Articles | Volume 19, issue 16
https://doi.org/10.5194/acp-19-10557-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-19-10557-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
NH3-promoted hydrolysis of NO2 induces explosive growth in HONO
Wanyun Xu
State Key Laboratory of Severe Weather, Key Laboratory for
Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy
of Meteorological Sciences, Beijing, 100081, China
Institute for Environmental and Climate Research, Jinan University,
Guangzhou, China
Chunsheng Zhao
Department of Atmospheric and Oceanic Sciences, School of Physics,
Peking University, Beijing, China
Jiangchuan Tao
Institute for Environmental and Climate Research, Jinan University,
Guangzhou, China
Gang Zhao
Department of Atmospheric and Oceanic Sciences, School of Physics,
Peking University, Beijing, China
Yuxuan Bian
State Key Laboratory of Severe Weather, Chinese Academy of
Meteorological Sciences, Beijing, 100081, China
Wen Yang
State Key Laboratory of Environmental Criteria and Risk Assessment,
Chinese Research Academy of Environmental Sciences, Beijing, 100081, China
Yingli Yu
Department of Atmospheric and Oceanic Sciences, School of Physics,
Peking University, Beijing, China
Chuanyang Shen
Department of Atmospheric and Oceanic Sciences, School of Physics,
Peking University, Beijing, China
Linlin Liang
State Key Laboratory of Severe Weather, Key Laboratory for
Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy
of Meteorological Sciences, Beijing, 100081, China
Gen Zhang
State Key Laboratory of Severe Weather, Key Laboratory for
Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy
of Meteorological Sciences, Beijing, 100081, China
Weili Lin
College of Life and Environmental Sciences, Minzu University of
China, Beijing, 100081, China
Xiaobin Xu
State Key Laboratory of Severe Weather, Key Laboratory for
Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy
of Meteorological Sciences, Beijing, 100081, China
Related authors
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Ye Kuang, Biao Luo, Shan Huang, Junwen Liu, Weiwei Hu, Yuweng Peng, Duohong Chen, Dingli Yue, Wanyun Xu, Bin Yuan, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2654, https://doi.org/10.5194/egusphere-2024-2654, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This research reveals the potential importance of nighttime NO3 radical chemistry and aerosol water in the rapid formation of secondary brown carbon from biomass burning emissions. The findings enhance our understanding of nighttime biomass burning evolution and its implications for climate and regional air quality, especially regarding interactions with aerosol water and water-rich fogs and clouds.
Ye Kuang, Jiangchuan Tao, Hanbin Xu, Li Liu, Pengfei Liu, Wanyun Xu, Weiqi Xu, Yele Sun, and Chunsheng Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2698, https://doi.org/10.5194/egusphere-2024-2698, 2024
Short summary
Short summary
This study presents a novel optical framework to measure supersaturation, a fundamental parameter in cloud physics, by observing the scattering properties of particles that have or have not grown into cloud droplets. The technique offers high-resolution measurements, capturing essential fluctuations in supersaturation necessary for understanding cloud physics.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024, https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Short summary
Using simultaneous measurements of DMA–CCNC, H(/V)TDMA, and DMA–SP2, impacts of primary emissions and secondary aerosol formations on changes in aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing-state parameters derived from different techniques can help us gain more insight into aerosol physical properties which, in turn, will aid the investigation of emission characteristics and secondary aerosol formation pathways.
Mutong Niu, Shu Huang, Wei Hu, Yajie Wang, Wanyun Xu, Wan Wei, Qiang Zhang, Zihan Wang, Donghuan Zhang, Rui Jin, Libin Wu, Junjun Deng, Fangxia Shen, and Pingqing Fu
Biogeosciences, 20, 4915–4930, https://doi.org/10.5194/bg-20-4915-2023, https://doi.org/10.5194/bg-20-4915-2023, 2023
Short summary
Short summary
Sugar compounds in air can trace the source of bioaerosols that affect public health and climate. In rural north China, we observed increased fungal activity at night and less variable bacterial community diversity. Certain night-increasing sugar compounds were more closely related to fungi than bacteria. The fungal community greatly influenced sugar compounds, while bacteria played a limited role. Caution is advised when using sugar compounds to trace airborne microbes, particularly bacteria.
Xiaojing Shen, Junying Sun, Huizheng Che, Yangmei Zhang, Chunhong Zhou, Ke Gui, Wanyun Xu, Quan Liu, Junting Zhong, Can Xia, Xinyao Hu, Sinan Zhang, Jialing Wang, Shuo Liu, Jiayuan Lu, Aoyuan Yu, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 8241–8257, https://doi.org/10.5194/acp-23-8241-2023, https://doi.org/10.5194/acp-23-8241-2023, 2023
Short summary
Short summary
New particle formation (NPF) events occur when the dust episodes' fade is analysed based on long-term measurement of particle number size distribution. Analysis shows that the observed formation and growth rates are approximately 50 % of and 30 % lower than those of other NPF events. As a consequence of the uptake of precursor gases on mineral dust, the physical and chemical properties of submicron particles, as well as the ability to be cloud condensation nuclei, can be changed.
Wanyun Xu, Yuxuan Bian, Weili Lin, Yingjie Zhang, Yaru Wang, Zhiqiang Ma, Xiaoyi Zhang, Gen Zhang, Chunxiang Ye, and Xiaobin Xu
Atmos. Chem. Phys., 23, 7635–7652, https://doi.org/10.5194/acp-23-7635-2023, https://doi.org/10.5194/acp-23-7635-2023, 2023
Short summary
Short summary
Tropospheric ozone (O3) and peroxyacetyl nitrate (PAN) are both photochemical pollutants harmful to the ecological environment and human health, especially in the Tibetan Plateau (TP). However, the factors determining their variations in the TP have not been comprehensively investigated. Results from field measurements and observation-based models revealed that day-to-day variations in O3 and PAN were in fact controlled by distinct physiochemical processes.
Juan Hong, Min Tang, Qiaoqiao Wang, Nan Ma, Shaowen Zhu, Shaobin Zhang, Xihao Pan, Linhong Xie, Guo Li, Uwe Kuhn, Chao Yan, Jiangchuan Tao, Ye Kuang, Yao He, Wanyun Xu, Runlong Cai, Yaqing Zhou, Zhibin Wang, Guangsheng Zhou, Bin Yuan, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 23, 5699–5713, https://doi.org/10.5194/acp-23-5699-2023, https://doi.org/10.5194/acp-23-5699-2023, 2023
Short summary
Short summary
A comprehensive investigation of the characteristics of new particle formation (NPF) events was conducted at a rural site on the North China Plain (NCP), China, during the wintertime of 2018 by covering the particle number size distribution down to sub–3 nm. Potential mechanisms for NPF under the current environment were explored, followed by a further discussion on the factors governing the occurrence of NPF at this rural site compared with other regions (e.g., urban areas) in the NCP region.
Miaomiao Zhai, Ye Kuang, Li Liu, Yao He, Biao Luo, Wanyun Xu, Jiangchuan Tao, Yu Zou, Fei Li, Changqin Yin, Chunhui Li, Hanbing Xu, and Xuejiao Deng
Atmos. Chem. Phys., 23, 5119–5133, https://doi.org/10.5194/acp-23-5119-2023, https://doi.org/10.5194/acp-23-5119-2023, 2023
Short summary
Short summary
Using year-long aerosol mass spectrometer measurements, roles of secondary organic aerosols (SOA) during haze formations in an urban area of southern China were systematically analyzed. Almost all severe haze events were accompanied by continuous daytime and nighttime SOA formations, whereas coordinated gas-phase photochemistry and aqueous-phase reactions likely played significant roles in quick daytime SOA formations, and nitrate radicals played significant roles in nighttime SOA formations.
Lizi Tang, Min Hu, Dongjie Shang, Xin Fang, Jianjiong Mao, Wanyun Xu, Jiacheng Zhou, Weixiong Zhao, Yaru Wang, Chong Zhang, Yingjie Zhang, Jianlin Hu, Limin Zeng, Chunxiang Ye, Song Guo, and Zhijun Wu
Atmos. Chem. Phys., 23, 4343–4359, https://doi.org/10.5194/acp-23-4343-2023, https://doi.org/10.5194/acp-23-4343-2023, 2023
Short summary
Short summary
There was an evident distinction in the frequency of new particle formation (NPF) events at Nam Co station on the Tibetan Plateau: 15 % in pre-monsoon season and 80 % in monsoon season. The frequent NPF events in monsoon season resulted from the higher frequency of southerly air masses, which brought the organic precursors to participate in the NPF process. It increased the amount of aerosol and CCN compared with those in pre-monsoon season, which may markedly affect earth's radiation balance.
Jiaxing Sun, Yele Sun, Conghui Xie, Weiqi Xu, Chun Chen, Zhe Wang, Lei Li, Xubing Du, Fugui Huang, Yan Li, Zhijie Li, Xiaole Pan, Nan Ma, Wanyun Xu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 7619–7630, https://doi.org/10.5194/acp-22-7619-2022, https://doi.org/10.5194/acp-22-7619-2022, 2022
Short summary
Short summary
We analyzed the chemical composition and mixing state of BC-containing particles at urban and rural sites in winter in the North China Plain and evaluated their impact on light absorption enhancement. BC was dominantly mixed with organic carbon, nitrate, and sulfate, and the mixing state evolved significantly as a function of relative humidity (RH) at both sites. The absorption enhancement depended strongly on coated secondary inorganic aerosol and was up to ~1.3–1.4 during aging processes.
Jingnan Shi, Juan Hong, Nan Ma, Qingwei Luo, Yao He, Hanbing Xu, Haobo Tan, Qiaoqiao Wang, Jiangchuan Tao, Yaqing Zhou, Shuang Han, Long Peng, Linhong Xie, Guangsheng Zhou, Wanyun Xu, Yele Sun, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 4599–4613, https://doi.org/10.5194/acp-22-4599-2022, https://doi.org/10.5194/acp-22-4599-2022, 2022
Short summary
Short summary
In this study, we investigated the hygroscopicity of submicron aerosols at a rural site in the North China Plain during the winter of 2018, using a HTDMA and a CV-ToF-ACSM. We observed differences in aerosol hygroscopicity during two distinct episodes with different primary emissions and secondary aerosol formation processes. These results provide an improved understanding of the complex influence of sources and aerosol evolution processes on their hygroscopicity.
Yaqing Zhou, Nan Ma, Qiaoqiao Wang, Zhibin Wang, Chunrong Chen, Jiangchuan Tao, Juan Hong, Long Peng, Yao He, Linhong Xie, Shaowen Zhu, Yuxuan Zhang, Guo Li, Wanyun Xu, Peng Cheng, Uwe Kuhn, Guangsheng Zhou, Pingqing Fu, Qiang Zhang, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 22, 2029–2047, https://doi.org/10.5194/acp-22-2029-2022, https://doi.org/10.5194/acp-22-2029-2022, 2022
Short summary
Short summary
This study characterizes size-resolved particle effective densities and their evolution associated with emissions and aging processes in a rural area of the North China Plain. Particle effective density exhibits a high-frequency bimodal distribution, and two density modes exhibit opposite trends with increasing particle size. SIA and BC mass fractions are key factors of particle effective density, and a value of 0.6 g cm−3 is appropriate to represent BC effective density in bulk particles.
Yuting Zhang, Hang Liu, Shandong Lei, Wanyun Xu, Yu Tian, Weijie Yao, Xiaoyong Liu, Qi Liao, Jie Li, Chun Chen, Yele Sun, Pingqing Fu, Jinyuan Xin, Junji Cao, Xiaole Pan, and Zifa Wang
Atmos. Chem. Phys., 21, 17631–17648, https://doi.org/10.5194/acp-21-17631-2021, https://doi.org/10.5194/acp-21-17631-2021, 2021
Short summary
Short summary
In this study, the authors used a single-particle soot photometer (SP2) to characterize the particle size, mixing state, and optical properties of black carbon aerosols in rural areas of the North China Plain in winter. Relatively warm and high-RH environments (RH > 50 %, −4° < T < 4 °) were more favorable to rBC aging than dry and cold environments (RH < 60 %, T < −8°). The paper emphasizes the importance of meteorological parameters in the mixing state of black carbon.
Weiqi Xu, Masayuki Takeuchi, Chun Chen, Yanmei Qiu, Conghui Xie, Wanyun Xu, Nan Ma, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Meas. Tech., 14, 3693–3705, https://doi.org/10.5194/amt-14-3693-2021, https://doi.org/10.5194/amt-14-3693-2021, 2021
Short summary
Short summary
Here we developed a method for estimation of particulate organic nitrates (pON) from the measurements of a high-resolution aerosol mass spectrometer coupled with a thermodenuder based on the volatility differences between inorganic nitrate and pON. The results generally had improvements in reducing negative values due to the influences of a high concentration of inorganic nitrate and a constant ratio of NO+ to NO2+ of organic nitrates (RON).
Jiangchuan Tao, Ye Kuang, Nan Ma, Juan Hong, Yele Sun, Wanyun Xu, Yanyan Zhang, Yao He, Qingwei Luo, Linhong Xie, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 21, 7409–7427, https://doi.org/10.5194/acp-21-7409-2021, https://doi.org/10.5194/acp-21-7409-2021, 2021
Short summary
Short summary
The mechanism of secondary aerosol (SA) formation can be affected by relative humidity (RH) and has different influences on the particle CCN activity under different RH conditions. In the North China Plain, we find different responses of CCN activity and enhancements of CCN number concentration to SA formation under different RH conditions. In addition, variations of aerosol mixing state due to SA formation contribute some of the largest uncertainties in predicting CCN number concentration.
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary
Short summary
Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) were investigated in summer and winter. Our results showed that organic aerosol (OA) in winter in the NCP is more volatile than that in summer due to enhanced primary emissions from coal combustion and biomass burning. We also found that OA existed mainly as a solid in winter in Beijing but as semisolids in Beijing in summer and Gucheng in winter.
Linlin Liang, Guenter Engling, Chang Liu, Wanyun Xu, Xuyan Liu, Yuan Cheng, Zhenyu Du, Gen Zhang, Junying Sun, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 3181–3192, https://doi.org/10.5194/acp-21-3181-2021, https://doi.org/10.5194/acp-21-3181-2021, 2021
Short summary
Short summary
A unique episode with extreme biomass burning (BB) impact, with daily concentration of levoglucosan as high as 4.37 µg m-3, was captured at an area upwind of Beijing. How this extreme BB pollution event was generated and what were the chemical properties of PM2.5 under this kind severe BB pollution level in the real atmospheric environment were both presented in this measurement report. Moreover, the variation of the ratios of BB tracers during different BB pollution periods was also exhibited.
Chaomin Wang, Bin Yuan, Caihong Wu, Sihang Wang, Jipeng Qi, Baolin Wang, Zelong Wang, Weiwei Hu, Wei Chen, Chenshuo Ye, Wenjie Wang, Yele Sun, Chen Wang, Shan Huang, Wei Song, Xinming Wang, Suxia Yang, Shenyang Zhang, Wanyun Xu, Nan Ma, Zhanyi Zhang, Bin Jiang, Hang Su, Yafang Cheng, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 20, 14123–14138, https://doi.org/10.5194/acp-20-14123-2020, https://doi.org/10.5194/acp-20-14123-2020, 2020
Short summary
Short summary
We utilized a novel online mass spectrometry method to measure the total concentration of higher alkanes at each carbon number at two different sites in China, allowing us to take into account SOA contributions from all isomers for higher alkanes. We found that higher alkanes account for significant fractions of SOA formation at the two sites. The contributions are comparable to or even higher than single-ring aromatics, the most-recognized SOA precursors in urban air.
