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Abstract. Fitting a line to two measured variables is consid-
ered one of the simplest statistical procedures researchers can
carry out. However, this simplicity is deceptive as the line-
fitting procedure is actually quite a complex problem. Atmo-
spheric measurement data never come without some mea-
surement error. Too often, these errors are neglected when
researchers make inferences from their data.

To demonstrate the problem, we simulated datasets with
different numbers of data points and different amounts of er-
ror, mimicking the dependence of the atmospheric new par-
ticle formation rate (J1.7) on the sulfuric acid concentration
(H2SO4). Both variables have substantial measurement error
and, thus, are good test variables for our study. We show that
ordinary least squares (OLS) regression results in strongly bi-
ased slope values compared with six error-in-variables (EIV)
regression methods (Deming regression, principal compo-
nent analysis, orthogonal regression, Bayesian EIV and two
different bivariate regression methods) that are known to take
errors in the variables into account.

1 Introduction

Atmospheric measurements always come with some mea-
surement error. Too often, these errors are neglected when re-
searchers make inferences based on their data. Describing the
relationship between two variables typically involves making
deductions in a more general context than that in which the
variables were directly studied. If the relationship is not de-
fined correctly, the inference is also not valid. In some cases,

the bias in the analytical method is even given a physical
meaning.

When analysing the dependencies of two or more mea-
sured variables, regression models are usually applied. Re-
gression models can be linear or non-linear, depending on the
relationship between the datasets that are analysed. Standard
regression models assume that the independent variables of
the model have been measured without error and that the
model only accounts for errors in the dependent variables or
responses. In cases where the measurements of the predic-
tors contain error, estimating using standard methods (usu-
ally ordinary least squares, OLS) does not tend to provide
the true parameter values, even when a very high number
of data points is used. In linear models, the coefficients are
underestimated (e.g. Carroll et al., 2006); however, in non-
linear models, the bias is likely to be more complicated (e.g.
Schennach, 2004). If predictor variables in regression analy-
ses contain any measurement error, methods that account for
errors should be applied – particularly when errors are large.
Thus, test variables in this study were chosen such that they
included significant uncertainties in both the independent and
dependent variables.

The sulfuric acid concentration (H2SO4) is known to
strongly affect the formation rates (J ) of aerosol particles
(Kirkby et al., 2016; Kuang et al., 2008; Kulmala et al., 2006;
Kürten et al., 2016; Metzger et al., 2010; Riccobono et al.,
2014; Riipinen et al., 2007; Sihto et al., 2006; Spracklen
et al., 2006). The relationship between J (cm−3 s−1) and
H2SO4 (molec cm−3) is typically assumed to be in the fol-
lowing form: log10(J )= β×log10(H2SO4)+α (Seinfeld and
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Pandis, 2016). In addition, parameterisations based on the re-
sults from these fits have been implemented in global mod-
els (e.g. in Dunne et al., 2016, Metzger et al., 2010 and
Spracklen et al., 2006) to estimate the effects of new par-
ticle formation on global aerosol amounts and characteris-
tics. Theoretically, in homogeneous nucleation, the slope of
this relationship is related to the number of sulfuric acid
molecules in the nucleating critical cluster, based on the first
nucleation theorem (Vehkamäki, 2006).

Some published results have shown discrepancies in the
expected J vs. H2SO4 dependence. Analysing data from
Hyytiälä in 2003, Kuang et al. (2008) used an unconstrained
least squares method, which was not specified in the paper,
and obtained a β value of 1.99 for the slope, whereas Si-
hto et al. (2006) reported a β value of 1.16 using OLS from
the same field campaign. The studies had some differences
in pre-treatment of the data and used different time win-
dows, but a significant proportion of this inconsistency is
very likely due to the use of different fitting methods. The
problem regarding the relationship of H2SO4 and J was pre-
viously acknowledged in Paasonen et al. (2010), who noted
that the bivariate fitting method, as presented in York et
al. (2004), should be applied; however, this method could
not be used due to the lack of proper error estimates for each
quantity. They were not aware of methods that did not require
knowledge of the errors in advance, and instead made use of
estimated variances. Here, we present the appropriate tools
required for the above-mentioned approach.

