Articles | Volume 18, issue 8
https://doi.org/10.5194/acp-18-5343-2018
https://doi.org/10.5194/acp-18-5343-2018
Research article
 | 
19 Apr 2018
Research article |  | 19 Apr 2018

Understanding meteorological influences on PM2.5 concentrations across China: a temporal and spatial perspective

Ziyue Chen, Xiaoming Xie, Jun Cai, Danlu Chen, Bingbo Gao, Bin He, Nianliang Cheng, and Bing Xu

Related authors

The role of temporal scales in extracting dominant meteorological drivers of major airborne pollutants
Miaoqing Xu, Jing Yang, Manchun Li, Xiao Chen, Qiancheng Lv, Qi Yao, Bingbo Gao, and Ziyue Chen
Atmos. Chem. Phys., 23, 14065–14076, https://doi.org/10.5194/acp-23-14065-2023,https://doi.org/10.5194/acp-23-14065-2023, 2023
Short summary
An adapted hourly Himawari-8 fire product for China: principle, methodology and verification
Jie Chen, Qiancheng Lv, Shuang Wu, Yelu Zeng, Manchun Li, Ziyue Chen, Enze Zhou, Wei Zheng, Cheng Liu, Xiao Chen, Jing Yang, and Bingbo Gao
Earth Syst. Sci. Data, 15, 1911–1931, https://doi.org/10.5194/essd-15-1911-2023,https://doi.org/10.5194/essd-15-1911-2023, 2023
Short summary
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022,https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
Identifying the spatiotemporal variations in ozone formation regimes across China from 2005 to 2019 based on polynomial simulation and causality analysis
Ruiyuan Li, Miaoqing Xu, Manchun Li, Ziyue Chen, Na Zhao, Bingbo Gao, and Qi Yao
Atmos. Chem. Phys., 21, 15631–15646, https://doi.org/10.5194/acp-21-15631-2021,https://doi.org/10.5194/acp-21-15631-2021, 2021
Short summary
The control of anthropogenic emissions contributed to 80 % of the decrease in PM2.5 concentrations in Beijing from 2013 to 2017
Ziyue Chen, Danlu Chen, Mei-Po Kwan, Bin Chen, Bingbo Gao, Yan Zhuang, Ruiyuan Li, and Bing Xu
Atmos. Chem. Phys., 19, 13519–13533, https://doi.org/10.5194/acp-19-13519-2019,https://doi.org/10.5194/acp-19-13519-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Observational and model evidence for a prominent stratospheric influence on variability in tropospheric nitrous oxide
Cynthia D. Nevison, Qing Liang, Paul A. Newman, Britton B. Stephens, Geoff Dutton, Xin Lan, Roisin Commane, Yenny Gonzalez, and Eric Kort
Atmos. Chem. Phys., 24, 10513–10529, https://doi.org/10.5194/acp-24-10513-2024,https://doi.org/10.5194/acp-24-10513-2024, 2024
Short summary
Estimation of Canada's methane emissions: inverse modelling analysis using the Environment and Climate Change Canada (ECCC) measurement network
Misa Ishizawa, Douglas Chan, Doug Worthy, Elton Chan, Felix Vogel, Joe R. Melton, and Vivek K. Arora
Atmos. Chem. Phys., 24, 10013–10038, https://doi.org/10.5194/acp-24-10013-2024,https://doi.org/10.5194/acp-24-10013-2024, 2024
Short summary
Spatiotemporal source apportionment of ozone pollution over the Greater Bay Area
Yiang Chen, Xingcheng Lu, and Jimmy C. H. Fung
Atmos. Chem. Phys., 24, 8847–8864, https://doi.org/10.5194/acp-24-8847-2024,https://doi.org/10.5194/acp-24-8847-2024, 2024
Short summary
Potential of 14C-based vs. ΔCO-based ΔffCO2 observations to estimate urban fossil fuel CO2 (ffCO2) emissions
Fabian Maier, Christian Rödenbeck, Ingeborg Levin, Christoph Gerbig, Maksym Gachkivskyi, and Samuel Hammer
Atmos. Chem. Phys., 24, 8183–8203, https://doi.org/10.5194/acp-24-8183-2024,https://doi.org/10.5194/acp-24-8183-2024, 2024
Short summary
On the uncertainty of anthropogenic aromatic volatile organic compound emissions: model evaluation and sensitivity analysis
Kevin Oliveira, Marc Guevara, Oriol Jorba, Hervé Petetin, Dene Bowdalo, Carles Tena, Gilbert Montané Pinto, Franco López, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7137–7177, https://doi.org/10.5194/acp-24-7137-2024,https://doi.org/10.5194/acp-24-7137-2024, 2024
Short summary

Cited articles

Cao, C., Jiang, W., Wang, B., Fang, J., Lang, J., Tian, G., Jiang, J., and Zhu, T.: Inhalable Microorganisms in Beijing's PM2.5 and PM10 Pollutants during a Severe Smog Event, Environ. Sci. Technol., 48, 1499–1507, 2014.
Cao, J., Shen, Z., Chow, J., Watson, J. G., Leed, S., Tie, X., Ho, K., Wang, G., and Han, Y.: Winter and Summer PM2.5 Chemical Compositions in Fourteen Chinese Cities, J. Air Waste Manage., 62, 1214–1226, 2012.
Chen, T., He, J., Lu, X., She, J., and Guan, Z.: Spatial and temporal variations of PM2. 5 and its relation to meteorological factors in the urban area of Nanjing, China, Int. J. Env. Res. Pub. He., 13, 921, https://doi.org/10.3390/ijerph13090921, 2016.
Chen, W., Zhang, H. T., and Zhao, H. M.: Diurnal, weekly and monthly spatial variations of air pollutants and air quality of Beijing, Atmos. Environ., 119, 21–34, 2015.
Chen, Y., Schleicher, N., Fricker, M., Cen, K., Liu, X. L., Kaminski, U., Yu, Y., Wu, X. F., and Norra, S.: Long-term variation of black carbon and PM2.5 in Beijing, China with respect to meteorological conditions and governmental measures, Environ. Pollut., 212, 269–278, 2016.
Download
Short summary
With an advanced causality analysis method CCM, we quantified the influence of individual meteorological factors on PM2.5 concentrations and revealed notable spatial and temporal variations of meteorological influences on PM2.5 concentrations across China. Temperature, humidity and wind exert the strongest influences on PM2.5 concentrations in most cities across China. Given the notable spatial variations, meteorological means for reducing PM2.5 concentrations should be designed accordingly.
Altmetrics
Final-revised paper
Preprint