Gen Zhang, Honghui Xu, Hongli Wang, Likun Xue, Jianjun He, Wanyun Xu, Bing Qi, Rongguang Du, Chang Liu, Zeyuan Li, Ke Gui, Wanting Jiang, Linlin Liang, Yan Yan, and Xiaoyan Meng
Atmos. Chem. Phys., 20, 5391–5403, https://doi.org/10.5194/acp-20-5391-2020, https://doi.org/10.5194/acp-20-5391-2020, 2020
Linlin Liang, Guenter Engling, Chang Liu, Wanyun Xu, Xuyan Liu, Yuan Cheng, Zhenyu Du, Gen Zhang, Junying Sun, and Xiaoye Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-19, https://doi.org/10.5194/acp-2020-19, 2020
Revised manuscript not accepted
Short summary
Short summary
Our study captured an episode with extreme biomass burning tracer level at an agricultural site in North China, with concentrations of levoglucosan as high as 4.37 μg m−3. Based on comparison of the chemical composition between different biomass burning periods, it appeared that biomass burning can obviously elevate the levels of organic components, but seems to have no significant effect on the production of secondary inorganic ions, although their precursors increased during the episode.
Ye Kuang, Yao He, Wanyun Xu, Pusheng Zhao, Yafang Cheng, Gang Zhao, Jiangchuan Tao, Nan Ma, Hang Su, Yanyan Zhang, Jiayin Sun, Peng Cheng, Wenda Yang, Shaobin Zhang, Cheng Wu, Yele Sun, and Chunsheng Zhao
Atmos. Chem. Phys., 20, 865–880, https://doi.org/10.5194/acp-20-865-2020, https://doi.org/10.5194/acp-20-865-2020, 2020
Short summary
Short summary
A new method was developed to calculate hygroscopicity parameter κ of organic aerosols (κOA) based on aerosol light-scattering measurements and bulk aerosol chemical-composition measurements. Derived high-time-resolution κOA varied in a wide range (near 0 to 0.25), and the organic aerosol oxidation degree significantly impacts variations in κOA. Distinct diurnal variation in κOA is found, and its relationship with oxygenated organic aerosol is discussed.
Ye Kuang, Chun Sheng Zhao, Gang Zhao, Jiang Chuan Tao, Wanyun Xu, Nan Ma, and Yu Xuan Bian
Atmos. Meas. Tech., 11, 2967–2982, https://doi.org/10.5194/amt-11-2967-2018, https://doi.org/10.5194/amt-11-2967-2018, 2018
Short summary
Short summary
Aerosol water has become an important topic recently because of its implications for multiphase secondary aerosol formation during severe haze events in Asia. This is a timely paper on this topic; a novel method is proposed to calculate ambient aerosol liquid water contents based only on measurements of a three-wavelength humidified nephelometer system. The advantage of this method is that this technique can provide continuous measurements of the changing ambient conditions.
Xiaobin Xu, Hualong Zhang, Weili Lin, Ying Wang, Wanyun Xu, and Shihui Jia
Atmos. Chem. Phys., 18, 5199–5217, https://doi.org/10.5194/acp-18-5199-2018, https://doi.org/10.5194/acp-18-5199-2018, 2018
Short summary
Short summary
We present the first simultaneous PAN and O3 measurements from the central Tibetan Plateau. Both gases showed unique diurnal cycles with steep rises in the early morning and broader daytime platforms, which is attributed to the PBL evolution. Some high PAN and O3 episodes were observed and caused either by long-range transport of pollutants from south Asia or by downward transport of air masses from the upper troposphere, indicating the dynamic impacts on tropospheric chemistry over the Tibet.
Jiangchuan Tao, Chunsheng Zhao, Ye Kuang, Gang Zhao, Chuanyang Shen, Yingli Yu, Yuxuan Bian, and Wanyun Xu
Atmos. Meas. Tech., 11, 895–906, https://doi.org/10.5194/amt-11-895-2018, https://doi.org/10.5194/amt-11-895-2018, 2018
Short summary
Short summary
Existing chamber technologies for direct measurements of number concentration of cloud condensation nuclei (NCCN) are sophisticated and expensive. In this paper, a new method is proposed to calculate NCCN based only on measurements of a humidified nephelometer system which have accounted for influences of both aerosol size and aerosol hygroscopicity on NCCN calculation. This new method makes NCCN measurements more convenient and is capable of obtaining NCCN at lower supersaturations.
Gen Zhang, Honghui Xu, Bing Qi, Rongguang Du, Ke Gui, Hongli Wang, Wanting Jiang, Linlin Liang, and Wanyun Xu
Atmos. Chem. Phys., 18, 1705–1728, https://doi.org/10.5194/acp-18-1705-2018, https://doi.org/10.5194/acp-18-1705-2018, 2018
Short summary
Short summary
The Yangtze River Delta is one of the most densely populated regions in China with severe air quality issues that have not been fully understood. In this study, we found that severe photochemical and haze pollution occurred. Strong local photochemistry was elucidated to favor the O3 production under a VOC-limited regime, whereas it moved towards a VOC-NOx limited regime in summer. This study emphasizes that cross-regional control measures are crucial to improve air quality in the YRD region.
Wanyun Xu, Xiaobin Xu, Meiyun Lin, Weili Lin, David Tarasick, Jie Tang, Jianzhong Ma, and Xiangdong Zheng
Atmos. Chem. Phys., 18, 773–798, https://doi.org/10.5194/acp-18-773-2018, https://doi.org/10.5194/acp-18-773-2018, 2018
Short summary
Short summary
The impact of anthropogenic emissions and climate variability on the long-term trends and periodicity of surface ozone measured at Mt Waliguan (WLG) for the period of 1994–2013 is studied. STT ozone and rising emissions in eastern China contribute to spring and autumnal increasing trends, respectively. The 2–3-, 3–7-, and 11-year periodicities in the ozone data are linked to the QBO, EASMI, and sunspot cycle, respectively. An empirical model is obtained for normalised monthly ozone at WLG.
Yuxuan Bian, Chunsheng Zhao, Wanyun Xu, Gang Zhao, Jiangchuan Tao, and Ye Kuang
Atmos. Meas. Tech., 10, 2313–2322, https://doi.org/10.5194/amt-10-2313-2017, https://doi.org/10.5194/amt-10-2313-2017, 2017
Short summary
Short summary
Aerosol phase function is crucial for understanding the climate effects of aerosols. So far, there is a lack of instruments for measuring the aerosol phase function directly and accurately in laboratory studies and in situ measurements. A novel portable instrument with high angular range and resolution named
charge-coupled device-laser aerosol detective system(CCD-LADS) has been developed and validated for the measurement of the phase function of ambient aerosols in this study.
Wanyun Xu, Weili Lin, Xiaobin Xu, Jie Tang, Jianqing Huang, Hao Wu, and Xiaochun Zhang
Atmos. Chem. Phys., 16, 6191–6205, https://doi.org/10.5194/acp-16-6191-2016, https://doi.org/10.5194/acp-16-6191-2016, 2016
Short summary
Short summary
Long-term characteristics and trends of baseline surface ozone concentration at Waliguan station in western China for the period of 1994 to 2013 were analysed, using a modified Mann–Kendall test and the Hilbert–Huang transform analysis for the trend and periodicity analysis, respectively. Significant increasing trends were detected in all seasons, except for summer. The non-linearity caused by the interannual variation of ozone concentrations is evident, showing a 2–4-year, 7- and 11-year periodicity.
Yuhang Hao, Peizhao Li, Yafeng Gou, Zhenshuai Wang, Mi Tian, Yang Chen, Ye Kuang, Hanbing Xu, Fenglian Wan, Yuqian Luo, Wei Huang, and Jing Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3242, https://doi.org/10.5194/egusphere-2024-3242, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Intensified heatwaves with the global warming have influenced new particle formation (NPF) and related aerosol physicochemical properties. We show that aerosol optical hygroscopicity (f(RH)) was generally higher on NPF event days than non-event cases, likely due to enhanced secondary formation and subsequent growth of both pre-existing and newly formed particles with stronger photooxidation specifically under persistent heatwaves. This would further impact the aerosol direct radiative forcing.
Bishuo He and Chunsheng Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3441, https://doi.org/10.5194/egusphere-2024-3441, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Factor-uncertainty analysis helps us understand their impacts on complex systems. Traditional methods have many limitations. This study introduces a new method to measure how each factor contributes to uncertainty. It gains insights into the role of each variable and works for all multi-factor systems. As an application, we analyzed how aerosols affect solar radiation and identified the key factors. These analyses can improve our understanding of the role of aerosols in climate change.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Xiaojing Shen, Quan Liu, Junying Sun, Wanlin Kong, Qianli Ma, Bing Qi, Lujie Han, Yangmei Zhang, Linlin Liang, Lei Liu, Shuo Liu, Xinyao Hu, Jiayuan Lu, Aoyuan Yu, Huizheng Che, and Xiaoye Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2850, https://doi.org/10.5194/egusphere-2024-2850, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In this work, an automatic switched inlet system was developed and employed to investigate the aerosols and cloud droplets at a mountain site with frequent cloud processes. It showed different characteristics of cloud residual and interstitial particles. Stronger particle hygroscopicity reduced liquid water content and smaller cloud droplet diameters. This investigation contributes to understanding aerosol-cloud interactions by assessing the impact of aerosol particles on cloud microphysics.
Aoyuan Yu, Xiaojing Shen, Qianli Ma, Jiayuan Lu, Xinyao Hu, Yangmei Zhang, Quan Liu, Linlin Liang, Lei Liu, Shuo Liu, Hongfei Tong, Huizheng Che, Xiaoye Zhang, and Junying Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-2232, https://doi.org/10.5194/egusphere-2024-2232, 2024
Short summary
Short summary
In this work, we utilized the VH-TDMA system to investigate the hygroscopicity and volatility, as well as the hygroscopicity after heated of submicron aerosols in urban Beijing during the autumn of 2023 for the first time. We analyzed the size-resolved characteristics of hygroscopicity and volatility, the relationship between hygroscopic and volatile properties, as well as the hygroscopicity of heated submicron aerosols.
Ye Kuang, Biao Luo, Shan Huang, Junwen Liu, Weiwei Hu, Yuweng Peng, Duohong Chen, Dingli Yue, Wanyun Xu, Bin Yuan, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2654, https://doi.org/10.5194/egusphere-2024-2654, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This research reveals the potential importance of nighttime NO3 radical chemistry and aerosol water in the rapid formation of secondary brown carbon from biomass burning emissions. The findings enhance our understanding of nighttime biomass burning evolution and its implications for climate and regional air quality, especially regarding interactions with aerosol water and water-rich fogs and clouds.
Ye Kuang, Jiangchuan Tao, Hanbin Xu, Li Liu, Pengfei Liu, Wanyun Xu, Weiqi Xu, Yele Sun, and Chunsheng Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2698, https://doi.org/10.5194/egusphere-2024-2698, 2024
Short summary
Short summary
This study presents a novel optical framework to measure supersaturation, a fundamental parameter in cloud physics, by observing the scattering properties of particles that have or have not grown into cloud droplets. The technique offers high-resolution measurements, capturing essential fluctuations in supersaturation necessary for understanding cloud physics.
Quan Liu, Xiaojing Shen, Junying Sun, Yangmei Zhang, Bing Qi, Qianli Ma, Lujie Han, Honghui Xu, Xinyao Hu, Jiayuan Lu, Shuo Liu, Aoyuan Yu, Linlin Liang, Qian Gao, Hong Wang, Huizheng Che, and Xiaoye Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2264, https://doi.org/10.5194/egusphere-2024-2264, 2024
Short summary
Short summary
Through simultaneous measurements of aerosol particles and fog droplets, the evolution of droplets size distribution during the eight observed fog events was investigated. The results showed that the concentration and size distribution of pre-fog aerosol had significant impacts on fog microphysical characteristics. The extinction of fog interstitial particles played an important role in visibility degradation for light fogs, especially in polluted regions.
Ziru Lan, Xiaoyi Zhang, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Jun Jin, Lingyan Wu, and Yangmei Zhang
Atmos. Chem. Phys., 24, 9355–9368, https://doi.org/10.5194/acp-24-9355-2024, https://doi.org/10.5194/acp-24-9355-2024, 2024
Short summary
Short summary
Our study examined the long-term trends of atmospheric ammonia in urban Beijing from 2009 to 2020. We found that the trends did not match satellite data or emission estimates, revealing complexities in ammonia sources. While seasonal variations in ammonia were temperature-dependent, daily variations were correlated with water vapor. We also found an increasing contribution of ammonia reduction, emphasizing its importance in mitigating the effects of fine particulate matter in Beijing.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024, https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Short summary
Using simultaneous measurements of DMA–CCNC, H(/V)TDMA, and DMA–SP2, impacts of primary emissions and secondary aerosol formations on changes in aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing-state parameters derived from different techniques can help us gain more insight into aerosol physical properties which, in turn, will aid the investigation of emission characteristics and secondary aerosol formation pathways.
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024, https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary
Short summary
Chen et al. (2022) attributed the nocturnal ozone enhancement (NOE) during the night of 31 July 2021 in the North China Plain (NCP) to "the direct stratospheric intrusion to reach the surface". We analyzed in situ data from the NCP. Our results do not suggest that there was a significant impact from the stratosphere on surface ozone during the NOE. We argue that the NOE was not caused by stratospheric intrusion but originated from fresh photochemical production in the lower troposphere.
Shuzheng Guo, Chunxiang Ye, Weili Lin, Yi Chen, Limin Zeng, Xuena Yu, Jinhui Cui, Chong Zhang, Jing Duan, Haobin Zhong, Rujin Huang, Xuguang Chi, Wei Nie, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-262, https://doi.org/10.5194/egusphere-2024-262, 2024
Preprint archived
Short summary
Short summary
@Tibet field campaigns 2021 discovered surprisingly high levels and activity contributions of oxygenated volatile organic compounds on the southeast of the Tibetan Plateau, which suggests that OVOCs may play a larger role in the chemical reactions that occur in high-altitude regions than previously thought.
Jiyuan Yang, Guoyang Lei, Jinfeng Zhu, Yutong Wu, Chang Liu, Kai Hu, Junsong Bao, Zitong Zhang, Weili Lin, and Jun Jin
Atmos. Chem. Phys., 24, 123–136, https://doi.org/10.5194/acp-24-123-2024, https://doi.org/10.5194/acp-24-123-2024, 2024
Short summary
Short summary
The atmospheric pollution and formation mechanisms of particulate-bound alkyl nitrate in Beijing were studied. C9–C16 long-chain n-alkyl nitrates negatively correlated with O3 but positively correlated with PM2.5 and NO2, so they may not be produced during gas-phase homogeneous reactions in the photochemical process but form through reactions between alkanes and nitrates on PM surfaces. Particulate-bound n-alkyl nitrates strongly affect both haze pollution and atmospheric visibility.
Mutong Niu, Shu Huang, Wei Hu, Yajie Wang, Wanyun Xu, Wan Wei, Qiang Zhang, Zihan Wang, Donghuan Zhang, Rui Jin, Libin Wu, Junjun Deng, Fangxia Shen, and Pingqing Fu
Biogeosciences, 20, 4915–4930, https://doi.org/10.5194/bg-20-4915-2023, https://doi.org/10.5194/bg-20-4915-2023, 2023
Short summary
Short summary
Sugar compounds in air can trace the source of bioaerosols that affect public health and climate. In rural north China, we observed increased fungal activity at night and less variable bacterial community diversity. Certain night-increasing sugar compounds were more closely related to fungi than bacteria. The fungal community greatly influenced sugar compounds, while bacteria played a limited role. Caution is advised when using sugar compounds to trace airborne microbes, particularly bacteria.