Multiple attempts have been made to present methods that
account for errors in the predictor variables for regression-
type analyses, going back to Deming (1943). However, the
traditional least squares fitting method is still the de facto
line-fitting method due to its simplicity and common avail-
ability in frequently used software. In atmospheric sciences,
Cantrell (2008) drew attention to the method introduced
by York (1966) and York et al. (2004) and listed multiple
other methodological papers utilising similar methodology.
Pitkänen et al. (2016) raised awareness of the fact that er-
rors are not accounted for in the predictor variables in the
remote-sensing community, and this study partly follows
their approach and introduces multiple methods to account
for the errors in predictors. Cheng and Riu (2006) studied
methods involving heteroscedastic errors, whereas Wu and
Yu (2018) approached the problem with measurement errors
via weighted regression and applied some techniques that are
also used in our study.

Measurement errors in each variable must be taken into ac-
count using approaches known as errors-in-variables (EIV)
regression. EIV methods simply mean that errors in both
variables are accounted for. In this study, we compared OLS
regression results to six different regression methods (Dem-
ing regression, principal component analysis regression, or-
thogonal regression, Bayesian EIV regression and two differ-
ent bivariate regression methods) that are known to be able
to take errors in variables into account and provide (at least

asymptotically) unbiased estimates. In this study, we focus
exclusively on linear EIV methods, but it is important to
acknowledge that non-linear methods also exist, e.g. ORD-
PACK introduced in Boggs et al. (1987) and implemented in
Python SciPy and R (Boggs et al., 1989; Spiess, 2015). OR-
DPACK is a somewhat improved version of classical orthog-
onal regression, in that arbitrary covariance structures are ac-
ceptable, and it is specifically set up so that a user can specify
measurement error variance and covariance point by point;
some of the methods in this study carry out the same process
in linear analysis.

2 Materials and methods

2.1 Data illustrating the phenomenon

Measurement data contain different types of errors. Usually,
the errors are divided to two main class: systematic error and
random error.

Systematic errors, commonly referred as bias, in exper-
imental observations usually come from the measurement
instruments. They may occur because something is wrong
with the instrument or its data handling system, or due to
operator error. In line fitting, bias cannot be taken into ac-
count and needs to be minimised by way of careful and reg-
ular instrument calibrations and zeros or data preprocessing.
The random error, in comparison, may have different com-
ponents; the two components discussed here are the natural
error and the measurement error. In addition, one should note
the existence of equation error (discussed in Carroll and Rup-
pert, 1996), which refers to using an inappropriate form of a
fitting equation. Measurement error is more generally under-
stood; it is where measured values do not fully represent the
true values of the variable being measured. This also contains
sampling error (e.g. in the case of H2SO4 measurement, the
sampled air in the measurement instrument is not a represen-
tative sample of the outside air due to losses of H2SO4 occur-
ring in the sampling lines, among other factors). Natural error
is the variability caused by natural or physical phenomenon
(e.g. a specific amount of H2SO4 does not always cause the
same number of new particles to be formed).

In the analysis of the measurement data, some amount of
these errors are known or can be estimated, but some of the
error will usually remain unknown; this should be kept in
mind when interpreting fits. Even though the measurement
error is taken into account, the regression fit may be biased
due to unknown natural error. In this study, we assume that
the errors of the different variables are uncorrelated, but in
some cases this has to be accounted for, as noted, for ex-
ample, in Trefall and Nordö (1959) and Mandel (1984). The
correlation between the errors of two variables, measured
with separate instruments, independent of each other, such
as formation rate and H2SO4, may come from factors such
as environmental variables that affect both of the variables
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at the same time. Factors affecting the formation of sulfuric
acid have been studied in various papers, e.g. in Weber et
al. (1997) and Mikkonen et al. (2011). New particle forma-
tion rates, in turn, have been studied in works such as Boy
et al. (2008) and Hamed et al. (2011) and similarities be-
tween the affecting factors can be seen. In addition, factors
like room temperature in the measurement space and atmo-
spheric pressure may affect the performance of instrumenta-
tion, thereby causing additional error.

