/2007JTECHA984.1, 2008. a
Marenco, F., Santacesaria, V., Bais, A. F., Balis, D., di Sarra, A.,
Papayannis, A., and Zerefos, C.: Optical properties of tropospheric aerosols
determined by lidar andspectrophotometric measurements (Photochemical
Activity and Solar UltravioletRadiation campaign), Appl. Opt., 36,
6875–6886, https://doi.org/10.1364/AO.36.006875, 1997. a
Martín, J. L., Bethencourt, J., and Cuevas-Agulló, E.: Assessment of
global warming on the island of Tenerife, Canary Islands (Spain). Trends in
minimum, maximum and mean temperatures since 1944, Clim. Change, 114,
343–355, https://doi.org/10.1007/s10584-012-0407-7, 2012. a
Mona, L., Amodeo, A., Pandolfi, M., and Pappalardo, G.: Saharan dust
intrusions in the Mediterranean area: Three years of Raman lidar
measurements, J. Geophys. Res.-Atmos., 111, D16203,
https://doi.org/10.1029/2005JD006569, 2006. a
Mona, L., Liu, Z., Müller, D., Omar, A., Papayannis, A., Pappalardo, G.,
Sugimoto, N., and Vaughan, M.: Lidar measurements for desert dust
characterization: An overview, Adv. Meteorol., 2012, 356265,
https://doi.org/10.1155/2012/356265, 2012. a
Mona, L., Papagiannopoulos, N., Basart, S., Baldasano, J., Binietoglou, I.,
Cornacchia, C., and Pappalardo, G.: EARLINET dust observations vs.
BSC-DREAM8b modeled profiles: 12 year-long systematic comparison at Potenza,
Italy, Atmos. Chem. Phys., 14, 8781–8793,
https://doi.org/10.5194/acp-14-8781-2014, 2014. a, b
Morille, Y., Haeffelin, M., Drobinski, P., and Pelon, J.: STRAT: An Automated
Algorithm to Retrieve the Vertical Structure of the Atmosphere from
Single-Channel Lidar Data, J. Atmos. Ocean. Tech., 24, 761–775,
https://doi.org/10.1175/JTECH2008.1, 2007. a
Müller, D., Mattis, I., Wandinger, U., Ansmann, A., Althausen, D.,
Dubovik, O., Eckhardt, S., and Stohl, A.: Saharan dust over a central
European EARLINET–AERONET site: Combined observations with Raman lidar and
Sun photometer, J. Geophys. Res.-Atmos., 108, 4345,
https://doi.org/10.1029/2002JD002918, 2003. a
Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare,
R. A., Lee, K.-P., Hostetler, C. A., Kittaka, C., Rogers, R. R., Kuehn,
R. E., and Liu, Z.: The CALIPSO Automated Aerosol Classification and Lidar
Ratio Selection Algorithm, J. Atmos. Ocean. Tech., 26, 1994–2014,
https://doi.org/10.1175/2009JTECHA1231.1, 2009. a
Papagiannopoulos, N., Mona, L., Alados-Arboledas, L., Amiridis, V., Baars,
H., Binietoglou, I., Bortoli, D., D'Amico, G., Giunta, A., Guerrero-Rascado,
J. L., Schwarz, A., Pereira, S., Spinelli, N., Wandinger, U., Wang, X., and
Pappalardo, G.: CALIPSO climatological products: evaluation and suggestions
from EARLINET, Atmos. Chem. Phys., 16, 2341–2357,
https://doi.org/10.5194/acp-16-2341-2016, 2016. a
Papayannis, A., Amiridis, V., Mona, L., Tsaknakis, G., Balis, D.,
Bösenberg, J., Chaikovski, A., De Tomasi, F., Grigorov, I., Mattis, I.,
Mitev, V., Müller, D., Nickovic, S., Pérez, C., Pietruczuk, A.,
Pisani, G., Ravetta, F., Rizi, V., Sicard, M., Trickl, T., Wiegner, M.,
Gerding, M., Mamouri, R. E., D'Amico, G., and Pappalardo, G.: Systematic
lidar observations of Saharan dust over Europe in the frame of EARLINET
(2000–2002), J. Geophys. Res.-Atmos., 113, D10204,
https://doi.org/10.1029/2007JD009028, 2008. a
Pelón, J., Flamant, P., León, J. F., Tanrè, D., Sicard, M., and
Satheesh, S. K.: Characterization of aerosol spatial distribution and optical
properties over the Indian Ocean from airborne LIDAR and radiometry during
INDOEX'99, J. Geophys. Res., 107, 8029, https://doi.org/10.1029/2001JD000402, 2002. a, b
Prospero, J. M.: Saharan dust transport over the north Atlantic Ocean and
Mediterranean: An Overview, in The Impact of Desert Dust from Northern Africa
Across the Mediterranean, Springer, Dordrecht,
https://doi.org/10.1007/978-94-017-3354-0, 1996. a, b
Prospero, J. M. and Carlson, T. N.: Vertical and areal distribution of
Saharan dust over the western equatorial north Atlantic Ocean, J. Geophys.
