Articles | Volume 19, issue 19
https://doi.org/10.5194/acp-19-12531-2019
https://doi.org/10.5194/acp-19-12531-2019
Technical note
 | 
09 Oct 2019
Technical note |  | 09 Oct 2019

Technical note: Effects of uncertainties and number of data points on line fitting – a case study on new particle formation

Santtu Mikkonen, Mikko R. A. Pitkänen, Tuomo Nieminen, Antti Lipponen, Sini Isokääntä, Antti Arola, and Kari E. J. Lehtinen

Related authors

Accounting for effects of coagulation and model uncertainties in particle number concentration estimates based on measurements from sampling lines – A Bayesian inversion approach with SLIC v1.0
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1898,https://doi.org/10.5194/egusphere-2024-1898, 2024
Short summary
Challenges and solutions in determining dilution ratios and emission factors from chase measurements of passenger vehicles
Ville Leinonen, Miska Olin, Sampsa Martikainen, Panu Karjalainen, and Santtu Mikkonen
Atmos. Meas. Tech., 16, 5075–5089, https://doi.org/10.5194/amt-16-5075-2023,https://doi.org/10.5194/amt-16-5075-2023, 2023
Short summary
Comparison of particle number size distribution trends in ground measurements and climate models
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022,https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
The effect of clouds and precipitation on the aerosol concentrations and composition in a boreal forest environment
Sini Isokääntä, Paul Kim, Santtu Mikkonen, Thomas Kühn, Harri Kokkola, Taina Yli-Juuti, Liine Heikkinen, Krista Luoma, Tuukka Petäjä, Zak Kipling, Daniel Partridge, and Annele Virtanen
Atmos. Chem. Phys., 22, 11823–11843, https://doi.org/10.5194/acp-22-11823-2022,https://doi.org/10.5194/acp-22-11823-2022, 2022
Short summary
Observations on aerosol optical properties and scavenging during cloud events
Antti Ruuskanen, Sami Romakkaniemi, Harri Kokkola, Antti Arola, Santtu Mikkonen, Harri Portin, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, and Ari Leskinen
Atmos. Chem. Phys., 21, 1683–1695, https://doi.org/10.5194/acp-21-1683-2021,https://doi.org/10.5194/acp-21-1683-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Quasi-weekly oscillation of regional PM2.5 transport over China driven by the synoptic-scale disturbance of the East Asian winter monsoon circulation
Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao
Atmos. Chem. Phys., 25, 1273–1287, https://doi.org/10.5194/acp-25-1273-2025,https://doi.org/10.5194/acp-25-1273-2025, 2025
Short summary
Solar radiation estimation in West Africa: impact of dust conditions during the 2021 dry season
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
Atmos. Chem. Phys., 25, 997–1021, https://doi.org/10.5194/acp-25-997-2025,https://doi.org/10.5194/acp-25-997-2025, 2025
Short summary
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK Earth System Model
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
Atmos. Chem. Phys., 25, 291–325, https://doi.org/10.5194/acp-25-291-2025,https://doi.org/10.5194/acp-25-291-2025, 2025
Short summary
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 25, 327–346, https://doi.org/10.5194/acp-25-327-2025,https://doi.org/10.5194/acp-25-327-2025, 2025
Short summary
Warming effects of reduced sulfur emissions from shipping
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024,https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary

Cited articles

Boggs, P. T., Byrd, R. H., and Schnabel, R. B.: A Stable and Efficient Algorithm for Nonlinear Orthogonal Distance Regression, SIAM J. Sci. Stat. Comput., 8, 1052–1078, https://doi.org/10.1137/0908085, 1987. 
Boggs, P. T., Donaldson, J. R., Byrd, R. H., and Schnabel, R. B.: Algorithm 676 ODRPACK: software for weighted orthogonal distance regression, ACM Trans. Math. Softw., 15, 348–364, https://doi.org/10.1145/76909.76913, 1989. 
Boy, M., Karl, T., Turnipseed, A., Mauldin, R. L., Kosciuch, E., Greenberg, J., Rathbone, J., Smith, J., Held, A., Barsanti, K., Wehner, B., Bauer, S., Wiedensohler, A., Bonn, B., Kulmala, M., and Guenther, A.: New particle formation in the Front Range of the Colorado Rocky Mountains, Atmos. Chem. Phys., 8, 1577–1590, https://doi.org/10.5194/acp-8-1577-2008, 2008. 
Cantrell, C. A.: Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems, Atmos. Chem. Phys., 8, 5477–5487, https://doi.org/10.5194/acp-8-5477-2008, 2008. 
Download
Short summary
Atmospheric measurement data never come without measurement error. Too often, these errors are neglected when researchers make inferences from their data. We applied multiple line-fitting methods to simulated data mimicking two central variables in aerosol research. Our results show that an ordinary least squares fit, typically used to describe relationships, underestimates the slope of the fit and that methods taking the measurement uncertainty into account performed significantly better.
Altmetrics
Final-revised paper
Preprint