The data used in this study consist of simulated new
particle formation rates at 1.7 nm (J1.7) and sulfuric acid
(H2SO4) concentrations mimicking observations of pure sul-
furic acid in nucleation experiments from the CLOUD cham-
ber at CERN (Kürten et al. 2016; https://home.cern/about/
experiments/cloud, last access: 16 August 2019), including
the corresponding expected values, their variances and co-
variance structures. The Proton Synchrotron at CERN pro-
vides an artificial source of “cosmic rays” that simulates the
natural ionisation conditions between the ground level and
the stratosphere. The core is a large (volume 26m3) electro-
polished stainless-steel chamber with temperature control
(temperature stability better than 0.1 K) at any tropospheric
temperature, precise delivery of selected gases (SO2, O3,
NH3 and various organic compounds) and ultra-pure hu-
midified synthetic air, as well as very low gas-phase con-
taminant levels. The existing data on new particle forma-
tion include what are believed to be the most important for-
mation routes that involve sulfuric acid, ammonia and wa-
ter vapour (Kirkby et al., 2011); sulfuric acid and amine
(Almeida et al., 2013); and ion-induced organic nucleation
(Kirkby et al., 2016). The actual nucleation of new particles
occurs at a slightly smaller size. After formation, particles
grow by condensation to reach the detection limit (1.7 nm)
of the instrument; thus, J1.7 refers to the formation rate of
particles as the instrument detects them, accounting for the
known particle losses due to coagulation and deposition on
the chamber walls. The relationships between precursor gas-
phase concentrations and particle formation rates were cho-
sen because they are both known to have considerable mea-
surement errors and their relationship has been well-studied
using regression-based analyses (Kirkby et al., 2016; Kürten
et al., 2016; Riccobono et al., 2014; Tröstl et al., 2016). Ad-
ditionally, many of the published papers on this topic do not
describe how they accounted for the uncertainties in the anal-
ysis, which casts doubt on the fact that errors were treated
properly. However, it should be kept in mind that the data
could be any set of numbers assumed to have a linear rela-
tionship, but, in order to raise awareness in the aerosol re-
search community, in this study we relate our analysis to the
important problem of understanding new particle formation.

2.2 Regression methods

We carried out fits for the linear dependency of the loga-
rithms of the two study variables, such that the equation for

the fit was given by

y = β0+β1x+ ε, (1)

where y represents log10(J1.7), x is log10(H2SO4), β values
are the coefficients estimated from the data and ε is the error
term. In order to demonstrate the importance of taking the
measurement errors into account in the regression analysis,
we tested seven different line-fitting methods: ordinary least
squares (OLS), not taking the uncertainty in x variable into
account; orthogonal regression (ODR; Boggs et al., 1987);
Deming regression (DR; Deming, 1943); principal compo-
nent analysis (PCA; Hotelling, 1957) regression; Bayesian
EIV regression (Kaipio and Somersalo, 2005); and two dif-
ferent bivariate least squares methods by York et al. (2004)
and Francq and Govaerts (2014, BLS), respectively, which
are known to be able to account for errors in variables and
provide (at least asymptotically) unbiased estimates. The dif-
ferences between the methods stem from the criterion they
minimise when calculating the coefficients and how they ac-
count for measurement errors. The minimising criteria for all
methods are given in Appendix A1, but in the following we
give the principles of the methods.

OLS minimises the squared distance of the observation
and the fit line either in the x or y direction, but not both
at the same time, whereas ODR minimises the sum of the
squared weighted orthogonal distances between each point
and the line. DR was originally an improved version of or-
thogonal regression, accounting for the ratio of the error vari-
ances, λxy , of the variables, (in classical non-weighted ODR
λxy = 1), and it is the maximum likelihood estimate (MLE)
for the model (given in Eq. 1) when λxy is known. The PCA
approach is the same as in ODR, but the estimation proce-
dure is somewhat different as can be seen in Table S1 in the
Supplement. The bivariate algorithm by York et al. (2004)
provides a simple set of equations for iterating the MLE of
the slope and intercept with weighted variables, which makes
it similar to ODR in this case. However, using ODR allows
for a regression to be performed on a user-defined model,
whereas the York (2004) solution only works on linear mod-
els. This, for instance, enables the use of linear-scale uncer-
tainties in ODR in this study, whereas the York (2004) ap-
proach could only use log-scale uncertainties. In Bayes EIV,
statistical models for the uncertainties in the observed quan-
tities are used and probability distributions for the line slope
and intercept are computed according to Bayes’ theorem. In
this study, we computed the Bayesian maximum a posteri-
ori (MAP) estimates for the slope and intercept that are the
most probable values given the likelihood and prior models
(see Appendix A1 for more details on models used in Bayes
EIV). BLS takes errors and heteroscedasticity into account,
i.e. unequal variances, in both variables; thus, it is a more
advanced method than DR (under normality and equal vari-
ances, BLS is exactly equivalent to DR). PCA only accounts
for the observed variance in data, whereas ODR, Bayes EIV
and York bivariate regression require known estimates for
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measurement errors, although for Bayes EIV the error can
be approximated with a distribution. DR and BLS can be ap-
plied with both errors given by the user and measurement
variance-based errors. In this study, we applied measurement
variance-based errors for these methods. The analyses for
OLS and PCA were calculated with the “lm” and “prcomp”
R functions (R Core Team, 2018), respectively, DR was cal-
culated with the “deming” package (Therneau, 2018) and
BLS was calculated with the “BivRegBLS” package (Francq
and Berger, 2017) in R. The ODR-based estimates were ob-
tained using the “scipy.odr” Python package (Jones et al.,
2001), while the “PyStan” Python package (Stan Develop-
ment Team, 2018) was used for calculating the Bayesian re-
gression estimates. Finally, the York bivariate estimates were
produced with a custom Python implementation of the algo-
rithm presented by York et al. (2004).