Weilun Zhao, Ying Li, Gang Zhao, Song Guo, Nan Ma, Shuya Hu, and Chunsheng Zhao
Atmos. Chem. Phys., 23, 14889–14902, https://doi.org/10.5194/acp-23-14889-2023, https://doi.org/10.5194/acp-23-14889-2023, 2023
Short summary
Short summary
Studies have concentrated on particles containing black carbon (BC) smaller than 700 nm because of technical limitations. In this study, BC-containing particles larger than 700 nm (BC>700) were measured, highlighting their importance to total BC mass and absorption. The contribution of BC>700 to the BC direct radiative effect was estimated, highlighting the necessity to consider the whole size range of BC-containing particles in the model estimation of BC radiative effects.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2023-2319, https://doi.org/10.5194/egusphere-2023-2319, 2023
Short summary
Short summary
Our study examined the interaction between atmospheric particles and moisture over the south-eastern Atlantic Ocean during the biomass burning seasons in Africa. We found that organic components of these particles play a more important role in aerosol-moisture interactions than previously expected. This discovery is important as such interactions impact radiation and climate. Current climate models might need better representations of the moisture-absorbing properties of organic aerosols.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, Paola Formenti, and Steven Howell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2199, https://doi.org/10.5194/egusphere-2023-2199, 2023
Short summary
Short summary
Using airborne measurements over the South-East Atlantic, our study explored how aerosols—tiny atmospheric particles—interact with moisture over the ocean, especially during the biomass burning season. We noticed unique patterns in their behavior at different altitudes and introduced a predictive model for this moisture interaction. Our results aid our understanding of aerosol-moisture interactions and benefit the research of aerosol radiative effect in this climatically significant region.
Chunxiang Ye, Shuzheng Guo, Weili Lin, Fangjie Tian, Jianshu Wang, Chong Zhang, Suzhen Chi, Yi Chen, Yingjie Zhang, Limin Zeng, Xin Li, Duo Bu, Jiacheng Zhou, and Weixiong Zhao
Atmos. Chem. Phys., 23, 10383–10397, https://doi.org/10.5194/acp-23-10383-2023, https://doi.org/10.5194/acp-23-10383-2023, 2023
Short summary
Short summary
Online volatile organic compound (VOC) measurements by gas chromatography–mass spectrometry, with other O3 precursors, were used to identify key VOC and other key sources in Lhasa. Total VOCs (TVOCs), alkanes, and aromatics are half as abundant as in Beijing. Oxygenated VOCs (OVOCs) consist of 52 % of the TVOCs. Alkenes and OVOCs account for 80 % of the ozone formation potential. Aromatics dominate secondary organic aerosol potential. Positive matrix factorization decomposed residential sources.
Yaru Wang, Yi Chen, Suzhen Chi, Jianshu Wang, Chong Zhang, Weixiong Zhao, Weili Lin, and Chunxiang Ye
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-192, https://doi.org/10.5194/amt-2023-192, 2023
Revised manuscript not accepted
Short summary
Short summary
We reported an optimized system (Mea-OPR) for direct measurement of ozone production rate, which showed a precise, sensitive and reliable measurement of OPR for at least urban and suburban atmosphere, and active O3 photochemical production in winter Beijing. Herein, the Mea-OPR system also shows its potential in exploring the fundamental O3 photochemistry, i.e., surprisingly high ozone production even under high-NOx conditions.
Xiaojing Shen, Junying Sun, Huizheng Che, Yangmei Zhang, Chunhong Zhou, Ke Gui, Wanyun Xu, Quan Liu, Junting Zhong, Can Xia, Xinyao Hu, Sinan Zhang, Jialing Wang, Shuo Liu, Jiayuan Lu, Aoyuan Yu, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 8241–8257, https://doi.org/10.5194/acp-23-8241-2023, https://doi.org/10.5194/acp-23-8241-2023, 2023
Short summary
Short summary
New particle formation (NPF) events occur when the dust episodes' fade is analysed based on long-term measurement of particle number size distribution. Analysis shows that the observed formation and growth rates are approximately 50 % of and 30 % lower than those of other NPF events. As a consequence of the uptake of precursor gases on mineral dust, the physical and chemical properties of submicron particles, as well as the ability to be cloud condensation nuclei, can be changed.
Wanyun Xu, Yuxuan Bian, Weili Lin, Yingjie Zhang, Yaru Wang, Zhiqiang Ma, Xiaoyi Zhang, Gen Zhang, Chunxiang Ye, and Xiaobin Xu
Atmos. Chem. Phys., 23, 7635–7652, https://doi.org/10.5194/acp-23-7635-2023, https://doi.org/10.5194/acp-23-7635-2023, 2023
Short summary
Short summary
Tropospheric ozone (O3) and peroxyacetyl nitrate (PAN) are both photochemical pollutants harmful to the ecological environment and human health, especially in the Tibetan Plateau (TP). However, the factors determining their variations in the TP have not been comprehensively investigated. Results from field measurements and observation-based models revealed that day-to-day variations in O3 and PAN were in fact controlled by distinct physiochemical processes.
Fei Li, Biao Luo, Miaomiao Zhai, Li Liu, Gang Zhao, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, Ye Kuang, and Jun Zhao
Atmos. Chem. Phys., 23, 6545–6558, https://doi.org/10.5194/acp-23-6545-2023, https://doi.org/10.5194/acp-23-6545-2023, 2023
Short summary
Short summary
A field campaign was conducted to study black carbon (BC) mass size distributions and mixing states connected to traffic emissions using a system that combines a differential mobility analyzer and single-particle soot photometer. Results showed that the black carbon content of traffic emissions has a considerable influence on both BC mass size distributions and mixing states, which has crucial implications for accurately representing BC from various sources in regional and climate models.
Juan Hong, Min Tang, Qiaoqiao Wang, Nan Ma, Shaowen Zhu, Shaobin Zhang, Xihao Pan, Linhong Xie, Guo Li, Uwe Kuhn, Chao Yan, Jiangchuan Tao, Ye Kuang, Yao He, Wanyun Xu, Runlong Cai, Yaqing Zhou, Zhibin Wang, Guangsheng Zhou, Bin Yuan, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 23, 5699–5713, https://doi.org/10.5194/acp-23-5699-2023, https://doi.org/10.5194/acp-23-5699-2023, 2023
Short summary
Short summary
A comprehensive investigation of the characteristics of new particle formation (NPF) events was conducted at a rural site on the North China Plain (NCP), China, during the wintertime of 2018 by covering the particle number size distribution down to sub–3 nm. Potential mechanisms for NPF under the current environment were explored, followed by a further discussion on the factors governing the occurrence of NPF at this rural site compared with other regions (e.g., urban areas) in the NCP region.
Miaomiao Zhai, Ye Kuang, Li Liu, Yao He, Biao Luo, Wanyun Xu, Jiangchuan Tao, Yu Zou, Fei Li, Changqin Yin, Chunhui Li, Hanbing Xu, and Xuejiao Deng
Atmos. Chem. Phys., 23, 5119–5133, https://doi.org/10.5194/acp-23-5119-2023, https://doi.org/10.5194/acp-23-5119-2023, 2023
Short summary
Short summary
Using year-long aerosol mass spectrometer measurements, roles of secondary organic aerosols (SOA) during haze formations in an urban area of southern China were systematically analyzed. Almost all severe haze events were accompanied by continuous daytime and nighttime SOA formations, whereas coordinated gas-phase photochemistry and aqueous-phase reactions likely played significant roles in quick daytime SOA formations, and nitrate radicals played significant roles in nighttime SOA formations.
Lizi Tang, Min Hu, Dongjie Shang, Xin Fang, Jianjiong Mao, Wanyun Xu, Jiacheng Zhou, Weixiong Zhao, Yaru Wang, Chong Zhang, Yingjie Zhang, Jianlin Hu, Limin Zeng, Chunxiang Ye, Song Guo, and Zhijun Wu
Atmos. Chem. Phys., 23, 4343–4359, https://doi.org/10.5194/acp-23-4343-2023, https://doi.org/10.5194/acp-23-4343-2023, 2023
Short summary
Short summary
There was an evident distinction in the frequency of new particle formation (NPF) events at Nam Co station on the Tibetan Plateau: 15 % in pre-monsoon season and 80 % in monsoon season. The frequent NPF events in monsoon season resulted from the higher frequency of southerly air masses, which brought the organic precursors to participate in the NPF process. It increased the amount of aerosol and CCN compared with those in pre-monsoon season, which may markedly affect earth's radiation balance.
Liang Yuan and Chunsheng Zhao
Atmos. Chem. Phys., 23, 3195–3205, https://doi.org/10.5194/acp-23-3195-2023, https://doi.org/10.5194/acp-23-3195-2023, 2023
Short summary
Short summary
Chemical compositions vary between and within particles due to the complex sources and aging processes, causing particle-to-particle heterogeneity in aerosol hygroscopicity, which is of great importance to aerosol climatic and environmental effects. This study proposes an algorithm to quantify the heterogeneity from in situ measurements, sheds light on the reanalysis of the existing H-TDMA datasets, and could have a large impact on how we use and think about these datasets.
Jiyuan Yang, Guoyang Lei, Chang Liu, Yutong Wu, Kai Hu, Jinfeng Zhu, Junsong Bao, Weili Lin, and Jun Jin
Atmos. Chem. Phys., 23, 3015–3029, https://doi.org/10.5194/acp-23-3015-2023, https://doi.org/10.5194/acp-23-3015-2023, 2023
Short summary
Short summary
The characteristics of n-alkanes and the contributions of various sources of PM2.5 in the atmosphere in Beijing were studied. There were marked seasonal and diurnal differences in the n-alkane concentrations (p<0.01). Particulate-bound n-alkanes were supplied by anthropogenic and biogenic sources; fossil fuel combustion was the dominant contributor. Vehicle exhausts strongly affect PM2.5 pollution. Controlling vehicle exhaust emissions is key to control n-alkane and PM2.5 pollution in Beijing.
Weilun Zhao, Gang Zhao, Ying Li, Song Guo, Nan Ma, Lizi Tang, Zirui Zhang, and Chunsheng Zhao
Atmos. Meas. Tech., 15, 6807–6817, https://doi.org/10.5194/amt-15-6807-2022, https://doi.org/10.5194/amt-15-6807-2022, 2022
Short summary
Short summary
A new method to determine black carbon mass size distribution (BCMSD) was proposed using the size-resolved absorption coefficient measured by an aerodynamic aerosol classifier in tandem with an aethalometer. This new method fills the gap in the high-time-resolution measurement of BCMSD ranging from upper submicron particle sizes to larger than 1 µm. This method can be applied to field measurement of BCMSD extensively for better understanding BC aging and better estimating the BC climate effect.
Biao Luo, Ye Kuang, Shan Huang, Qicong Song, Weiwei Hu, Wei Li, Yuwen Peng, Duohong Chen, Dingli Yue, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 22, 12401–12415, https://doi.org/10.5194/acp-22-12401-2022, https://doi.org/10.5194/acp-22-12401-2022, 2022
Short summary
Short summary
We performed comprehensive analysis on biomass burning organic aerosol (BBOA) size distributions, as well as mass scattering and absorption efficiencies, with an improved method of on-line quantification of brown carbon absorptions. Both BBOA volume size distribution and retrieved refractive index depend highly on combustion conditions represented by the black carbon content, which has significant implications for BBOA climate effect simulations.
Chao Yan, Yicheng Shen, Dominik Stolzenburg, Lubna Dada, Ximeng Qi, Simo Hakala, Anu-Maija Sundström, Yishuo Guo, Antti Lipponen, Tom V. Kokkonen, Jenni Kontkanen, Runlong Cai, Jing Cai, Tommy Chan, Liangduo Chen, Biwu Chu, Chenjuan Deng, Wei Du, Xiaolong Fan, Xu-Cheng He, Juha Kangasluoma, Joni Kujansuu, Mona Kurppa, Chang Li, Yiran Li, Zhuohui Lin, Yiliang Liu, Yuliang Liu, Yiqun Lu, Wei Nie, Jouni Pulliainen, Xiaohui Qiao, Yonghong Wang, Yifan Wen, Ye Wu, Gan Yang, Lei Yao, Rujing Yin, Gen Zhang, Shaojun Zhang, Feixue Zheng, Ying Zhou, Antti Arola, Johanna Tamminen, Pauli Paasonen, Yele Sun, Lin Wang, Neil M. Donahue, Yongchun Liu, Federico Bianchi, Kaspar R. Daellenbach, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Aijun Ding, Jingkun Jiang, and Markku Kulmala
Atmos. Chem. Phys., 22, 12207–12220, https://doi.org/10.5194/acp-22-12207-2022, https://doi.org/10.5194/acp-22-12207-2022, 2022
Short summary
Short summary
Atmospheric new particle formation (NPF) is a dominant source of atmospheric ultrafine particles. In urban environments, traffic emissions are a major source of primary pollutants, but their contribution to NPF remains under debate. During the COVID-19 lockdown, traffic emissions were significantly reduced, providing a unique chance to examine their relevance to NPF. Based on our comprehensive measurements, we demonstrate that traffic emissions alone are not able to explain the NPF in Beijing.
Gang Zhao, Tianyi Tan, Shuya Hu, Zhuofei Du, Dongjie Shang, Zhijun Wu, Song Guo, Jing Zheng, Wenfei Zhu, Mengren Li, Limin Zeng, and Min Hu
Atmos. Chem. Phys., 22, 10861–10873, https://doi.org/10.5194/acp-22-10861-2022, https://doi.org/10.5194/acp-22-10861-2022, 2022
Short summary
Short summary
Black carbon is the second strongest absorbing component in the atmosphere that exerts warming effects on climate. One critical challenge in quantifying the ambient black carbon's radiative effects is addressing the BC microphysical properties. In this study, the microphysical properties of the aged and fresh BC particles are synthetically analyzed under different atmospheres. The measurement results can be further used in models to help constrain the uncertainties of the BC radiative effects.
Li Liu, Ye Kuang, Miaomiao Zhai, Biao Xue, Yao He, Jun Tao, Biao Luo, Wanyun Xu, Jiangchuan Tao, Changqin Yin, Fei Li, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, and Min Shao
Atmos. Chem. Phys., 22, 7713–7726, https://doi.org/10.5194/acp-22-7713-2022, https://doi.org/10.5194/acp-22-7713-2022, 2022
Short summary
Short summary
Using simultaneous measurements of a humidified nephelometer system and an aerosol chemical speciation monitor in winter in Guangzhou, the strongest scattering ability of more oxidized oxygenated organic aerosol (MOOA) among aerosol components considering their dry-state scattering ability and water uptake ability was revealed, leading to large impacts of MOOA on visibility degradation. This has important implications for visibility improvement in China and aerosol radiative effect simulation.
Jiaxing Sun, Yele Sun, Conghui Xie, Weiqi Xu, Chun Chen, Zhe Wang, Lei Li, Xubing Du, Fugui Huang, Yan Li, Zhijie Li, Xiaole Pan, Nan Ma, Wanyun Xu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 7619–7630, https://doi.org/10.5194/acp-22-7619-2022, https://doi.org/10.5194/acp-22-7619-2022, 2022
Short summary
Short summary
We analyzed the chemical composition and mixing state of BC-containing particles at urban and rural sites in winter in the North China Plain and evaluated their impact on light absorption enhancement. BC was dominantly mixed with organic carbon, nitrate, and sulfate, and the mixing state evolved significantly as a function of relative humidity (RH) at both sites. The absorption enhancement depended strongly on coated secondary inorganic aerosol and was up to ~1.3–1.4 during aging processes.
Xueli Liu, Liang Ran, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Fan Dong, Di He, Liyan Zhou, Qingfeng Shi, and Yao Wang
Atmos. Chem. Phys., 22, 7071–7085, https://doi.org/10.5194/acp-22-7071-2022, https://doi.org/10.5194/acp-22-7071-2022, 2022
Short summary
Short summary
Significant decreases in annual mean NOx from 2011 to 2016 and SO2 from 2008 to 2016 confirm the effectiveness of relevant control measures on the reduction in NOx and SO2 emissions in the North China Plain (NCP). NOx at SDZ had a weaker influence than SO2 on the emission reduction in Beijing and other areas in the NCP. An increase in the number of motor vehicles and weak traffic restrictions have caused vehicle emissions of NOx, which indicates that NOx emission control should be strengthened.
