Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 15, issue 22
Atmos. Chem. Phys., 15, 12705–12729, 2015
https://doi.org/10.5194/acp-15-12705-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 12705–12729, 2015
https://doi.org/10.5194/acp-15-12705-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Nov 2015

Research article | 16 Nov 2015

Estimation of continuous anthropogenic CO2: model-based evaluation of CO2, CO, δ13C(CO2) and Δ14C(CO2) tracer methods

S. N. Vardag et al.

Related authors

Long open-path measurements of greenhouse gases in air using near-infrared Fourier transform spectroscopy
David W. T. Griffith, Denis Pöhler, Stefan Schmitt, Samuel Hammer, Sanam N. Vardag, and Ulrich Platt
Atmos. Meas. Tech., 11, 1549–1563, https://doi.org/10.5194/amt-11-1549-2018,https://doi.org/10.5194/amt-11-1549-2018, 2018
Short summary
Evaluation of 4 years of continuous δ13C(CO2) data using a moving Keeling plot method
Sanam Noreen Vardag, Samuel Hammer, and Ingeborg Levin
Biogeosciences, 13, 4237–4251, https://doi.org/10.5194/bg-13-4237-2016,https://doi.org/10.5194/bg-13-4237-2016, 2016
Short summary
First continuous measurements of δ18O-CO2 in air with a Fourier transform infrared spectrometer
S. N. Vardag, S. Hammer, M. Sabasch, D. W. T. Griffith, and I. Levin
Atmos. Meas. Tech., 8, 579–592, https://doi.org/10.5194/amt-8-579-2015,https://doi.org/10.5194/amt-8-579-2015, 2015
Comparisons of continuous atmospheric CH4, CO2 and N2O measurements – results from a travelling instrument campaign at Mace Head
S. N. Vardag, S. Hammer, S. O'Doherty, T. G. Spain, B. Wastine, A. Jordan, and I. Levin
Atmos. Chem. Phys., 14, 8403–8418, https://doi.org/10.5194/acp-14-8403-2014,https://doi.org/10.5194/acp-14-8403-2014, 2014

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Stratospheric impact on the Northern Hemisphere winter and spring ozone interannual variability in the troposphere
Junhua Liu, Jose M. Rodriguez, Luke D. Oman, Anne R. Douglass, Mark A. Olsen, and Lu Hu
Atmos. Chem. Phys., 20, 6417–6433, https://doi.org/10.5194/acp-20-6417-2020,https://doi.org/10.5194/acp-20-6417-2020, 2020
Short summary
Design and evaluation of CO2 observation network to optimize surface CO2 fluxes in Asia using observation system simulation experiments
Jun Park and Hyun Mee Kim
Atmos. Chem. Phys., 20, 5175–5195, https://doi.org/10.5194/acp-20-5175-2020,https://doi.org/10.5194/acp-20-5175-2020, 2020
Short summary
Ozone pollution over China and India: seasonality and sources
Meng Gao, Jinhui Gao, Bin Zhu, Rajesh Kumar, Xiao Lu, Shaojie Song, Yuzhong Zhang, Beixi Jia, Peng Wang, Gufran Beig, Jianlin Hu, Qi Ying, Hongliang Zhang, Peter Sherman, and Michael B. McElroy
Atmos. Chem. Phys., 20, 4399–4414, https://doi.org/10.5194/acp-20-4399-2020,https://doi.org/10.5194/acp-20-4399-2020, 2020
Short summary
Influences of oceanic ozone deposition on tropospheric photochemistry
Ryan J. Pound, Tomás Sherwen, Detlev Helmig, Lucy J. Carpenter, and Mat J. Evans
Atmos. Chem. Phys., 20, 4227–4239, https://doi.org/10.5194/acp-20-4227-2020,https://doi.org/10.5194/acp-20-4227-2020, 2020
Short summary
Investigating the regional contributions to air pollution in Beijing: a dispersion modelling study using CO as a tracer
Marios Panagi, Zoë L. Fleming, Paul S. Monks, Matthew J. Ashfold, Oliver Wild, Michael Hollaway, Qiang Zhang, Freya A. Squires, and Joshua D. Vande Hey
Atmos. Chem. Phys., 20, 2825–2838, https://doi.org/10.5194/acp-20-2825-2020,https://doi.org/10.5194/acp-20-2825-2020, 2020
Short summary

Cited articles

Andres, R. J., Marland, G., Boden, T., and Bischof, S.: Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751–1991; and an estimate of their isotopic composition and latitudinal distribution (No. CONF-9307181–4). Oak Ridge National Lab., TN (United States); Oak Ridge Inst. for Science and Education, TN (United States), 1994.
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, 2000.
Ballantyne, A. P., Miller, J. B., Baker, I. T., Tans, P. P., and White, J. W. C.: Novel applications of carbon isotopes in atmospheric CO2: what can atmospheric measurements teach us about processes in the biosphere?, Biogeosciences, 8, 3093–3106, https://doi.org/10.5194/bg-8-3093-2011, 2011.
Bousquet, P., Peylin, P., Ciais, P., Le Quéré, C., Friedlingstein, P., and Tans, P. P.: Regional changes in carbon dioxide fluxes of land and oceans since 1980, Science, 290, 1342–1346, 2000.
BP: The role of biofuels beyond 2020, Technical report issued September 2013, available at: http://www.bp.com/en/global/alternative-energy/our-businesses/biofuels.html, last access: February 2015.
Publications Copernicus
Download
Short summary
In this model sensitivity study we compare and evaluate the surrogate tracers CO2, CO, δ13C-CO2 and Δ14C-CO2 for estimating continuous anthropogenic CO2. The results can be used to optimize the measurement network design with respect to the partitioning of total CO2 into biospheric and anthropogenic CO2 contributions. This enables improvement and validation of highly resolved emission inventories using atmospheric observation and regional modeling.
In this model sensitivity study we compare and evaluate the surrogate tracers CO2, CO, δ13C-CO2...
Citation
Final-revised paper
Preprint