3 Data

3.1 Simulated data

In measured data, the variables that are observed are not x
and y, but (x+ ex) and (y+ ey), where ex and ey are the
uncertainty in the measurements, and the true x and y cannot
be exactly known. Thus, we used simulated data, where the
true, i.e. noise-free, x and y were known to illustrate how the
different line-fitting methods perform in different situations.

We simulated a dataset mimicking the new particle forma-
tion rates (J1.7) and sulfuric acid concentrations (H2SO4) re-
ported from CLOUD-chamber measurements at CERN. Both
variables are known to have substantial measurement error
and, thus, they are good test variables for our study. Addi-
tionally, the relationship of the logarithms of these variables
is quite often described with linear OLS regression and, thus,
the inference may be flawed.

We generated 1000 random noise-free H2SO4 concentra-
tion values assuming a log-normal distribution with a median
of 2.0× 106 (molec cm−3) and a standard deviation of 2.4×
106 (molec cm−3). The corresponding noise-free J1.7 was
calculated using model log10(J1.7)= β× log10(H2SO4)+α

with the noise-free slope β = 3.3 and α =−23, which are
both realistic values presented by Kürten et al. (2016, Table 2
in their paper, for the no added ammonia cases).

Simulated observations of the noise-free H2SO4 con-
centrations were obtained by adding random errors
ex = erel,xx+ σabs,x that have a random absolute com-
ponent eabs,x ∼ normal(0,σabs,x) and a random compo-
nent relative to the observation x itself erel,xx, where
erel,x ∼ normal(0,σrel,x). Similar definitions apply for the
noise-free J1.7, ey , σabs,y and σrel,y . The standard devia-
tions of the measurement error components were chosen as
σabs,x = 4× 105, σrel,x = 0.3, σabs,y = 3× 10−3 and σrel,y =

0.5, which are subjective estimates based on measurement
data. The resulting total errors were occasionally about as

large as the data values themselves; however, they are not un-
usually large error values with respect to corresponding real
datasets, where overall uncertainties may reach 150 % for
H2SO4 concentrations and 250 % for nucleation rates (e.g.
Dunne et al., 2016).

These choices regarding generating simulated data reflect
what real dataset can often be like: the bulk of the data ap-
proximates a log-normal distribution with one of the tails
possibly being thinned or cut close to a limit of detection of
an instrument or close to a limit of the data filtering criterion.
In our simulated data, each negative observation and each
negative noise-free value was replaced with a new random
simulated value, which only slightly offsets the final distri-
bution from a perfectly symmetric log-normal shape.

Simulating the observations tends to generate infrequent
extreme outlier observations from the infinite tails of the nor-
mal distribution. We discarded outliers with an absolute error
larger than 3 times the combined standard uncertainty of the
observation in order to remove the effect of outliers from the
regression analysis. This represents the quality control pro-
cedure in data analysis and also improves the stability of our
results between different simulations.

3.2 Case study on measured data

In order to show that the results gained with simulated data
are also applicable in real measurement data, we applied our
methods to data measured in the CLOUD chamber and pub-
lished by Dunne et al. (2016). Fig. 1 in Dunne et al. (2016)
shows nucleation rates (J ) at a 1.7 nm mobility diameter as
a function of the sulfuric acid concentration. We used their
measurements with no added ammonia at two different tem-
peratures, 278 and 292 K, as shown in their Fig. 1D and E
and given in their Supplementary material.

4 Results

4.1 Fits for simulated data

Differences between the regression methods are illustrated
in four different ways: firstly, by showing line fits on a scat-
terplot of simulated data; secondly, by illustrating how the
slopes change when the uncertainty in the measured vari-
ables increase; thirdly, by showing the sensitivity of the fits
on number of observations; and finally, by showing how the
fits are affected by adding outliers in the data. Regression fits
using each of the respective methods are shown in Fig. 1.