Jingnan Shi, Juan Hong, Nan Ma, Qingwei Luo, Yao He, Hanbing Xu, Haobo Tan, Qiaoqiao Wang, Jiangchuan Tao, Yaqing Zhou, Shuang Han, Long Peng, Linhong Xie, Guangsheng Zhou, Wanyun Xu, Yele Sun, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 4599–4613, https://doi.org/10.5194/acp-22-4599-2022, https://doi.org/10.5194/acp-22-4599-2022, 2022
Short summary
Short summary
In this study, we investigated the hygroscopicity of submicron aerosols at a rural site in the North China Plain during the winter of 2018, using a HTDMA and a CV-ToF-ACSM. We observed differences in aerosol hygroscopicity during two distinct episodes with different primary emissions and secondary aerosol formation processes. These results provide an improved understanding of the complex influence of sources and aerosol evolution processes on their hygroscopicity.
Yaqing Zhou, Nan Ma, Qiaoqiao Wang, Zhibin Wang, Chunrong Chen, Jiangchuan Tao, Juan Hong, Long Peng, Yao He, Linhong Xie, Shaowen Zhu, Yuxuan Zhang, Guo Li, Wanyun Xu, Peng Cheng, Uwe Kuhn, Guangsheng Zhou, Pingqing Fu, Qiang Zhang, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 22, 2029–2047, https://doi.org/10.5194/acp-22-2029-2022, https://doi.org/10.5194/acp-22-2029-2022, 2022
Short summary
Short summary
This study characterizes size-resolved particle effective densities and their evolution associated with emissions and aging processes in a rural area of the North China Plain. Particle effective density exhibits a high-frequency bimodal distribution, and two density modes exhibit opposite trends with increasing particle size. SIA and BC mass fractions are key factors of particle effective density, and a value of 0.6 g cm−3 is appropriate to represent BC effective density in bulk particles.
Qingqing Yin, Qianli Ma, Weili Lin, Xiaobin Xu, and Jie Yao
Atmos. Chem. Phys., 22, 1015–1033, https://doi.org/10.5194/acp-22-1015-2022, https://doi.org/10.5194/acp-22-1015-2022, 2022
Short summary
Short summary
China has been experiencing rapid changes in emissions of air pollutants in recent decades. NOx and SO2 measurements from 2006 to 2016 at the Lin’an World Meteorological Organization Global Atmospheric Watch station were used to characterize the seasonal and diurnal variations and study the long-term trends. This study reaffirms China’s success in controlling both NOx and SO2 in the Yangtze River Delta but indicates at the same time a necessity to strengthen the NOx emission control.
Gang Zhao, Tianyi Tan, Yishu Zhu, Min Hu, and Chunsheng Zhao
Atmos. Chem. Phys., 21, 18055–18063, https://doi.org/10.5194/acp-21-18055-2021, https://doi.org/10.5194/acp-21-18055-2021, 2021
Short summary
Short summary
In this study, the black carbon (BC) mixing state index (χ) is developed to quantify the dispersion of ambient black carbon aerosol mixing states based on binary systems of BC and other non-black carbon components. We demonstrate that the BC light absorption enhancement increases with χ for the same MR, which indicates that χ can be employed as a factor to constrain the light absorption enhancement of ambient BC.
Yuting Zhang, Hang Liu, Shandong Lei, Wanyun Xu, Yu Tian, Weijie Yao, Xiaoyong Liu, Qi Liao, Jie Li, Chun Chen, Yele Sun, Pingqing Fu, Jinyuan Xin, Junji Cao, Xiaole Pan, and Zifa Wang
Atmos. Chem. Phys., 21, 17631–17648, https://doi.org/10.5194/acp-21-17631-2021, https://doi.org/10.5194/acp-21-17631-2021, 2021
Short summary
Short summary
In this study, the authors used a single-particle soot photometer (SP2) to characterize the particle size, mixing state, and optical properties of black carbon aerosols in rural areas of the North China Plain in winter. Relatively warm and high-RH environments (RH > 50 %, −4° < T < 4 °) were more favorable to rBC aging than dry and cold environments (RH < 60 %, T < −8°). The paper emphasizes the importance of meteorological parameters in the mixing state of black carbon.
Yuan Cheng, Qin-qin Yu, Jiu-meng Liu, Xu-bing Cao, Ying-jie Zhong, Zhen-yu Du, Lin-lin Liang, Guan-nan Geng, Wan-li Ma, Hong Qi, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 21, 15199–15211, https://doi.org/10.5194/acp-21-15199-2021, https://doi.org/10.5194/acp-21-15199-2021, 2021
Short summary
Short summary
Open burning policies in Heilongjiang Province experienced a rapid transition during 2018 to 2020. This study evaluated the responses of PM2.5 pollution to this transition and suggested that neither of the policies could be considered successful. In addition, heterogeneous reactions were found to be at play in secondary aerosol formation, even in the frigid atmosphere in Heilongjiang. The unique haze in northeast China deserves more attention.
Jie Qiu, Wangshu Tan, Gang Zhao, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 4879–4891, https://doi.org/10.5194/amt-14-4879-2021, https://doi.org/10.5194/amt-14-4879-2021, 2021
Short summary
Short summary
Considering nephelometers' major problems of a nonideal Lambertian light source and angle truncation, a new correction method based on a machine learning model is proposed. Our method has the advantage of obtaining data with high accuracy while achieving self-correction, which means that researchers can get more accurate scattering coefficients without the need for additional observation data. This method provides a more precise estimation of the aerosol’s direct radiative forcing.
Ye Kuang, Shan Huang, Biao Xue, Biao Luo, Qicong Song, Wei Chen, Weiwei Hu, Wei Li, Pusheng Zhao, Mingfu Cai, Yuwen Peng, Jipeng Qi, Tiange Li, Sihang Wang, Duohong Chen, Dingli Yue, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 21, 10375–10391, https://doi.org/10.5194/acp-21-10375-2021, https://doi.org/10.5194/acp-21-10375-2021, 2021
Short summary
Short summary
We found that organic aerosol factors with identified sources perform much better than oxidation level parameters in characterizing variations in organic aerosol hygroscopicity, and secondary aerosol formations associated with different sources have distinct effects on organic aerosol hygroscopicity. It reveals that source-oriented organic aerosol hygroscopicity investigations might result in more appropriate parameterization approaches in chemical and climate models.
Gang Zhao, Yishu Zhu, Zhijun Wu, Taomou Zong, Jingchuan Chen, Tianyi Tan, Haichao Wang, Xin Fang, Keding Lu, Chunsheng Zhao, and Min Hu
Atmos. Chem. Phys., 21, 9995–10004, https://doi.org/10.5194/acp-21-9995-2021, https://doi.org/10.5194/acp-21-9995-2021, 2021
Short summary
Short summary
New particle formation is thought to contribute half of the global cloud condensation nuclei. We find that the new particle formation is more likely to happen in the upper boundary layer than that at the ground, which can be partially explained by the aerosol–radiation interaction. Our study emphasizes the influence of aerosol–radiation interaction on the NPF.
Tianyi Tan, Min Hu, Zhuofei Du, Gang Zhao, Dongjie Shang, Jing Zheng, Yanhong Qin, Mengren Li, Yusheng Wu, Limin Zeng, Song Guo, and Zhijun Wu
Atmos. Chem. Phys., 21, 8499–8510, https://doi.org/10.5194/acp-21-8499-2021, https://doi.org/10.5194/acp-21-8499-2021, 2021
Short summary
Short summary
Every year in the pre-monsoon season, the black carbon (BC) aerosols originated from biomass burning in southern Asia are easily transported to the Tibetan Plateau (TP) by the convenience of westerly wind. This study reveals that the BC aerosols in the aged biomass burning plumes strongly enhance the total light absorption over the TP, and the aging process during the long-range transport will further strengthen the radiative heating of those BC aerosols.
Weiqi Xu, Masayuki Takeuchi, Chun Chen, Yanmei Qiu, Conghui Xie, Wanyun Xu, Nan Ma, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Meas. Tech., 14, 3693–3705, https://doi.org/10.5194/amt-14-3693-2021, https://doi.org/10.5194/amt-14-3693-2021, 2021
Short summary
Short summary
Here we developed a method for estimation of particulate organic nitrates (pON) from the measurements of a high-resolution aerosol mass spectrometer coupled with a thermodenuder based on the volatility differences between inorganic nitrate and pON. The results generally had improvements in reducing negative values due to the influences of a high concentration of inorganic nitrate and a constant ratio of NO+ to NO2+ of organic nitrates (RON).
Jiangchuan Tao, Ye Kuang, Nan Ma, Juan Hong, Yele Sun, Wanyun Xu, Yanyan Zhang, Yao He, Qingwei Luo, Linhong Xie, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 21, 7409–7427, https://doi.org/10.5194/acp-21-7409-2021, https://doi.org/10.5194/acp-21-7409-2021, 2021
Short summary
Short summary
The mechanism of secondary aerosol (SA) formation can be affected by relative humidity (RH) and has different influences on the particle CCN activity under different RH conditions. In the North China Plain, we find different responses of CCN activity and enhancements of CCN number concentration to SA formation under different RH conditions. In addition, variations of aerosol mixing state due to SA formation contribute some of the largest uncertainties in predicting CCN number concentration.
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary
Short summary
Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) were investigated in summer and winter. Our results showed that organic aerosol (OA) in winter in the NCP is more volatile than that in summer due to enhanced primary emissions from coal combustion and biomass burning. We also found that OA existed mainly as a solid in winter in Beijing but as semisolids in Beijing in summer and Gucheng in winter.
Ziru Lan, Weili Lin, Weiwei Pu, and Zhiqiang Ma
Atmos. Chem. Phys., 21, 4561–4573, https://doi.org/10.5194/acp-21-4561-2021, https://doi.org/10.5194/acp-21-4561-2021, 2021
Short summary
Short summary
Haze related to particulate matter has become a big problem in eastern China, and ammonia (NH3) plays an important role in secondary particulate matter formation. In this work, variations in the NH3 mixing ratio showed that the contributions of NH3 sources and sinks in urban and suburban areas were quite different, although the areas were under the influence of similar weather systems. This study furthers the understanding of the behavior of NH3 in a megacity environment.
Linlin Liang, Guenter Engling, Chang Liu, Wanyun Xu, Xuyan Liu, Yuan Cheng, Zhenyu Du, Gen Zhang, Junying Sun, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 3181–3192, https://doi.org/10.5194/acp-21-3181-2021, https://doi.org/10.5194/acp-21-3181-2021, 2021
Short summary
Short summary
A unique episode with extreme biomass burning (BB) impact, with daily concentration of levoglucosan as high as 4.37 µg m-3, was captured at an area upwind of Beijing. How this extreme BB pollution event was generated and what were the chemical properties of PM2.5 under this kind severe BB pollution level in the real atmospheric environment were both presented in this measurement report. Moreover, the variation of the ratios of BB tracers during different BB pollution periods was also exhibited.
Weilun Zhao, Wangshu Tan, Gang Zhao, Chuanyang Shen, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 1319–1331, https://doi.org/10.5194/amt-14-1319-2021, https://doi.org/10.5194/amt-14-1319-2021, 2021
Chuanyang Shen, Gang Zhao, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 1293–1301, https://doi.org/10.5194/amt-14-1293-2021, https://doi.org/10.5194/amt-14-1293-2021, 2021
Short summary
Short summary
Aerosol hygroscopicity measured by the humidified tandem differential mobility analyzer (HTDMA) is affected by multiply charged particles from two aspects: (1) number contribution and (2) the weakening effect. An algorithm is proposed to do the multi-charge correction and applied to a field measurement. Results show that the difference between corrected and measured size-resolved κ can reach 0.05, highlighting that special attention needs to be paid to the multi-charge effect when using HTDMA.
Weili Lin, Feng Wang, Chunxiang Ye, and Tong Zhu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-32, https://doi.org/10.5194/tc-2021-32, 2021
Preprint withdrawn
Short summary
Short summary
Field observations found that released NOx on the glacier surface of the Tibetan Plateau, an important snow-covered region in the northern mid-latitudes, had a higher concentration than in Antarctic and Arctic regions. Such evidence, and such high fluxes as observed here on the Tibetan plateau is novel. That such high concentrations of nitrogen oxides can be found in remote areas is interesting and important for the oxidative budget of the boundary layer.
Chuanyang Shen, Gang Zhao, Weilun Zhao, Ping Tian, and Chunsheng Zhao
Atmos. Chem. Phys., 21, 1375–1388, https://doi.org/10.5194/acp-21-1375-2021, https://doi.org/10.5194/acp-21-1375-2021, 2021
Short summary
Short summary
Submicron particles larger than 300 nm dominate the aerosol light extinction and mass concentration in the urban environment. Aerosol hygroscopic properties extended to 600 nm were investigated at an urban site. Our results find that there exists a large fraction of a less hygroscopic group above 300 nm, and the hygroscopicity in this size range is enhanced significantly with the development of pollution levels. The hygroscopicity variation contributes greatly to the low visibility.
Yijing Chen, Qianli Ma, Weili Lin, Xiaobin Xu, Jie Yao, and Wei Gao
Atmos. Chem. Phys., 20, 15969–15982, https://doi.org/10.5194/acp-20-15969-2020, https://doi.org/10.5194/acp-20-15969-2020, 2020
Short summary
Short summary
CO is one of the major air pollutants. Our study showed that the long-term CO levels at a background station in one of the most developed areas of China decreased significantly and verified that this downward trend was attributed to the decrease in anthropogenic emissions, which indicated that the adopted pollution control policies were effective. Also, this decrease has an implication for the atmospheric chemistry considering the negative correlation between CO levels and OH radical's lifetime.
Chaomin Wang, Bin Yuan, Caihong Wu, Sihang Wang, Jipeng Qi, Baolin Wang, Zelong Wang, Weiwei Hu, Wei Chen, Chenshuo Ye, Wenjie Wang, Yele Sun, Chen Wang, Shan Huang, Wei Song, Xinming Wang, Suxia Yang, Shenyang Zhang, Wanyun Xu, Nan Ma, Zhanyi Zhang, Bin Jiang, Hang Su, Yafang Cheng, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 20, 14123–14138, https://doi.org/10.5194/acp-20-14123-2020, https://doi.org/10.5194/acp-20-14123-2020, 2020
Short summary
Short summary
We utilized a novel online mass spectrometry method to measure the total concentration of higher alkanes at each carbon number at two different sites in China, allowing us to take into account SOA contributions from all isomers for higher alkanes. We found that higher alkanes account for significant fractions of SOA formation at the two sites. The contributions are comparable to or even higher than single-ring aromatics, the most-recognized SOA precursors in urban air.
Gen Zhang, Honghui Xu, Hongli Wang, Likun Xue, Jianjun He, Wanyun Xu, Bing Qi, Rongguang Du, Chang Liu, Zeyuan Li, Ke Gui, Wanting Jiang, Linlin Liang, Yan Yan, and Xiaoyan Meng
Atmos. Chem. Phys., 20, 5391–5403, https://doi.org/10.5194/acp-20-5391-2020, https://doi.org/10.5194/acp-20-5391-2020, 2020
Quan Liu, Dantong Liu, Qian Gao, Ping Tian, Fei Wang, Delong Zhao, Kai Bi, Yangzhou Wu, Shuo Ding, Kang Hu, Jiale Zhang, Deping Ding, and Chunsheng Zhao
Atmos. Chem. Phys., 20, 3931–3944, https://doi.org/10.5194/acp-20-3931-2020, https://doi.org/10.5194/acp-20-3931-2020, 2020
Short summary
Short summary
We present a series of aircraft-based in situ measurements of aerosol chemical components and size distributions over the North China Plain, and the hygroscopicity is derived from aerosol chemical composition. These results reveal the vertical characteristics of aerosol hygroscopicity, and we investigated their impacts on optical properties and activation under different moisture and pollution conditions over this polluted region.