Res., 77, 5255–5265, https://doi.org/10.1029/JC077i027p05255, 1972. a
Prospero, J. M. and Carlson, T. N.: Saharan air outbreaks over the Tropical
North Atlantic, Pure Appl. Geophys., 119, 677–691, https://doi.org/10.1007/BF00878167,
1980. a, b
Rocadenbosch, F., Reba, M. N. M., Sicard, M., and Comerón, A.: Practical
analytical backscatter error bars for elastic one-component lidar inversion
algorithm, Appl. Opt., 49, 3380–3393, https://doi.org/10.1364/AO.49.003380, 2010. a
Rodríguez, S., Cuevas, E., Prospero, J. M., Alastuey, A., Querol, X.,
López-Solano, J., García, M. I., and Alonso-Pérez, S.:
Modulation of Saharan dust export by the North African dipole, Atmos. Chem.
Phys., 15, 7471–7486, https://doi.org/10.5194/acp-15-7471-2015, 2015. a
Rodríguez-Gonzalez, J., Lopez, C., Chueca, S., Martín, T., Ayala,
V., Gil, M., Cuevas, E., and Guillemont, N.: Lidar MPL en Santa Cruz de
Tenerife. Proyecto de automatización y control de las medidas, in:
Proceedings of the XI Congreso Nacional de Teledetección ”Avances en la
Observación de la Tierra, Puerto de la Cruz, Tenerife, Spain, 21–23
September 2005, 503–506, 2005. a
Smirnov, A., Holben, B. N., Slutsker, I., Welton, E, J., and Formenti, P.:
Optical properties of Saharan dust during ACE 2, J. Geophys. Res., 103,
28079–28092, https://doi.org/10.1029/98JD01930, 1998. a
Smirnov, A., Holben, B. N., Eck, T. F., Dubovik, O., and Slutsker, I.:
Cloud-screening and quality control algorithms for the AERONET database,
Remote Sens. Environ., 73, 337–349, https://doi.org/10.1016/S0034-4257(00)00109-7,
2000. a
Song, Y., Zhang, B., Shi, G., Li, S., Di, H., Yan, Q., and Hua, D.:
Correlation between the lidar ratio and the Ångström exponent of
various aerosol types, Particuology, 40, 62–69,
https://doi.org/10.1016/j.partic.2017.12.002, 2018. a, b, c
Spinhirne, J.: Micro pulse lidar, IEEE T. Geosci. Remote, 31, 48–55,
https://doi.org/10.1109/36.210443, 1993. a
Takamura, T., Sasano, Y., and Hayasaka, T.: Tropospheric aerosol optical
properties derived from lidar, sun photometer, and optical particle counter
measurements, Appl. Opt., 33, 7132–7140, 1994. a
Tesche, M., Ansmann, A., MüLLER, D., Althausen, D., Mattis, I., Heese,
B., Freudenthaler, V., Wiegner, M., Esselborn, M., Pisani, G., and Knippertz,
P.: Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in
southern Morocco during SAMUM, Tellus B, 61, 144–164,
https://doi.org/10.1111/j.1600-0889.2008.00390.x, 2009. a
Toledano, C., González, R., Fuertes, D., Cuevas, E., Eck, T. F.,
Kazadzis, S., Kouremeti, N., Gröbner, J., Goloub, P., Blarel, L.,
Román, R., Barreto, Á., Berjón, A., Holben, B. N., and Cachorro,
V. E.: Assessment of Sun photometer Langley calibration at the high-elevation
sites Mauna Loa and Izaña, Atmos. Chem. Phys., 18, 14555–14567,
https://doi.org/10.5194/acp-18-14555-2018, 2018. a, b
Weitkamp, C. (ed.): Lidar Range-Resolved Optical Remote Sensing of the
Atmosphere, Springer-Verlag New York, https://doi.org/10.1007/b106786, 2005. a
Welton, E. J. and Campbell, J. R.: Micropulse Lidar Signals: Uncertainty
Analysis, J. Atmos. Ocean. Tech., 19, 2089–2094,
https://doi.org/10.1175/1520-0426(2002)019<2089:MLSUA>2.0.CO;2, 2002. a, b
Welton, E. J., Campbell, J. R., Spinhirne, J. D., and Scott, V. S.: Global
monitoring of clouds and aerosols using a network of micropulse lidar
systems, Proc. SPIE 4153, Lidar Remote Sensing for Industry and Environment
Monitoring, https://doi.org/10.1117/12.417040, 2001. a
Wiegner, M., Gasteiger, J., Kandler, K., Weinzierl, B., Rasp, K., Esselborn,
M., Freudenthaler, V., Heese, B., Toledano, C., Tesche, M., and Althausen,
D.: Numerical simulations of optical properties of Saharan dust aerosols with
emphasis on lidar applications, Tellus B, 61, 180–194,
https://doi.org/10.1111/j.1600-0889.2008.00381.x, 2009. a
Short summary
Lidar ratio is a key parameter for the aerosol characterization using satellite remote-sensing platforms as CALIOP. However, there are important differences in the values reported in the bibliography. The geographic characteristics of the IARC observatories location and a 10-year data series allow us to make a unique study of the mineral dust in the Saharan air layer. We report lidar ratios at 523 nm of 49 ± 6 sr and 50 ± 11 sr obtained by two different methods.
Lidar ratio is a key parameter for the aerosol characterization using satellite remote-sensing...
Altmetrics
Final-revised paper
Preprint