As we know that the noise-free slope βtrue is 3.30, we
can easily see how the methods perform. The worst per-
forming method was OLS, with a βols value of 1.55, which
is roughly half of the βtrue. The best performing methods
that displayed equal accuracy, i.e. within 2 % range, were
ODR (βODR = 3.27), Bayes EIV (βBEIV = 3.24) and BLS
(βBLS = 3.22), whereas York (βYork = 3.15) was within a
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Figure 1. Regression lines fitted to the simulated data comparing all
of the respective methods. The whiskers refer to the measurement
error used for simulation.

range of 5 %; Deming (βDR = 2.95) and PCA (βPCA = 2.92),
in comparison, slightly underestimated the slope.

The sensitivity of the methods was first tested by varying
the uncertainty in the H2SO4 observations. We simulated six
datasets with 1000 observations and with varying absolute
and relative uncertainties (as listed in Table 1), and then per-
formed fits with each method on all of these datasets. The
performance of the methods is shown in Fig. 2, with the re-
sults corresponding to Fig. 1 marked in black. The results
show that when the uncertainty is small, the bias in the OLS
fit is smaller, but when more uncertainty is added to data, the
bias increases significantly. A decrease in performance can
also be seen with ODR, which overestimates the slope, and
PCA, DR and Bayes EIV, which all underestimate the slope.
The bivariate methods, BLS and York, seem to be quite ro-
bust with increasing uncertainty, as the slopes do not change
significantly.

The sensitivity of the methods to the decreasing n (number
of observations) was tested by picking 100 random samples
from the 1000-sample simulation dataset with n of 3, 5, 10,
20, 30, 50, 70, 100, 300 and 500 and carrying out fits for
all samples using all methods. The average slopes and their
standard errors are shown in Fig. 3. It is clear that when the
n≤ 10, the variation in the estimated slopes can be consid-
erably high. When n≥ 30 the average slopes stabilised close
to their characteristic levels (within 5 %), except for Bayes
EIV and York bivariate, which needed more than 100 obser-
vations. The most sensitive methods for a small nwere Bayes
EIV, ODR and PCA; thus, these methods should not be ap-

Table 1. The uncertainties used in the simulation for the sensitivity
test for increasing uncertainty.

Dataset σabs σrel Ratio (=
(σrel× x

′
obs)/σabs)

1 103 0.05 315.0
2 104 0.18 113.4
3 7× 104 0.3 27.0
4 4× 105 0.3 4.7
5 6.5× 105 0.45 4.4
6 106 0.55 3.5

Figure 2. Sensitivity test for increasing uncertainty in simulated
data. Black markers show the initial dataset described in Sect. 3.
The dashed line indicates the noise-free slope.

plied for data with a small n and a similar type of uncertainty
to that presented here. However, the reader is reminded that
number of points needed for a good fit depends on the uncer-
tainties in the data.

The sensitivity of the predictor variable H2SO4 to outliers
was tested using two different scenarios. In the first scenario,
outliers were randomly allowed to be at either the high or low
end of the distribution. In the second scenario, outliers were
only allowed to be large numbers, which is often the case in
H2SO4 and aerosol concentration measurements as numbers
are removed from the data when they are smaller than the de-
tection limit of the measurement instrument. Five cases with
an n of 1000 were simulated with an increasing number of
outliers (0, 5, 10, 20 and 100) and 10 repetitions of H2SO4
values with a different set of outliers. Outliers were defined
such that xobs−xtrue>3× the combined standard uncertainty.

www.atmos-chem-phys.net/19/12531/2019/ Atmos. Chem. Phys., 19, 12531–12543, 2019



12536 S. Mikkonen et al.: Technical note: Effects of uncertainties and number of data points

Figure 3. Effect of sample size on the uncertainty of different fits.
Lines show the median and shading illustrates the 1 standard devia-
tion range of slope estimates for 40 repeated random samples. The
dashed line indicates the noise-free slope.

The methods most sensitive to outliers in both scenarios were
OLS and Bayes EIV. A high number of outliers caused un-
derestimations in PCA and DR, especially when using the
outliers with high values (second scenario mentioned above),
and a slight overestimation in BLS in the random outlier case
(first scenario mentioned above). York bivariate and ODR
were not affected in either case, and BLS only showed small
variation between the 10 replicates in the estimated slope. We
did not explore how large a number of outliers would needed
to be to seriously disrupt the fits for the various methods. We
felt that it is likely not realistic to have situations that have
more than 10 % outliers.