Ping Tian, Dantong Liu, Delong Zhao, Chenjie Yu, Quan Liu, Mengyu Huang, Zhaoze Deng, Liang Ran, Yunfei Wu, Shuo Ding, Kang Hu, Gang Zhao, Chunsheng Zhao, and Deping Ding
Atmos. Chem. Phys., 20, 2603–2622, https://doi.org/10.5194/acp-20-2603-2020, https://doi.org/10.5194/acp-20-2603-2020, 2020
Short summary
Short summary
This study paints a full picture of the evolution of vertical characteristics of aerosol optical properties and shortwave heating impacts of carbonaceous aerosols during different stages of pollution events over the Beijing region and highlights the increased contribution of brown carbon absorption, especially at higher levels, during pollution.
Yu Wang, Ying Chen, Zhijun Wu, Dongjie Shang, Yuxuan Bian, Zhuofei Du, Sebastian H. Schmitt, Rong Su, Georgios I. Gkatzelis, Patrick Schlag, Thorsten Hohaus, Aristeidis Voliotis, Keding Lu, Limin Zeng, Chunsheng Zhao, M. Rami Alfarra, Gordon McFiggans, Alfred Wiedensohler, Astrid Kiendler-Scharr, Yuanhang Zhang, and Min Hu
Atmos. Chem. Phys., 20, 2161–2175, https://doi.org/10.5194/acp-20-2161-2020, https://doi.org/10.5194/acp-20-2161-2020, 2020
Short summary
Short summary
Severe haze events, with high particulate nitrate (pNO3−) burden, frequently prevail in Beijing. In this study, we demonstrate a mutual-promotion effect between aerosol water uptake and pNO3− formation backed up by theoretical calculations and field observations throughout a typical pNO3−-dominated haze event in Beijing wintertime. This self-amplified mutual-promotion effect between aerosol water content and particulate nitrate can rapidly deteriorate air quality and degrade visibility.
Linlin Liang, Guenter Engling, Chang Liu, Wanyun Xu, Xuyan Liu, Yuan Cheng, Zhenyu Du, Gen Zhang, Junying Sun, and Xiaoye Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-19, https://doi.org/10.5194/acp-2020-19, 2020
Revised manuscript not accepted
Short summary
Short summary
Our study captured an episode with extreme biomass burning tracer level at an agricultural site in North China, with concentrations of levoglucosan as high as 4.37 μg m−3. Based on comparison of the chemical composition between different biomass burning periods, it appeared that biomass burning can obviously elevate the levels of organic components, but seems to have no significant effect on the production of secondary inorganic ions, although their precursors increased during the episode.
Ye Kuang, Yao He, Wanyun Xu, Pusheng Zhao, Yafang Cheng, Gang Zhao, Jiangchuan Tao, Nan Ma, Hang Su, Yanyan Zhang, Jiayin Sun, Peng Cheng, Wenda Yang, Shaobin Zhang, Cheng Wu, Yele Sun, and Chunsheng Zhao
Atmos. Chem. Phys., 20, 865–880, https://doi.org/10.5194/acp-20-865-2020, https://doi.org/10.5194/acp-20-865-2020, 2020
Short summary
Short summary
A new method was developed to calculate hygroscopicity parameter κ of organic aerosols (κOA) based on aerosol light-scattering measurements and bulk aerosol chemical-composition measurements. Derived high-time-resolution κOA varied in a wide range (near 0 to 0.25), and the organic aerosol oxidation degree significantly impacts variations in κOA. Distinct diurnal variation in κOA is found, and its relationship with oxygenated organic aerosol is discussed.
Gang Zhao, Jiangchuan Tao, Ye Kuang, Chuanyang Shen, Yingli Yu, and Chunsheng Zhao
Atmos. Chem. Phys., 19, 13175–13188, https://doi.org/10.5194/acp-19-13175-2019, https://doi.org/10.5194/acp-19-13175-2019, 2019
Short summary
Short summary
Characteristics of the black carbon size distribution (BCMSD) are studied by using our developed measurement system. Results show that the BCMSDs have two modes and the mean peak diameters are 150 nm and 503 nm, respectively. The coarser mode varies significantly under different pollution conditions, which gives rise to significant variation in aerosol bulk optical properties. Our study reveals that the BCMSD as well as the mixing state in estimating aerosol radiative forcing matters.
Gang Zhao, Tianyi Tan, Weilun Zhao, Song Guo, Ping Tian, and Chunsheng Zhao
Atmos. Chem. Phys., 19, 12875–12885, https://doi.org/10.5194/acp-19-12875-2019, https://doi.org/10.5194/acp-19-12875-2019, 2019
Short summary
Short summary
Traditionally, the real part of the refractive index (RRI) of ambient aerosols is calculated by their chemical components. In this study, we demonstrate that the RRI is highly related to effective density rather than chemical components using field measurements. For the first time, a parameterization scheme for ambient aerosol RRI using effective density is proposed. This simple scheme is more reliable and ready to use in the calculation of aerosol optics and radiation.
Wangshu Tan, Gang Zhao, Yingli Yu, Chengcai Li, Jian Li, Ling Kang, Tong Zhu, and Chunsheng Zhao
Atmos. Meas. Tech., 12, 3825–3839, https://doi.org/10.5194/amt-12-3825-2019, https://doi.org/10.5194/amt-12-3825-2019, 2019
Short summary
Short summary
A new method to retrieve CCN number concentrations using multiwavelength Raman lidars is proposed. The method implements hygroscopic enhancements of backscatter and extinction with relative humidity to represent particle hygroscopicity. The retrieved CCN number concentrations are in good agreement with theoretical calculated values. Sensitivity tests indicate that retrieval error in CCN arises mostly from uncertainties in extinction coefficients and RH profiles.
Gang Zhao, Weilun Zhao, and Chunsheng Zhao
Atmos. Meas. Tech., 12, 3541–3550, https://doi.org/10.5194/amt-12-3541-2019, https://doi.org/10.5194/amt-12-3541-2019, 2019
Short summary
Short summary
A new method is proposed to retrieve the size-resolved real part of the refractive index (RRI). The main principle of deriving the RRI is measuring the scattering intensity by a single-particle soot photometer of a size-selected aerosol. This method is validated by a series of calibration experiments using the components of the known RI. The retrieved size-resolved RRI covers a wide range, from 200 nm to 450 nm, with uncertainty of less than 0.02.
Bin Han, Jing Wang, Xueyan Zhao, Baohui Yin, Xinhua Wang, Xiaoyan Dou, Wen Yang, and Zhipeng Bai
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1345, https://doi.org/10.5194/acp-2018-1345, 2019
Revised manuscript not accepted
Short summary
Short summary
The Qinghai-Tibet Plateau (QTP) is an ideal location for characterizing aerosol properties. This study investigated the characterizations, formation, and sources of inorganic water-soluble ions associated with autumn PM2.5 at a background site in the QTP. One of our results suggests that the conversion of NO2 to NO3− is only promoted by photochemical reactions in the QTP, while particulate SO42− forms via both photochemical and heterogeneous reactions.
Gaëlle Dufour, Maxim Eremenko, Matthias Beekmann, Juan Cuesta, Gilles Foret, Audrey Fortems-Cheiney, Mathieu Lachâtre, Weili Lin, Yi Liu, Xiaobin Xu, and Yuli Zhang
Atmos. Chem. Phys., 18, 16439–16459, https://doi.org/10.5194/acp-18-16439-2018, https://doi.org/10.5194/acp-18-16439-2018, 2018
Short summary
Short summary
The analysis of IASI lower tropospheric ozone columns over the North China Plain for the 2008–2016 period reveals two distinct periods: one before 2013 without any significant trend, and one after 2013 with a significant negative trend (−1.2 % yr−1). Our results suggest that the negative trend could be attributed to a reduction of the stratosphere-to-troposphere transport combined with the recent reduction of regional NOx emissions.
Yingjie Zhang, Wei Du, Yuying Wang, Qingqing Wang, Haofei Wang, Haitao Zheng, Fang Zhang, Hongrong Shi, Yuxuan Bian, Yongxiang Han, Pingqing Fu, Francesco Canonaco, André S. H. Prévôt, Tong Zhu, Pucai Wang, Zhanqing Li, and Yele Sun
Atmos. Chem. Phys., 18, 14637–14651, https://doi.org/10.5194/acp-18-14637-2018, https://doi.org/10.5194/acp-18-14637-2018, 2018
Short summary
Short summary
We have a comprehensive characterization of aerosol chemistry and particle growth events at a downwind site of a highly polluted city in the North China Plain. Aerosol particles at the urban downwind site were highly aged and mainly from secondary formation. New particle growth events were also frequently observed on both clean and polluted days. While both sulfate and SOA played important roles in particle growth during clean periods, SOA was more important than sulfate during polluted events.
Ruijing Ni, Jintai Lin, Yingying Yan, and Weili Lin
Atmos. Chem. Phys., 18, 11447–11469, https://doi.org/10.5194/acp-18-11447-2018, https://doi.org/10.5194/acp-18-11447-2018, 2018
Short summary
Short summary
By integrating several modeling methods, we find considerable contributions of foreign anthropogenic emissions to surface ozone over China (2–11 ppb). For anthropogenic ozone over China, the foreign contribution is 40–50 % below 2 km and 85 % in the upper troposphere. For total foreign anthropogenic ozone over China, the portion of transboundary ozone produced within foreign emission source regions is less than 50 %, with the rest produced by precursors transported out of those source regions.
Gang Zhao, Chunsheng Zhao, Ye Kuang, Yuxuan Bian, Jiangchuan Tao, Chuanyang Shen, and Yingli Yu
Atmos. Chem. Phys., 18, 9049–9060, https://doi.org/10.5194/acp-18-9049-2018, https://doi.org/10.5194/acp-18-9049-2018, 2018
Short summary
Short summary
The aerosol asymmetry factor (g) is one of the most important factors for assessing direct aerosol radiative forcing (DARF) and remote sensing. So far, few studies have focused on the measurements and parameterization of g. Our study shows that relative humidity has significant impacts on g and DARF due to aerosol hygroscopic growth. For the first time, a novel method based on measurements from the humidified nephelometer system is proposed to calculate g accurately with high time resolution.
Ye Kuang, Chun Sheng Zhao, Gang Zhao, Jiang Chuan Tao, Wanyun Xu, Nan Ma, and Yu Xuan Bian
Atmos. Meas. Tech., 11, 2967–2982, https://doi.org/10.5194/amt-11-2967-2018, https://doi.org/10.5194/amt-11-2967-2018, 2018
Short summary
Short summary
Aerosol water has become an important topic recently because of its implications for multiphase secondary aerosol formation during severe haze events in Asia. This is a timely paper on this topic; a novel method is proposed to calculate ambient aerosol liquid water contents based only on measurements of a three-wavelength humidified nephelometer system. The advantage of this method is that this technique can provide continuous measurements of the changing ambient conditions.
Xiaobin Xu, Hualong Zhang, Weili Lin, Ying Wang, Wanyun Xu, and Shihui Jia
Atmos. Chem. Phys., 18, 5199–5217, https://doi.org/10.5194/acp-18-5199-2018, https://doi.org/10.5194/acp-18-5199-2018, 2018
Short summary
Short summary
We present the first simultaneous PAN and O3 measurements from the central Tibetan Plateau. Both gases showed unique diurnal cycles with steep rises in the early morning and broader daytime platforms, which is attributed to the PBL evolution. Some high PAN and O3 episodes were observed and caused either by long-range transport of pollutants from south Asia or by downward transport of air masses from the upper troposphere, indicating the dynamic impacts on tropospheric chemistry over the Tibet.
Jing Li, Chengcai Li, and Chunsheng Zhao
Atmos. Chem. Phys., 18, 3289–3298, https://doi.org/10.5194/acp-18-3289-2018, https://doi.org/10.5194/acp-18-3289-2018, 2018
Short summary
Short summary
Our study investigates the long-term trends of extreme aerosol pollution in China over the past ~ 30 years. In the 1980s, an overall positive trend is found throughout China with the extreme trend exceeding the mean trend, except for Northwest China and the North China Plain. In the 1990s, the extreme trends continued to dominate in the south while they yield to the mean trend in the north. After 2000, the extreme trend became weaker than the mean trend overall.
Jiangchuan Tao, Chunsheng Zhao, Ye Kuang, Gang Zhao, Chuanyang Shen, Yingli Yu, Yuxuan Bian, and Wanyun Xu
Atmos. Meas. Tech., 11, 895–906, https://doi.org/10.5194/amt-11-895-2018, https://doi.org/10.5194/amt-11-895-2018, 2018
Short summary
Short summary
Existing chamber technologies for direct measurements of number concentration of cloud condensation nuclei (NCCN) are sophisticated and expensive. In this paper, a new method is proposed to calculate NCCN based only on measurements of a humidified nephelometer system which have accounted for influences of both aerosol size and aerosol hygroscopicity on NCCN calculation. This new method makes NCCN measurements more convenient and is capable of obtaining NCCN at lower supersaturations.
Gen Zhang, Honghui Xu, Bing Qi, Rongguang Du, Ke Gui, Hongli Wang, Wanting Jiang, Linlin Liang, and Wanyun Xu
Atmos. Chem. Phys., 18, 1705–1728, https://doi.org/10.5194/acp-18-1705-2018, https://doi.org/10.5194/acp-18-1705-2018, 2018
Short summary
Short summary
The Yangtze River Delta is one of the most densely populated regions in China with severe air quality issues that have not been fully understood. In this study, we found that severe photochemical and haze pollution occurred. Strong local photochemistry was elucidated to favor the O3 production under a VOC-limited regime, whereas it moved towards a VOC-NOx limited regime in summer. This study emphasizes that cross-regional control measures are crucial to improve air quality in the YRD region.
Wanyun Xu, Xiaobin Xu, Meiyun Lin, Weili Lin, David Tarasick, Jie Tang, Jianzhong Ma, and Xiangdong Zheng
Atmos. Chem. Phys., 18, 773–798, https://doi.org/10.5194/acp-18-773-2018, https://doi.org/10.5194/acp-18-773-2018, 2018
Short summary
Short summary
The impact of anthropogenic emissions and climate variability on the long-term trends and periodicity of surface ozone measured at Mt Waliguan (WLG) for the period of 1994–2013 is studied. STT ozone and rising emissions in eastern China contribute to spring and autumnal increasing trends, respectively. The 2–3-, 3–7-, and 11-year periodicities in the ozone data are linked to the QBO, EASMI, and sunspot cycle, respectively. An empirical model is obtained for normalised monthly ozone at WLG.
Zhaoyang Meng, Xiaobin Xu, Weili Lin, Baozhu Ge, Yulin Xie, Bo Song, Shihui Jia, Rui Zhang, Wei Peng, Ying Wang, Hongbing Cheng, Wen Yang, and Huarong Zhao
Atmos. Chem. Phys., 18, 167–184, https://doi.org/10.5194/acp-18-167-2018, https://doi.org/10.5194/acp-18-167-2018, 2018
Short summary
Short summary
This paper presents simultaneous measurements of NH3, other trace gases, and water-soluble ions in PM2.5 from May to September 2013 at a rural site in the North China Plain. Atmospheric ammonia and related parameters are characterised and the impact of ammonia on formation of secondary aerosols is investigated. The results presented in this paper may improve our understanding of the role of ammonia in aerosol formation.
Gang Zhao, Chunsheng Zhao, Ye Kuang, Jiangchuan Tao, Wangshu Tan, Yuxuan Bian, Jing Li, and Chengcai Li
Atmos. Chem. Phys., 17, 12133–12143, https://doi.org/10.5194/acp-17-12133-2017, https://doi.org/10.5194/acp-17-12133-2017, 2017
Short summary
Short summary
In this paper, influences of aerosol hygroscopic growth on the lidar ratio are studied. Results indicate that both the magnitude and vertical structures of the retrieved aerosol extinction coefficient (σext) profile from lidar signals are significantly biased. This study proposes a feasible method for reducing the bias of retrieving the σext profile and this method can be implemented in operational retrieval of the aerosol σext profile and for pollution monitoring.
