the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Variability and evolution of the midlatitude stratospheric aerosol budget from 22 years of ground-based lidar and satellite observations
Sergey M. Khaykin
Sophie Godin-Beekmann
Philippe Keckhut
Alain Hauchecorne
Julien Jumelet
Jean-Paul Vernier
Adam Bourassa
Doug A. Degenstein
Landon A. Rieger
Christine Bingen
Filip Vanhellemont
Charles Robert
Matthew DeLand
Pawan K. Bhartia
Related authors
Measurements of transported smoke layers were performed with a lidar in Lille and a five-channel fluorescence lidar in Moscow. Results show the peak of fluorescence in the boundary layer is at 438 nm, while in the smoke layer it shifts to longer wavelengths. The fluorescence depolarization is 45 % to 55 %. The depolarization ratio of the water vapor channel is low (2 ± 0.5 %) in the absence of fluorescence and can be used to evaluate the contribution of fluorescence to water vapor signal.
Measurements of transported smoke layers were performed with a lidar in Lille and a five-channel fluorescence lidar in Moscow. Results show the peak of fluorescence in the boundary layer is at 438 nm, while in the smoke layer it shifts to longer wavelengths. The fluorescence depolarization is 45 % to 55 %. The depolarization ratio of the water vapor channel is low (2 ± 0.5 %) in the absence of fluorescence and can be used to evaluate the contribution of fluorescence to water vapor signal.
moderateeruptions have regularly injected sulfur into the stratosphere, typically enhancing the aerosol loading for several months. We investigate here for the first time the chemical perturbation associated with the Sarychev eruption in June 2009, using balloon-borne instruments and model calculations. Some chemical compounds are significantly affected by the aerosols, but the impact on stratospheric ozone is weak.
The paper identifies the general scientific context of the project and derives the mission, instrument and scientific products requirements. The general design of the payload and platform systems is discussed. The preliminary data processing chain is presented, from telemetry data to retrieved geophysical profiles, with a complementary data assimilation level.