We also applied an alternative method for simulating the
data to different testing methods. The main difference com-
pared with our method was that the distribution of noise-free
H2SO4 followed a uniform distribution in log-space. With
this assumption, it could be seen that OLS works almost as
well as the EIV methods introduced here if the range of the
data is wide (H2SO4 concentration in the range of 106–109).
However, when scaled to concentrations usually measured in
the atmosphere (104–107), the high uncertainties caused sim-
ilar behaviour to the data seen in our previous simulations.
Details of these results can be seen in Supplement S1.

4.2 Results of the case study

Figure 5 shows the fits of the data from Dunne et al. (2016).
As expected, the fit using OLS is underestimated at both

temperatures: βols(278 K) was 2.4 and βols(292 K) was 3.0.
The regression equations for all methods are shown in Fig. 5.
Dunne et al. (2016) did not use a linear fit in their study and
instead applied a non-linear Levenberg–Marquardt algorithm
(Moré, 1978) on function J1.7 = k×[H2SO4]

β , where k is
a temperature-dependent rate coefficient with a non-linear
function including three estimable parameters (see Sect. 8
of their Supplement for details). Thus, the results are not di-
rectly comparable as, for simplicity, we fit the data measured
at different temperatures separately. However, their β value
for the fit (β = 3.95) is quite close to our results using EIV
methods, especially as slopes from Bayes EIV at 292 K and
BLS and PCA at both temperatures were within a range of
5 %. We also carried out some tests on data measured at
lower temperatures (results not shown here). However, the
slopes did not vary drastically from those at βols(278 K) and
βols(292 K) when the other conditions were similar, even
though the lower number of observations at lower temper-
atures increased uncertainty in the data. Nevertheless, the in-
tercepts β0(T ) varied between temperatures.

5 Conclusions

Ordinary least squares regression can be used to answer some
simple questions regarding data, such as “How is y related
to x?”. However, if we are interested in the strength of the
relationship and the predictor variable X contains some er-
ror, then error-in-variables methods should be applied. There
is no single correct method to make the fit, as the methods
behave slightly differently with different types of error. The
choice of method should be based on the properties of data
and the specific research question. There are usually two
types of error in the data: natural and measurement error,
where natural error refers to stochastic variation in the en-
vironment. Even if the natural error in the data is not known,
taking the measurement error into account improves the fit
significantly. Weighting the data based on some factor, typi-
cally the inverse of the uncertainty, reduces the effect of out-
liers and makes the regression more depend on the data that
are more certain (see e.g. Wu and Yu, 2018), but it does not
solve the problem completely.

As a test study, we simulated a dataset mimicking the de-
pendence of the atmospheric new particle formation rate on
the sulfuric acid concentration. We introduced three major
sources of uncertainty when establishing inference from scat-
terplot data: the increasing measurement error, the number of
data points and the number of outliers. In Fig. 1, we showed
that for simulations where errors are taken from real mea-
surements of J1.7 and H2SO4 four of the methods gave slopes
within 5 % of the known noise-free value: BLS, York bivari-
ate, Bayes EIV and ODR. Estimates from BLS and York
bivariate even remained stable when the uncertainty in the
simulated H2SO4 concentration was increased drastically, as
seen in Fig. 2. The main message to take away from Fig. 3,
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Figure 4. Effect of outliers in the data. (a) The random outliers case and (b) the only high positive values case. Lines show the median and
the shading shows ±1 standard deviation of the slope estimates in the 10 repeated studies. The dashed line indicates the noise-free slope.

Figure 5. Regression lines fitted to data from Dunne et al. (2016), in a similar fashion to Fig. 1. In (a) the observations are from a temperature
of 292 K, and in (b) they are from 278 K.

in comparison, is that if the data contain some error, all fit
methods are highly uncertain when small numbers of obser-
vations are used. BLS was the most accurate with the small-
est sample sizes (10 or less), ODR stabilised with 20 obser-
vations, and York bivariate and Bayes EIV needed 100 or
more data points to become accurate. After that, these meth-
ods approached the noise-free value asymptotically, whereas
the OLS slope converged towards an incorrect value. With
an increasing number of outliers (Fig. 4), ODR and York bi-
variate were the most stable methods, even when 10 % of ob-
servations were classified as outliers in both test cases. BLS

remained stable in the scenario with only high outlier values.
Bayes EIV was the most sensitive to outliers after OLS.