Yuxuan Bian, Chunsheng Zhao, Wanyun Xu, Gang Zhao, Jiangchuan Tao, and Ye Kuang
Atmos. Meas. Tech., 10, 2313–2322, https://doi.org/10.5194/amt-10-2313-2017, https://doi.org/10.5194/amt-10-2313-2017, 2017
Short summary
Short summary
Aerosol phase function is crucial for understanding the climate effects of aerosols. So far, there is a lack of instruments for measuring the aerosol phase function directly and accurately in laboratory studies and in situ measurements. A novel portable instrument with high angular range and resolution named
charge-coupled device-laser aerosol detective system(CCD-LADS) has been developed and validated for the measurement of the phase function of ambient aerosols in this study.
Ye Kuang, Chunsheng Zhao, Jiangchuan Tao, Yuxuan Bian, Nan Ma, and Gang Zhao
Atmos. Chem. Phys., 17, 6651–6662, https://doi.org/10.5194/acp-17-6651-2017, https://doi.org/10.5194/acp-17-6651-2017, 2017
Short summary
Short summary
A novel approach is proposed in this research to derive the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system without any additional information about particle number size distribution and black carbon. New findings in this research can bridge the gap between κ-Köhler theory and the aerosol light-scattering enhancement factor and will make the humidified nephelometer system more convenient when it comes to aerosol hygroscopicity research.
Rui Wang, Xiaobin Xu, Shihui Jia, Ruisheng Ma, Liang Ran, Zhaoze Deng, Weili Lin, Ying Wang, and Zhiqiang Ma
Atmos. Chem. Phys., 17, 3891–3903, https://doi.org/10.5194/acp-17-3891-2017, https://doi.org/10.5194/acp-17-3891-2017, 2017
Short summary
Short summary
Knowledge about the vertical distributions of air pollutants is limited. We present first unmanned aerial vehicle (UAV) observations of vertical profiles of O3 and size-resolved aerosol number concentrations over a rural site in the North China Plain. We show the determination of mixed and residual layer depth and characterization of diurnal O3 and aerosol number concentrations in the mixed and residual layer. We confirm a rapid increase of O3 in the lower troposphere during the recent decade.
Yingruo Li, Chunxiang Ye, Jun Liu, Yi Zhu, Junxia Wang, Ziqiang Tan, Weili Lin, Limin Zeng, and Tong Zhu
Atmos. Chem. Phys., 16, 14265–14283, https://doi.org/10.5194/acp-16-14265-2016, https://doi.org/10.5194/acp-16-14265-2016, 2016
Short summary
Short summary
We developed the surface flux intensity calculation method based on 2-year continuous ground measurement at a cross-boundary site between Beijing and the NCP to investigate the surface regional transport. The long-term and multispecies observation demonstrated the regional transport influence of the megacity Beijing and the NCP on Yufa. Our study has a direct implication in air quality control measures implemented in Beijing and its surrounding areas.
Liang Ran, Zhaoze Deng, Xiaobin Xu, Peng Yan, Weili Lin, Ying Wang, Ping Tian, Pucai Wang, Weilin Pan, and Daren Lu
Atmos. Chem. Phys., 16, 10441–10454, https://doi.org/10.5194/acp-16-10441-2016, https://doi.org/10.5194/acp-16-10441-2016, 2016
Short summary
Short summary
Vertical profiles of black carbon within 1 km above the ground were measured using a micro-aethalometer attached to a tethered balloon during the VOGA field campaign in summer 2014 at a semirural site in the North China Plain. The diurnal cycle of black carbon vertical distributions following the development of the mixing layer was analyzed for a selected dataset of 67 profiles.
Nan Ma, Chunsheng Zhao, Jiangchuan Tao, Zhijun Wu, Simonas Kecorius, Zhibin Wang, Johannes Größ, Hongjian Liu, Yuxuan Bian, Ye Kuang, Monique Teich, Gerald Spindler, Konrad Müller, Dominik van Pinxteren, Hartmut Herrmann, Min Hu, and Alfred Wiedensohler
Atmos. Chem. Phys., 16, 8593–8607, https://doi.org/10.5194/acp-16-8593-2016, https://doi.org/10.5194/acp-16-8593-2016, 2016
Short summary
Short summary
New particle formation (NPF) is one of main sources of cloud condensation nuclei (CCN) in the atmosphere. Based on in situ measurements, we found that CCN activity of newly formed particles largely differs in different NPF events. It is therefore difficult to find a simple parameterization of CCN activity for NPF events. Using a fixed size-resolved activation ratio curve or critical diameter is very likely to result in large biases up to 50 % in the calculated NCCN during NPF events.
Wanyun Xu, Weili Lin, Xiaobin Xu, Jie Tang, Jianqing Huang, Hao Wu, and Xiaochun Zhang
Atmos. Chem. Phys., 16, 6191–6205, https://doi.org/10.5194/acp-16-6191-2016, https://doi.org/10.5194/acp-16-6191-2016, 2016
Short summary
Short summary
Long-term characteristics and trends of baseline surface ozone concentration at Waliguan station in western China for the period of 1994 to 2013 were analysed, using a modified Mann–Kendall test and the Hilbert–Huang transform analysis for the trend and periodicity analysis, respectively. Significant increasing trends were detected in all seasons, except for summer. The non-linearity caused by the interannual variation of ozone concentrations is evident, showing a 2–4-year, 7- and 11-year periodicity.
Zhiqiang Ma, Jing Xu, Weijun Quan, Ziyin Zhang, Weili Lin, and Xiaobin Xu
Atmos. Chem. Phys., 16, 3969–3977, https://doi.org/10.5194/acp-16-3969-2016, https://doi.org/10.5194/acp-16-3969-2016, 2016
Short summary
Short summary
In this paper, we find that the daily maximum 8 h O3 in the eastern China has undergone a significant increase during 2003–2015, with a rate of 1.1 ppb per year. The increase of surface ozone was mainly induced by the emission changes and the meteorological factors just played a tiny negative influence. Our result also indicates that VOCs seem to play more important role in the ozone increase than the effect of NO titration.
Y. Kuang, C. S. Zhao, J. C. Tao, and N. Ma
Atmos. Chem. Phys., 15, 5761–5772, https://doi.org/10.5194/acp-15-5761-2015, https://doi.org/10.5194/acp-15-5761-2015, 2015
Short summary
Short summary
In this paper, it is found that the diurnal variations of single scattering albedo (SSA) and asymmetry factor (g) for ambient aerosol are both evident and far different from those of dry state aerosol in the North China Plain (NCP. The diurnal changes of SSA and g have significant impacts on the estimation of daily average direct aerosol radiative effect (DARE) at the top of the atmosphere. In addition, several suggestions are proposed to improve the accurate prediction of DARE in the NCP.
J. Huang, H. Liu, J. H. Crawford, C. Chan, D. B. Considine, Y. Zhang, X. Zheng, C. Zhao, V. Thouret, S. J. Oltmans, S. C. Liu, D. B. A. Jones, S. D. Steenrod, and M. R. Damon
Atmos. Chem. Phys., 15, 5161–5179, https://doi.org/10.5194/acp-15-5161-2015, https://doi.org/10.5194/acp-15-5161-2015, 2015
Short summary
Short summary
High ozone concentrations (up to 94.7ppbv) were frequently observed at an altitude of ~1.5--2km over Beijing during April--May 2005. Ozone due to Asian anthropogenic pollution made major contributions to the observed ozone enhancements. These enhancements typically occurred under southerly wind and warmer conditions. An earlier onset of the Asian summer monsoon would cause more ozone enhancement events in the lower troposphere over the North China Plain in late spring and early summer.
J. C. Tao, C. S. Zhao, N. Ma, and P. F. Liu
Atmos. Chem. Phys., 14, 12055–12067, https://doi.org/10.5194/acp-14-12055-2014, https://doi.org/10.5194/acp-14-12055-2014, 2014
G. Q. Fu, W. Y. Xu, R. F. Yang, J. B. Li, and C. S. Zhao
Atmos. Chem. Phys., 14, 11949–11958, https://doi.org/10.5194/acp-14-11949-2014, https://doi.org/10.5194/acp-14-11949-2014, 2014
L. Ran, W. L. Lin, Y. Z. Deji, B. La, P. M. Tsering, X. B. Xu, and W. Wang
Atmos. Chem. Phys., 14, 10721–10730, https://doi.org/10.5194/acp-14-10721-2014, https://doi.org/10.5194/acp-14-10721-2014, 2014
J. Chen, C. S. Zhao, N. Ma, and P. Yan
Atmos. Chem. Phys., 14, 8105–8118, https://doi.org/10.5194/acp-14-8105-2014, https://doi.org/10.5194/acp-14-8105-2014, 2014
W. Y. Xu, C. S. Zhao, L. Ran, W. L. Lin, P. Yan, and X. B. Xu
Atmos. Chem. Phys., 14, 7757–7768, https://doi.org/10.5194/acp-14-7757-2014, https://doi.org/10.5194/acp-14-7757-2014, 2014
Y. X. Bian, C. S. Zhao, N. Ma, J. Chen, and W. Y. Xu
Atmos. Chem. Phys., 14, 6417–6426, https://doi.org/10.5194/acp-14-6417-2014, https://doi.org/10.5194/acp-14-6417-2014, 2014
N. Ma, W. Birmili, T. Müller, T. Tuch, Y. F. Cheng, W. Y. Xu, C. S. Zhao, and A. Wiedensohler
Atmos. Chem. Phys., 14, 6241–6259, https://doi.org/10.5194/acp-14-6241-2014, https://doi.org/10.5194/acp-14-6241-2014, 2014
H. J. Liu, C. S. Zhao, B. Nekat, N. Ma, A. Wiedensohler, D. van Pinxteren, G. Spindler, K. Müller, and H. Herrmann
Atmos. Chem. Phys., 14, 2525–2539, https://doi.org/10.5194/acp-14-2525-2014, https://doi.org/10.5194/acp-14-2525-2014, 2014
Z. Z. Deng, C. S. Zhao, N. Ma, L. Ran, G. Q. Zhou, D. R. Lu, and X. J. Zhou
Atmos. Chem. Phys., 13, 6227–6237, https://doi.org/10.5194/acp-13-6227-2013, https://doi.org/10.5194/acp-13-6227-2013, 2013
H. Zhang, X. Xu, W. Lin, and Y. Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-12-31871-2012, https://doi.org/10.5194/acpd-12-31871-2012, 2012
Revised manuscript not accepted
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity
Consistency evaluation of tropospheric ozone from ozonesonde and IAGOS (In-service Aircraft for a Global Observing System) observations: vertical distribution, ozonesonde types, and station–airport distance
CO2 and CO temporal variability over Mexico City from ground-based total column and surface measurements
Investigating carbonyl compounds above the Amazon rainforest using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) with NO+ chemical ionization
Measurement report: In-flight and ground-based measurements of nitrogen oxide emissions from latest-generation jet engines and 100 % sustainable aviation fuel
Measurement report: Sources, sinks, and lifetime of NOx in a suburban temperate forest at night
Measurement report: Urban ammonia and amines in Houston, Texas
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Multi-year observations of variable incomplete combustion in the New York megacity
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Elevated oxidized mercury in the free troposphere: analytical advances and application at a remote continental mountaintop site
Using observed urban NOx sinks to constrain VOC reactivity and the ozone and radical budget in the Seoul Metropolitan Area
Real-world emission characteristics of VOCs from typical cargo ships and their potential contributions to secondary organic aerosol and O3 under low-sulfur fuel policies
NO3 reactivity during a summer period in a temperate forest below and above the canopy
The role of oceanic ventilation and terrestrial outflow in atmospheric non-methane hydrocarbons over the Chinese marginal seas
Concentration and source changes of nitrous acid (HONO) during the COVID-19 lockdown in Beijing
Characteristics and sources of nonmethane volatile organic compounds (NMVOCs) and O3–NOx–NMVOC relationships in Zhengzhou, China
Seasonal Air Concentration Variability, Gas/Particle Partitioning, Precipitation Scavenging, and Air-Water Equilibrium of Organophosphate Esters in Southern Canada
Measurement report: Surface exchange fluxes of HONO during the growth process of paddy fields in the Huaihe River Basin, China
Cloud processing of DMS oxidation products limits SO2 and OCS production in the Eastern North Atlantic marine boundary layer
Characterization of biogenic volatile organic compounds and their oxidation products at a stressed pine forest close to a biogas power plant
On the dynamics of ozone depletion events at Villum Research Station in the High Arctic
Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area
Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements
Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany
Surface snow bromide and nitrate at Eureka, Canada, in early spring and implications for polar boundary layer chemistry
Molecular and seasonal characteristics of organic vapors in urban Beijing: insights from Vocus-PTR measurements
Opinion: Strengthening research in the Global South – atmospheric science opportunities in South America and Africa
Analysis of ozone vertical profile day-to-day variability in the lower troposphere during the Paris-2022 ACROSS campaign
Shipping and algae emissions have a major impact on ambient air mixing ratios of non-methane hydrocarbons (NMHCs) and methanethiol on Utö Island in the Baltic Sea
Measurement report: Long-term measurements of ozone concentrations in semi-natural African ecosystems
Contribution of cooking emissions to the urban volatile organic compounds in Las Vegas, NV
Reanalysis of NOAA H2 observations: implications for the H2 budget
A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation
Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion)
Production of oxygenated volatile organic compounds from the ozonolysis of coastal seawater
Comment on “Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection” by Chen et al. (2022)
Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction
Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources
The variations of VOCs based on the policy change of Omicron in polluted winter in traffic-hub city, China
Discovery of reactive chlorine, sulphur and nitrogen containing ambient volatile organic compounds in the megacity of Delhi during both clean and extremely polluted seasons
Measurement report: Observations of ground-level ozone concentration gradients perpendicular to the Lake Ontario shoreline
Measurement report: The Palau Atmospheric Observatory and its ozonesonde record – continuous monitoring of tropospheric composition and dynamics in the tropical western Pacific
Quantifying SO2 oxidation pathways to atmospheric sulfate using stable sulfur and oxygen isotopes: laboratory simulation and field observation
Influences of downward transport and photochemistry on surface ozone over East Antarctica during austral summer: in situ observations and model simulations
Iodine oxoacids and their roles in sub-3 nm particle growth in polluted urban environments
Intensive photochemical oxidation in the marine atmosphere: evidence from direct radical measurements
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Noémie Taquet, Wolfgang Stremme, María Eugenia González del Castillo, Victor Almanza, Alejandro Bezanilla, Olivier Laurent, Carlos Alberti, Frank Hase, Michel Ramonet, Thomas Lauvaux, Ke Che, and Michel Grutter
Atmos. Chem. Phys., 24, 11823–11848, https://doi.org/10.5194/acp-24-11823-2024, https://doi.org/10.5194/acp-24-11823-2024, 2024
Short summary
Short summary
We characterize the variability in CO and CO2 emissions over Mexico City from long-term time-resolved Fourier transform infrared spectroscopy solar absorption and surface measurements from 2013 to 2021. Using the average intraday CO growth rate from total columns, the average CO / CO2 ratio and TROPOMI data, we estimate the interannual variability in the CO and CO2 anthropogenic emissions of Mexico City, highlighting the effect of an unprecedented drop in activity due to the COVID-19 lockdown.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Magdalena Pühl, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
Atmos. Chem. Phys., 24, 11807–11822, https://doi.org/10.5194/acp-24-11807-2024, https://doi.org/10.5194/acp-24-11807-2024, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground-based measurement data of nitrogen oxides that were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
Lee Tiszenkel, James H. Flynn, and Shan-Hu Lee
Atmos. Chem. Phys., 24, 11351–11363, https://doi.org/10.5194/acp-24-11351-2024, https://doi.org/10.5194/acp-24-11351-2024, 2024
Short summary
Short summary
Ammonia and amines are important ingredients for aerosol formation in urban environments, but the measurements of these compounds are extremely challenging. Our observations show that urban ammonia and amines in Houston are emitted from urban sources, and diurnal variations in their concentrations are likely governed by gas-to-particle conversion and emissions.