From this, we can recommend that if the uncertainty in
the predictor variable is known, York bivariate, or another
method able to use known variances, should be applied. If the
errors are not known, and they are estimated from data, BLS
and ODR were found to be the most robust in cases with in-
creasing uncertainty (relative error, rE > 30 % in Fig. 2) and
with a high number of outliers. In our test data, BLS and
ODR remained stable up to rE > 80 % (Fig. 2), whereas DR
and PCA began to become more uncertain when rE > 30 %
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and Bayes EIV when rE > 50 %. If the number of observa-
tions is less than 10 and the uncertainties are high, we would
recommend considering if a regression fit is appropriate at
all. However, with the chosen uncertainties in our simula-
tion tests, BLS was found to be the most robust with small
numbers of data points. Bayes EIV displayed significant ad-
vantages if the number of observations was high enough and
there were not too many outliers, as it did not require an ex-
plicit definition of the errors and could treat them as unknown
parameters given their probability distributions.

We also carried out a case study on data measured in the
CLOUD chamber and published by Dunne et al. (2016). In
these analyses, we saw that our above-mentioned recom-
mended methods also performed best for these data. Our tests
indicated that the slope β1 for the fit is not highly sensitive
to changes in temperature in the chamber but the intercept β0
in linear fit is. This dependency was also seen, and taken into
account, in Dunne et al. (2016).

Code availability. Python code for running the methods can
be found on GitHub: https://gist.github.com/mikkopitkanen/
da8c949571225e9c7093665c9803726e (Pitkänen, 2019).

Data availability. Simulated datasets used in the example analysis
are given in the Supplement.
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Appendix A: Minimising criteria for the regression
methods applied in the paper

In this appendix, we introduce the minimising criteria
(Cmethod) for all methods applied in the main text. We also
give the equations for the regression coefficients (α̂method and
β̂method) for the methods.

A1 Ordinary least squares (OLS)

OLS minimises the sum of squares vertical distances (resid-
uals) between each point and the fitted line. OLS regression
minimises the following criterion:

COLS =
∑N

i=1

(
yi − α̂OLS− β̂OLSxi

)2
, (A1)

where α̂OLS and β̂OLS refer to estimators calculated from the
data. These estimations are given by

β̂OLS =
Sx

Sy
, α̂OLS = x− β̂OLSy, (A2)

where observed variances for xSx =
∑N
i=1(xi − x)

2 and for
ySy =

∑N
i=1(yi − y)

2, and observed covariance for x and y
Sxy =

∑N
i=1 (xi − x)(yi − y).

A2 Orthogonal regression (ODR)

ODR (https://docs.scipy.org/doc/external/odrpack_
guide.pdf, last access: 16 August 2019, https:
//docs.scipy.org/doc/scipy/reference/odr.html, last ac-
cess: 27 July 2018) minimises the sum of the square of the
orthogonal distances between each point and the line. The
criteria is given by

CODR =
∑N

i=1

(xi − yi + xi/β̂ODR− α̂ODR

β̂ODR+ 1/β̂ODR

)2

+

(
yi − α̂ODR−

β̂ODRyi + xi − α̂ODRβ̂ODR

β̂ODR+ 1/β̂ODR

)2
 , (A3)

where

β̂ODR =
Sy − Sx +

√(
Sy − Sx

)2
+ 4S2

xy

2Sxy
(A4)

and

α̂ODR = y− β̂ODRx. (A5)

ODR accounts for the fact that errors exist in both axes but
does not account for the exact values of the variances of vari-
ables. Thus, only the ratio between the two error variances
(λxy) is needed to improve the methodology. With notation

of Francq and Govaerts (2014), this ratio is given by the fol-
lowing:

λxy =
σ 2
y

σ 2
x

, (A6)

where the numerator of the ratio is the error variance in the
data in the y axis and the denominator is the error variance
in the data in the x axis.

A3 Deming regression (DR)

DR is the ML (maximum likelihood) solution of Eq. 1 when
λxy is known. In practice, λxy is unknown and it is estimated
from the variances of x and y calculated from the data.

The DR minimises the criterion CDR, which is the sum
of the square of (weighted) oblique distances between each
point to the line:

CDR =
∑N

i=1

λxy(xi − yi + λxyxi/β̂DR− α̂DR

β̂DR+ λxy/β̂DR

)2

+

(
yi − α̂DR−

β̂DRyi + λxyxi − α̂DRβ̂DR

β̂DR+ λxy/β̂DR

)2
 , (A7)

where

β̂DR =
Sy − λxySx +

√(
Sy − λxySx

)2
+ 4λxyS2

xy

2Sxy
(A8)

and

α̂DR = y− β̂DRx. (A9)

A4 Bivariate least squares regression (BLS)

BLS is a generic name but here we refer to the formula-
tion described in Francq and Govaerts (2014) and references
therein. BLS takes errors and heteroscedasticity in both axes
into account and is usually written in matrix notation. BLS
minimises the criterion CBLS, which is the sum of weighted
residuals WBLS given by the following:

CBLS =
1

WBLS

∑N

i=1

(
yi − α̂BLS− β̂BLSxi

)2
(A10)

with

WBLS = σ
2
ε =

σ 2
y

ny
+ β̂2

BLS
σ 2
x

nx
. (A11)

Estimators for the parameters are computed by iterations us-
ing the following formulas:

1
WBLS

(
N

∑N
i=1xi∑N

i=1xi
∑N
i=1x

2
i

)(
α̂BLS

β̂BLS

)
=

1
WBLS∑N

i=1

xiyi + β̂BLS
σ 2
x

nx

∑N
i=1

(
yi − α̂BLS− β̂BLSxi

)2

WBLS


 ,
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(A12)

where known uncertainties σ 2
x and σ 2

y are replaced with esti-
mated variances Sx and Sy in this study.

A second bivariate regression method that was used in
this study is an implementation of the regression method de-
scribed by York et al. (2004, Section III). The minimisation
criterion is described in York (1968):

Cyork =
∑N

i=0

1
1− r2

i

{
w(xi)

(
xi,adj− xi

)2
− 2r

√
w(xi)w (yi)

(
xi,adj− xi

)(
yi,adj− yi

)
+w(yi)

(
yi,adj− yi

)2}
, (A13)

where w(xi)= 1/σ 2
x and w = (yi)1/σ 2

y are the weight co-
efficients for x and y, respectively, and r is the correlation
coefficient between x and y. xi,adj and yi,adj are adjusted val-
ues of xi , yi , which fulfil the requirement

yi,adj = α̂york+ β̂yorkxi,adj. (A14)

The solution for α̂york and β̂york is found iteratively follow-
ing the 10-step algorithm presented in York et al. (2004, Sec-
tion III).

A5 The principal component analysis-based regression
(PCA)

PCA can be applied for bivariate and multivariate cases.
For one independent and one dependent variable, the re-

gression line is
y = α̂PCA+ β̂PCAx where the error between the observed

value yi and the estimated value a+ bxi is minimum. For n
data points, we compute a and b using the method of least
squares that minimises

CPCA =
∑N

i=1

(
yi − α̂PCA− β̂PCAxi

)2
. (A15)

This is a standard technique that gives the regression coef-
ficients α and β.

[
α̂PCA

β̂PCA

]
=

[
Sx −x

−x 1

]
Sx − x

2

[
y

Sxy

]
(A16)

A6 Bayesian error-in-variables regression (Bayes EIV)

Bayes EIV regression estimate applies Bayesian inference
using the popular Stan software tool (http://mc-stan.org/
users/documentation/, last access: 27 July 2018), which al-
lows the use of prior information of the model parameters.
We assumed

βBEIV ∼ student_t (5,0.0,100.0)
αBEIV ∼ student_t (5,0.0,100.0)
xtrue ∼ log normal(µx,σx)

ytrue = 10.0(αBEIV+βBEIV×log10(xtrue)),

where µ and σ are the respective mean and standard devia-
tion of xtrue and ytrue and are treated as unknowns. The ob-
servations xobs and yobs of xtrue and ytrue, respectively, were
defined as follows:

xobs ∼ normal
(
xtrue,σrel,x × xtrue+ σabs,x

)
yobs ∼ normal

(
ytrue,σrel,y × ytrue+ σabs,y

)
,

where σrel and σabs are the relative and absolute components
of standard uncertainties, respectively.

The Stan tool solved regression problems using 1000 iter-
ations, and it provided a posteriori distributions for the model
parameters βBEIV and αBEIV. For the definitions of given Stu-
dent t, log-normal and normal probability distributions, see
Stan documentation. In our regression analysis, we used the
maximum a posteriori estimates for βBEIV and αBEIV pro-
vided by the software tool.
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Supplement. The supplement related to this article is available on-
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