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024, https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Short summary
We use 111 volatile organic compounds (VOCs), PM10, and PM2.5 in a positive matrix factorization (PMF) model to resolve 11 pollution sources validated with chemical fingerprints. Crop residue burning and heating account for ~ 50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOC burden and formation potential of secondary organic aerosols (> 60 %). Non-tailpipe emissions from compressed-natural-gas-fuelled commercial vehicles dominate the transport sector's PM burden.
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024, https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is an air pollutant and an important indicator of the incomplete combustion of fossil fuels in cities. Using 4 years of winter and spring observations in New York City, we found that both the magnitude and variability of CO from the metropolitan area are greater than expected. Transportation emissions cannot explain the missing and variable CO, which points to energy from buildings as a likely underappreciated source of urban air pollution and greenhouse gas emissions.
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024, https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Short summary
We identified the contributions of ozone (O3) and nitrous acid (HONO) to the production rates of hydroxide (OH) in vertical space on the Tibetan Plateau (TP). A new insight was offered: the contributions of HONO and O3 to the production rates of OH on the TP are even greater than in lower-altitudes areas. This study enriches the understanding of vertical distribution of atmospheric components and explains the strong atmospheric oxidation capacity (AOC) on the TP.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Patrick Dewald, Tobias Seubert, Simone T. Andersen, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Chaoyang Xue, Abdelwahid Mellouki, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 8983–8997, https://doi.org/10.5194/acp-24-8983-2024, https://doi.org/10.5194/acp-24-8983-2024, 2024
Short summary
Short summary
In the scope of a field campaign in a suburban forest near Paris in the summer of 2022, we measured the reactivity of the nitrate radical NO3 towards biogenic volatile organic compounds (BVOCs; e.g. monoterpenes) mainly below but also above the canopy. NO3 reactivity was the highest during nights with strong temperature inversions and decreased strongly with height. Reactions with BVOCs were the main removal process of NO3 throughout the diel cycle below the canopy.
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
Dong Zhang, Xiao Li, Minghao Yuan, Yifei Xu, Qixiang Xu, Fangcheng Su, Shenbo Wang, and Ruiqin Zhang
Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, https://doi.org/10.5194/acp-24-8549-2024, 2024
Short summary
Short summary
The increasing concentration of O3 precursors and unfavorable meteorological conditions are key factors in the formation of O3 pollution in Zhengzhou. Vehicular exhausts (28 %), solvent usage (27 %), and industrial production (22 %) are identified as the main sources of NMVOCs. Moreover, O3 formation in Zhengzhou is found to be in an anthropogenic volatile organic compound (AVOC)-limited regime. Thus, to reduce O3 formation, a minimum AVOCs / NOx reduction ratio ≥ 3 : 1 is recommended.
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
EGUsphere, https://doi.org/10.5194/egusphere-2024-1883, https://doi.org/10.5194/egusphere-2024-1883, 2024
Short summary
Short summary
Organophosphate esters are important man-made trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation and surface water from Canada, we explore seasonal concentration variability, gas/particle partitioning, precipitation scavenging, and air-water equilibrium. Whereas higher concentrations in summer and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas-particle partitioning is puzzling.
Fanhao Meng, Baobin Han, Min Qin, Wu Fang, Ke Tang, Dou Shao, Zhitang Liao, Jun Duan, Yan Feng, Yong Huang, Ting Ni, and Pinhua Xie
EGUsphere, https://doi.org/10.5194/egusphere-2024-2127, https://doi.org/10.5194/egusphere-2024-2127, 2024
Short summary
Short summary
Comprehensive observations of HONO and NOx fluxes were first performed over paddy fields in the Huaihe River Basin. The consecutive peaks in HONO flux and NO flux demonstrated a potentially enhanced release of HONO and NO due to soil tillage, whereas higher WFPS (~80 %) inhibited microbial processes following irrigation. Notably, the biological processes and light-driven NO2 reactions on the surface could both be sources of HONO and influence the local HONO budget during rotary tillage.
Delaney B. Kilgour, Christopher M. Jernigan, Olga Garmash, Sneha Aggarwal, Claudia Mohr, Matt E. Salter, Joel A. Thornton, Jian Wang, Paul Zieger, and Timothy H. Bertram
EGUsphere, https://doi.org/10.5194/egusphere-2024-1975, https://doi.org/10.5194/egusphere-2024-1975, 2024
Short summary
Short summary
We report simultaneous measurements of dimethyl sulfide (DMS) and hydroperoxymethyl thioformate (HPMTF) in the Eastern North Atlantic. We use an observationally constrained box model to show cloud loss is the dominant sink of HPMTF in this region over six weeks, resulting in large reductions in DMS-derived products that contribute to aerosol formation and growth. Our findings indicate that fast cloud processing of HPMTF must be included in global models to accurately capture the sulfur cycle.
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
EGUsphere, https://doi.org/10.5194/egusphere-2024-1768, https://doi.org/10.5194/egusphere-2024-1768, 2024
Short summary
Short summary
VOCs and organic aerosol (OA) particles were measured online at an European stressed pine forest site. Higher temperatures can enhance the forest emissions of biogenic VOCs exceeding their photochemical consumption during daytime. Weakly oxidized monoterpene products dominated the VOCs during nighttime. Moreover, increasing relative humidity can promote the gas-to-particle partitioning of these weakly oxidized monoterpene products, leading to increased OA mass.
Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1676, https://doi.org/10.5194/egusphere-2024-1676, 2024
Short summary
Short summary
Arctic ozone depletion events (ODEs) occurs every spring and have vast implications for the oxidizing capacity, radiative balance, and mercury oxidation. In this study, we analyze ozone, ODEs, and their connection to meteorological and air mass history variables through statistical analyses, back-trajectories, and machine learning (ML) at Villum Research Station. ODEs are favorable under sunny, calm conditions with air masses arriving from northerly wind directions with sea ice contact.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024, https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Short summary
Emissions of reactive organic gases from industrial volatile chemical product sources are measured. There are large differences among these industrial sources. We show that oxygenated species account for significant contributions to reactive organic gas emissions, especially for industrial sources utilizing water-borne chemicals.
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024, https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Short summary
Online vertical gradient measurements of formic and isocyanic acids were made based on a 320 m tower in a megacity. Vertical variations and sources of the two acids were analyzed in this study. We find that formic and isocyanic acids exhibited positive vertical gradients and were mainly contributed by photochemical formations. The formation of formic and isocyanic acids was also significantly enhanced in urban regions aloft.
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024, https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Short summary
This study presents concurrent online measurements of organic gas and particles (VOCs and OA) at a forested site in summer. Both VOCs and OA were largely contributed by oxygenated organic compounds. Semi-volatile oxygenated OA and organic nitrate formed from monoterpenes and sesquiterpenes contributed significantly to nighttime particle growth. The results help us to understand the causes of nighttime particle growth regularly observed in summer in central European rural forested environments.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yi Yuan, Junchen Guo, Yuyang Li, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1325, https://doi.org/10.5194/egusphere-2024-1325, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations of organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various sub-ppt level species and organics with multiple oxygens (≥3) were discovered. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens. While in other seasons, the variations of them could be influenced by primary emissions.
Rebecca M. Garland, Katye E. Altieri, Laura Dawidowski, Laura Gallardo, Aderiana Mbandi, Nestor Y. Rojas, and N'datchoh E. Touré
Atmos. Chem. Phys., 24, 5757–5764, https://doi.org/10.5194/acp-24-5757-2024, https://doi.org/10.5194/acp-24-5757-2024, 2024
Short summary
Short summary
This opinion piece focuses on two geographical areas in the Global South where the authors are based that are underrepresented in atmospheric science. This opinion provides context on common challenges and constraints, with suggestions on how the community can address these. The focus is on the strengths of atmospheric science research in these regions. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
Gerard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
EGUsphere, https://doi.org/10.5194/egusphere-2024-892, https://doi.org/10.5194/egusphere-2024-892, 2024
Short summary
Short summary
Characterization of ozone pollution in urban areas has benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 days of lidar and aircraft observations. The main objective is a sensitivity analysis of ozone pollution to first the micrometeorological processes in the urban atmospheric boundary layer, and second, the transport of regional pollution. The paper also discuss to what extent satellite observations can track the observed ozone plumes.
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
EGUsphere, https://doi.org/10.5194/egusphere-2024-284, https://doi.org/10.5194/egusphere-2024-284, 2024
Short summary
Short summary
Ozone is a secondary air pollutant that is detrimental to human and plant health. A better understanding of its chemical evolution is a challenge for Africa, where it is still under-sampled. Out of 14 sites examined (1995–2020), high levels of O3 are reported in southern Africa. The dominant chemical processes leading to O3 formation are identified. A decrease in O3 is observed at Katibougou (Mali) and Banizoumbou (Niger), and an increase at Zoétélé (Cameroon) and Skukuza (South Africa).
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024, https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Short summary
Residential and commercial cooking emits pollutants that degrade air quality. Here, ambient observations show that cooking is an important contributor to anthropogenic volatile organic compounds (VOCs) emitted in Las Vegas, NV. These emissions are not fully presented in air quality models, and more work may be needed to quantify emissions from important sources, such as commercial restaurants.
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024, https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
Short summary
New data from the National Oceanic and Atmospheric Administration show that hydrogen (H2) concentrations increased from 2010 to 2019, which is consistent with the simulated increase in H2 photochemical production (mainly from methane). But this cannot be reconciled with the expected decrease (increase) in H2 anthropogenic emissions (soil deposition) in the same period. This shows gaps in our knowledge of the H2 biogeochemical cycle that must be resolved to quantify the impact of higher H2 usage.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Delaney B. Kilgour, Gordon A. Novak, Megan S. Claflin, Brian M. Lerner, and Timothy H. Bertram
Atmos. Chem. Phys., 24, 3729–3742, https://doi.org/10.5194/acp-24-3729-2024, https://doi.org/10.5194/acp-24-3729-2024, 2024
Short summary
Short summary
Laboratory experiments with seawater mimics suggest ozone deposition to the surface ocean can be a source of reactive carbon to the marine atmosphere. We conduct both field and laboratory measurements to assess abiotic VOC composition and yields from ozonolysis of real surface seawater. We show that C5–C11 aldehydes contribute to the observed VOC emission flux. We estimate that VOCs generated by the ozonolysis of surface seawater are competitive with biological VOC production and emission.
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024, https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary
Short summary
Chen et al. (2022) attributed the nocturnal ozone enhancement (NOE) during the night of 31 July 2021 in the North China Plain (NCP) to "the direct stratospheric intrusion to reach the surface". We analyzed in situ data from the NCP. Our results do not suggest that there was a significant impact from the stratosphere on surface ozone during the NOE. We argue that the NOE was not caused by stratospheric intrusion but originated from fresh photochemical production in the lower troposphere.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-575, https://doi.org/10.5194/egusphere-2024-575, 2024
Short summary
Short summary
Continuous online VOCs monitoring was carried out at an urban site in a traffic-hub city for two months during the Omicron-infected stage. The characteristics and variations of VOCs in different periods were studied, and their impact on the formation of SOA were evaluated. The work in this manuscript evaluated the influence of the policy variation on VOCs pollution, which will provide some basis for VOCs pollution research and control of pollution sources.
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
EGUsphere, https://doi.org/10.5194/egusphere-2024-500, https://doi.org/10.5194/egusphere-2024-500, 2024
Short summary
Short summary
We quantified 111 gases using extended volatility mass spectrometry to understand how changes in seasonality and emissions lead from clean air in monsoon to extremely polluted air in the post-monsoon season in Delhi. Averaged total mass concentrations (260 µgm-3) were >4 times in polluted periods, driven by biomass burning emissions and reduced atmospheric ventilation. Reactive gaseous nitrogen, chlorine and sulphur compounds hitherto un-reported from such a polluted environment were discovered.
Yao Yan Huang and D. James Donaldson
Atmos. Chem. Phys., 24, 2387–2398, https://doi.org/10.5194/acp-24-2387-2024, https://doi.org/10.5194/acp-24-2387-2024, 2024
Short summary
Short summary
Ground-level ozone interacts at the lake–land boundary; this is important to our understanding and modelling of atmospheric chemistry and air pollution in the lower atmosphere. We show that a steep ozone gradient occurs year-round moving inland up to 1 km from the lake and that this gradient is influenced by seasonal factors on the local land environment, where more rural areas are more greatly affected seasonally.
Katrin Müller, Jordis S. Tradowsky, Peter von der Gathen, Christoph Ritter, Sharon Patris, Justus Notholt, and Markus Rex
Atmos. Chem. Phys., 24, 2169–2193, https://doi.org/10.5194/acp-24-2169-2024, https://doi.org/10.5194/acp-24-2169-2024, 2024
Short summary
Short summary
The Palau Atmospheric Observatory is introduced as an ideal site to detect changes in atmospheric composition and dynamics above the remote tropical western Pacific. We focus on the ozone sounding program from 2016–2021, including El Niño 2016. The year-round high convective activity is reflected in dominant low tropospheric ozone and high relative humidity. Their seasonal distributions are unique compared to other tropical sites and are modulated by the Intertropical Convergence Zone.
Ziyan Guo, Keding Lu, Pengxiang Qiu, Mingyi Xu, and Zhaobing Guo
Atmos. Chem. Phys., 24, 2195–2205, https://doi.org/10.5194/acp-24-2195-2024, https://doi.org/10.5194/acp-24-2195-2024, 2024
Short summary
Short summary
The formation of secondary sulfate needs to be further explored. In this work, we simultaneously measured sulfur and oxygen isotopic compositions to gain an increased understanding of specific sulfate formation processes. The results indicated that secondary sulfate was mainly ascribed to SO2 homogeneous oxidation by OH radicals and heterogeneous oxidation by H2O2 and Fe3+ / O2. This study is favourable for deeply investigating the sulfur cycle in the atmosphere.
Imran A. Girach, Narendra Ojha, Prabha R. Nair, Kandula V. Subrahmanyam, Neelakantan Koushik, Mohammed M. Nazeer, Nadimpally Kiran Kumar, Surendran Nair Suresh Babu, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 24, 1979–1995, https://doi.org/10.5194/acp-24-1979-2024, https://doi.org/10.5194/acp-24-1979-2024, 2024
Short summary
Short summary
We investigate surface ozone variability in East Antarctica based on measurements and EMAC global model simulations during austral summer. Nearly half of the surface ozone is found to be of stratospheric origin. The east coast of Antarctica acts as a stronger sink of ozone than surrounding regions. Photochemical loss of ozone is counterbalanced by downward transport of ozone. The study highlights the intertwined role of chemistry and dynamics in governing ozone variations over East Antarctica.
Ying Zhang, Duzitian Li, Xu-Cheng He, Wei Nie, Chenjuan Deng, Runlong Cai, Yuliang Liu, Yishuo Guo, Chong Liu, Yiran Li, Liangduo Chen, Yuanyuan Li, Chenjie Hua, Tingyu Liu, Zongcheng Wang, Jiali Xie, Lei Wang, Tuukka Petäjä, Federico Bianchi, Ximeng Qi, Xuguang Chi, Pauli Paasonen, Yongchun Liu, Chao Yan, Jingkun Jiang, Aijun Ding, and Markku Kulmala
Atmos. Chem. Phys., 24, 1873–1893, https://doi.org/10.5194/acp-24-1873-2024, https://doi.org/10.5194/acp-24-1873-2024, 2024
Short summary
Short summary
This study conducts a long-term observation of gaseous iodine oxoacids in two Chinese megacities, revealing their ubiquitous presence with peak concentrations (up to 0.1 pptv) in summer. Our analysis suggests a mix of terrestrial and marine sources for iodine. Additionally, iodic acid is identified as a notable contributor to sub-3 nm particle growth and particle survival probability.
Guoxian Zhang, Renzhi Hu, Pinhua Xie, Changjin Hu, Xiaoyan Liu, Liujun Zhong, Haotian Cai, Bo Zhu, Shiyong Xia, Xiaofeng Huang, Xin Li, and Wenqing Liu
Atmos. Chem. Phys., 24, 1825–1839, https://doi.org/10.5194/acp-24-1825-2024, https://doi.org/10.5194/acp-24-1825-2024, 2024
Short summary
Short summary
Comprehensive observation of HOx radicals was conducted at a coastal site in the Pearl River Delta. Radical chemistry was influenced by different air masses in a time-dependent way. Land mass promotes a more active photochemical process, with daily averages of 7.1 × 106 and 5.2 × 108 cm−3 for OH and HO2 respectively. The rapid oxidation process was accompanied by a higher diurnal HONO concentration, which influences the ozone-sensitive system and eventually magnifies the background ozone.
Cited articles
Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang,
Q., He, K., Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen
chemistry in aerosol water as a source of sulfate during haze events in
China, Science Advances, 2, e1601530, https://doi.org/10.1126/sciadv.1601530, 2016.
Cui, L., Li, R., Zhang, Y., Meng, Y., Fu, H., and Chen, J.: An observational
study of nitrous acid (HONO) in Shanghai, China: The aerosol impact on HONO
formation during the haze episodes, Sci. Total Environ., 630,
1057–1070, https://doi.org/10.1016/j.scitotenv.2018.02.063,
2018.
Ding, J., Zhao, P., Su, J., Dong, Q., Du, X., and Zhang, Y.: Aerosol pH and its driving factors in Beijing, Atmos. Chem. Phys., 19, 7939–7954, https://doi.org/10.5194/acp-19-7939-2019, 2019.
Guo, H., Weber, R. J., and Nenes, A.: High levels of ammonia do not raise
fine particle pH sufficiently to yield nitrogen oxide-dominated sulfate
production, Sci. Rep., 7, 12109, https://doi.org/10.1038/s41598-017-11704-0, 2017.
Huang, R.-J., Yang, L., Cao, J., Wang, Q., Tie, X., Ho, K.-F., Shen, Z.,
Zhang, R., Li, G., Zhu, C., Zhang, N., Dai, W., Zhou, J., Liu, S., Chen, Y.,
Chen, J., and O'Dowd, C. D.: Concentration and sources of atmospheric
nitrous acid (HONO) at an urban site in Western China, Sci. Total Environ., 593–594, 165–172, https://doi.org/10.1016/j.scitotenv.2017.02.166, 2017.
Kleffmann, J., Gavriloaiei, T., Hofzumahaus, A., Holland, F., Koppmann, R.,
Rupp, L., Schlosser, E., Siese, M., and Wahner, A.: Daytime formation of
nitrous acid: A major source of OH radicals in a forest, Geophys. Res. Lett., 32, L05818, https://doi.org/10.1029/2005GL022524, 2005.
Kuang, Y., Zhao, C. S., Tao, J. C., and Ma, N.: Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect, Atmos. Chem. Phys., 15, 5761–5772, https://doi.org/10.5194/acp-15-5761-2015, 2015.
Kuang, Y., Zhao, C., Tao, J., Bian, Y., Ma, N., and Zhao, G.: A novel method for deriving the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system, Atmos. Chem. Phys., 17, 6651–6662, https://doi.org/10.5194/acp-17-6651-2017, 2017.
Kuang, Y., Zhao, C. S., Zhao, G., Tao, J. C., Xu, W., Ma, N., and Bian, Y. X.: A novel method for calculating ambient aerosol liquid water content based on measurements of a humidified nephelometer system, Atmos. Meas. Tech., 11, 2967–2982, https://doi.org/10.5194/amt-11-2967-2018, 2018.
Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., and Molina, L. T.: Impacts of HONO sources on the photochemistry in Mexico City during the MCMA-2006/MILAGO Campaign, Atmos. Chem. Phys., 10, 6551–6567, https://doi.org/10.5194/acp-10-6551-2010, 2010.
Li, L., Duan, Z., Li, H., Zhu, C., Henkelman, G., Francisco, J. S., and
Zeng, X. C.: Formation of HONO from the NH3-promoted hydrolysis of
NO2-dimers in the atmosphere, P. Natl. Acad. Sci. USA, 115, 7236–7241, https://doi.org/10.1073/pnas.1807719115, 2018a.
Li, L., Hoffmann, M. R., and Colussi, A. J.: Role of Nitrogen Dioxide in the
Production of Sulfate during Chinese Haze-Aerosol Episodes,
Environ. Sci. Technol., 52, 2686–2693, https://doi.org/10.1021/acs.est.7b05222, 2018b.
Li, X., Brauers, T., Häseler, R., Bohn, B., Fuchs, H., Hofzumahaus, A., Holland, F., Lou, S., Lu, K. D., Rohrer, F., Hu, M., Zeng, L. M., Zhang, Y. H., Garland, R. M., Su, H., Nowak, A., Wiedensohler, A., Takegawa, N., Shao, M., and Wahner, A.: Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China, Atmos. Chem. Phys., 12, 1497–1513, https://doi.org/10.5194/acp-12-1497-2012, 2012.
Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu,
Y., and Zhu, T.: Fine particle pH during severe haze episodes in northern
China, Geophys. Res. Lett., 44, 5213–5221,
https://doi.org/10.1002/2017GL073210, 2017a.
Liu, Y., Wu, Z., Wang, Y., Xiao, Y., Gu, F., Zheng, J., Tan, T., Shang, D.,
Wu, Y., Zeng, L., Hu, M., Bateman, A. P., and Martin, S. T.: Submicrometer
Particles Are in the Liquid State during Heavy Haze Episodes in the Urban
Atmosphere of Beijing, China, Environ. Sci. Tech. Let.,
4, 427–432, https://doi.org/10.1021/acs.estlett.7b00352, 2017b.
Liu, Z., Wang, Y., Costabile, F., Amoroso, A., Zhao, C., Huey, L. G.,
Stickel, R., Liao, J., and Zhu, T.: Evidence of Aerosols as a Media for
Rapid Daytime HONO Production over China, Environ. Sci. Technol., 48, 14386–14391, https://doi.org/10.1021/es504163z, 2014.
Lu, C., Niu, S., Tang, L., Lv, J., Zhao, L., and Zhu, B.: Chemical
composition of fog water in Nanjing area of China and its related fog
microphysics, Atmos. Res., 97, 47–69, https://doi.org/10.1016/j.atmosres.2010.03.007, 2010.
Lu, K., Guo, S., Tan, Z., Wang, H., Shang, D., Liu, Y., Li, X., Wu, Z., Hu,
M., and Zhang, Y.: Exploring atmospheric free-radical chemistry in China:
the self-cleansing capacity and the formation of secondary air pollution,
Natl. Sci. Rev., 1–16, https://doi.org/10.1093/nsr/nwy073, 2018.
Meng, Z., Xu, X., Lin, W., Ge, B., Xie, Y., Song, B., Jia, S., Zhang, R., Peng, W., Wang, Y., Cheng, H., Yang, W., and Zhao, H.: Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain, Atmos. Chem. Phys., 18, 167–184, https://doi.org/10.5194/acp-18-167-2018, 2018.
Michoud, V., Colomb, A., Borbon, A., Miet, K., Beekmann, M., Camredon, M., Aumont, B., Perrier, S., Zapf, P., Siour, G., Ait-Helal, W., Afif, C., Kukui, A., Furger, M., Dupont, J. C., Haeffelin, M., and Doussin, J. F.: Study of the unknown HONO daytime source at a European suburban site during the MEGAPOLI summer and winter field campaigns, Atmos. Chem. Phys., 14, 2805–2822, https://doi.org/10.5194/acp-14-2805-2014, 2014.
Nie, W., Ding, A. J., Xie, Y. N., Xu, Z., Mao, H., Kerminen, V.-M., Zheng, L. F., Qi, X. M., Huang, X., Yang, X.-Q., Sun, J. N., Herrmann, E., Petäjä, T., Kulmala, M., and Fu, C. B.: Influence of biomass burning plumes on HONO chemistry in eastern China, Atmos. Chem. Phys., 15, 1147–1159, https://doi.org/10.5194/acp-15-1147-2015, 2015.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Ran, L., Zhao, C. S., Xu, W. Y., Lu, X. Q., Han, M., Lin, W. L., Yan, P., Xu, X. B., Deng, Z. Z., Ma, N., Liu, P. F., Yu, J., Liang, W. D., and Chen, L. L.: VOC reactivity and its effect on ozone production during the HaChi summer campaign, Atmos. Chem. Phys., 11, 4657–4667, https://doi.org/10.5194/acp-11-4657-2011, 2011.
Safai, P. D., Kewat, S., Pandithurai, G., Praveen, P. S., Ali, K., Tiwari,
S., Rao, P. S. P., Budhawant, K. B., Saha, S. K., and Devara, P. C. S.:
Aerosol characteristics during winter fog at Agra, North India, J. Atmos.
Chem., 61, 101–118, https://doi.org/10.1007/s10874-009-9127-4, 2008.
Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R. V., Philip, S., Song, S., Zhao, Y., Xie, Z., Zhang, L., and Alexander, B.: Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing, Atmos. Chem. Phys., 19, 6107–6123, https://doi.org/10.5194/acp-19-6107-2019, 2019.
Shen, C., Zhao, C., Ma, N., Tao, J., Zhao, G., Yu, Y., and Kuang, Y.: Method
to Estimate Water Vapor Supersaturation in the Ambient Activation Process
Using Aerosol and Droplet Measurement Data, J. Geophys. Res.-Atmos., 123, 10606–10619, https://doi.org/10.1029/2018JD028315, 2018.
Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., and McElroy, M. B.: Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models, Atmos. Chem. Phys., 18, 7423–7438, https://doi.org/10.5194/acp-18-7423-2018, 2018.
Stutz, J., Alicke, B., and Neftel, A.: Nitrous acid formation in the urban
atmosphere: Gradient measurements of NO2 and HONO over grass in Milan,
Italy, J. Geophys. Res.-Atmos., 107, LOP 5-1–LOP 5-15,
https://doi.org/10.1029/2001JD000390, 2002.
Su, H., Cheng, Y., Oswald, R., Behrendt, T., Trebs, I., Meixner, F. X.,
Andreae, M. O., Cheng, P., Zhang, Y., and Pöschl, U.: Soil Nitrite as a
Source of Atmospheric HONO and OH Radicals, Science, 333, 1616–1618,
https://doi.org/10.1126/science.1207687, 2011.
Teng, X., Hu, Q., Zhang, L., Qi, J., Shi, J., Xie, H., Gao, H., and Yao, X.:
Identification of Major Sources of Atmospheric NH3 in an Urban Environment
in Northern China During Wintertime, Environ. Sci. Technol.,
51, 6839–6848, https://doi.org/10.1021/acs.est.7b00328, 2017.
Vogel, B., Vogel, H., Kleffmann, J., and Kurtenbach, R.: Measured and
simulated vertical profiles of nitrous acid – Part II. Model simulations and
indications for a photolytic source, Atmos. Environ., 37, 2957–2966, https://doi.org/10.1016/S1352-2310(03)00243-7, 2003.
Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin,
Y., Peng, J., Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang,
Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J., Tian, P.,
Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L.,
Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B.,
Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R.
A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London
Fog to Chinese haze, P. Natl. Acad Sci. USA, 113, 13630–13635, https://doi.org/10.1073/pnas.1616540113, 2016.
Whalley, L. K., Stone, D., George, I. J., Mertes, S., van Pinxteren, D., Tilgner, A., Herrmann, H., Evans, M. J., and Heard, D. E.: The influence of clouds on radical concentrations: observations and modelling studies of HOx during the Hill Cap Cloud Thuringia (HCCT) campaign in 2010, Atmos. Chem. Phys., 15, 3289–3301, https://doi.org/10.5194/acp-15-3289-2015, 2015.
Wu, Z., Wang, Y., Tan, T., Zhu, Y., Li, M., Shang, D., Wang, H., Lu, K.,
Guo, S., Zeng, L., and Zhang, Y.: Aerosol Liquid Water Driven by
Anthropogenic Inorganic Salts: Implying Its Key Role in Haze Formation over
the North China Plain, Environ. Sci. Tech. Lett., 5, 160–166, https://doi.org/10.1021/acs.estlett.8b00021, 2018.
Xing, J., Ding, D., Wang, S., Zhao, B., Jang, C., Wu, W., Zhang, F., Zhu, Y., and Hao, J.: Quantification of the enhanced effectiveness of NOx control from simultaneous reductions of VOC and NH3 for reducing air pollution in the Beijing–Tianjin–Hebei region, China, Atmos. Chem. Phys., 18, 7799–7814, https://doi.org/10.5194/acp-18-7799-2018, 2018.
Xu, W. Y., Zhao, C. S., Ran, L., Lin, W. L., Yan, P., and Xu, X. B.: SO2 noontime-peak phenomenon in the North China Plain, Atmos. Chem. Phys., 14, 7757–7768, https://doi.org/10.5194/acp-14-7757-2014, 2014.
Xue, L. K., Wang, T., Gao, J., Ding, A. J., Zhou, X. H., Blake, D. R., Wang, X. F., Saunders, S. M., Fan, S. J., Zuo, H. C., Zhang, Q. Z., and Wang, W. X.: Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes, Atmos. Chem. Phys., 14, 13175–13188, https://doi.org/10.5194/acp-14-13175-2014, 2014.
Yabushita, A., Enami, S., Sakamoto, Y., Kawasaki, M., Hoffmann, M. R., and
Colussi, A. J.: Anion-Catalyzed Dissolution of NO2 on Aqueous Microdroplets,
J. Phys. Chem. A, 113, 4844–4848, https://doi.org/10.1021/jp900685f,
2009.
Ye, C., Liu, P., Ma, Z., Xue, C., Zhang, C., Zhang, Y., Liu, J., Liu, C.,
Sun, X., and Mu, Y.: High H2O2 Concentrations Observed during Haze Periods
during the Winter in Beijing: Importance of H2O2 Oxidation in Sulfate
Formation, Environ. Sci. Tech. Lett., 5, 757–763, https://doi.org/10.1021/acs.estlett.8b00579, 2018.
Yin, Z., Ye, X., Jiang, S., Tao, Y., Shi, Y., Yang, X., and Chen, J.:
Size-resolved effective density of urban aerosols in Shanghai, Atmos. Environ., 100, 133–140, https://doi.org/10.1016/j.atmosenv.2014.10.055, 2015.
Young, L.-H., Li, C.-H., Lin, M.-Y., Hwang, B.-F., Hsu, H.-T., Chen, Y.-C.,
Jung, C.-R., Chen, K.-C., Cheng, D.-H., Wang, V.-S., Chiang, H.-C., and
Tsai, P.-J.: Field performance of a semi-continuous monitor for ambient
PM2.5 water-soluble inorganic ions and gases at a suburban site, Atmos. Environ., 144, 376–388, https://doi.org/10.1016/j.atmosenv.2016.08.062, 2016.
Zhang, W., Tong, S., Ge, M., An, J., Shi, Z., Hou, S., Xia, K., Qu, Y.,
Zhang, H., Chu, B., Sun, Y., and He, H.: Variations and sources of nitrous
acid (HONO) during a severe pollution episode in Beijing in winter 2016,
Sci. Total Environ., 648, 253–262, https://doi.org/10.1016/j.scitotenv.2018.08.133, 2019.
Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D., Pöschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, Atmos. Chem. Phys., 15, 2969–2983, https://doi.org/10.5194/acp-15-2969-2015, 2015.
Short summary
The study of HONO, the primary source of OH radicals, is crucial for atmospheric photochemistry and heterogeneous chemistry. Heterogeneous NO2 conversion was shown to be one of the missing sources of HONO on the North China Plain, but the reaction path is still under debate. In this work, evidence was found that NH3 was the key factor that promoted the hydrolysis of NO2, leading to the explosive growth of HONO and nitrate, suggesting that NH3 emission control measures are urgently needed.
The study of HONO, the primary source of OH radicals, is crucial for atmospheric photochemistry...
Altmetrics
Final-revised paper
Preprint