Articles | Volume 14, issue 23
https://doi.org/10.5194/acp-14-12897-2014
https://doi.org/10.5194/acp-14-12897-2014
Research article
 | 
08 Dec 2014
Research article |  | 08 Dec 2014

A regional CO2 observing system simulation experiment for the ASCENDS satellite mission

J. S. Wang, S. R. Kawa, J. Eluszkiewicz, D. F. Baker, M. Mountain, J. Henderson, T. Nehrkorn, and T. S. Zaccheo

Related authors

A global synthesis inversion analysis of recent variability in CO2 fluxes using GOSAT and in situ observations
James S. Wang, S. Randolph Kawa, G. James Collatz, Motoki Sasakawa, Luciana V. Gatti, Toshinobu Machida, Yuping Liu, and Michael E. Manyin
Atmos. Chem. Phys., 18, 11097–11124, https://doi.org/10.5194/acp-18-11097-2018,https://doi.org/10.5194/acp-18-11097-2018, 2018
Short summary
The description and validation of the computationally Efficient CH4–CO–OH (ECCOHv1.01) chemistry module for 3-D model applications
Yasin F. Elshorbany, Bryan N. Duncan, Sarah A. Strode, James S. Wang, and Jules Kouatchou
Geosci. Model Dev., 9, 799–822, https://doi.org/10.5194/gmd-9-799-2016,https://doi.org/10.5194/gmd-9-799-2016, 2016
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Observational and model evidence for a prominent stratospheric influence on variability in tropospheric nitrous oxide
Cynthia D. Nevison, Qing Liang, Paul A. Newman, Britton B. Stephens, Geoff Dutton, Xin Lan, Roisin Commane, Yenny Gonzalez, and Eric Kort
Atmos. Chem. Phys., 24, 10513–10529, https://doi.org/10.5194/acp-24-10513-2024,https://doi.org/10.5194/acp-24-10513-2024, 2024
Short summary
Estimation of Canada's methane emissions: inverse modelling analysis using the Environment and Climate Change Canada (ECCC) measurement network
Misa Ishizawa, Douglas Chan, Doug Worthy, Elton Chan, Felix Vogel, Joe R. Melton, and Vivek K. Arora
Atmos. Chem. Phys., 24, 10013–10038, https://doi.org/10.5194/acp-24-10013-2024,https://doi.org/10.5194/acp-24-10013-2024, 2024
Short summary
Spatiotemporal source apportionment of ozone pollution over the Greater Bay Area
Yiang Chen, Xingcheng Lu, and Jimmy C. H. Fung
Atmos. Chem. Phys., 24, 8847–8864, https://doi.org/10.5194/acp-24-8847-2024,https://doi.org/10.5194/acp-24-8847-2024, 2024
Short summary
Potential of 14C-based vs. ΔCO-based ΔffCO2 observations to estimate urban fossil fuel CO2 (ffCO2) emissions
Fabian Maier, Christian Rödenbeck, Ingeborg Levin, Christoph Gerbig, Maksym Gachkivskyi, and Samuel Hammer
Atmos. Chem. Phys., 24, 8183–8203, https://doi.org/10.5194/acp-24-8183-2024,https://doi.org/10.5194/acp-24-8183-2024, 2024
Short summary
On the uncertainty of anthropogenic aromatic volatile organic compound emissions: model evaluation and sensitivity analysis
Kevin Oliveira, Marc Guevara, Oriol Jorba, Hervé Petetin, Dene Bowdalo, Carles Tena, Gilbert Montané Pinto, Franco López, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7137–7177, https://doi.org/10.5194/acp-24-7137-2024,https://doi.org/10.5194/acp-24-7137-2024, 2024
Short summary

Cited articles

Baker, D. F., Bösch, H., Doney, S. C., O'Brien, D., and Schimel, D. S.: Carbon source/sink information provided by column CO2 measurements from the Orbiting Carbon Observatory, Atmos. Chem. Phys., 10, 4145–4165, https://doi.org/10.5194/acp-10-4145-2010, 2010.
Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I., Krummel, P., Steele, P., Langenfelds, R., Torn, M., Biraud, S., Stephens, B., Andrews, A., and Worthy, D.: Global CO2 fluxes estimated from GOSAT retrievals of total column CO2, Atmos. Chem. Phys., 13, 8695–8717, https://doi.org/10.5194/acp-13-8695-2013, 2013.
Bocquet, M., Wu, L., and Chevallier, F.: Bayesian design of control space for optimal assimilation of observations. Part I: Consistent multiscale formalism, Q. J. R. Meteorol. Soc., 137, 1340–1356, https://doi.org/10.1002/qj.837, 2011.
Brioude, J., Kim, S.-W., Angevine, W. M., Frost, G. J., Lee, S-H, McKeen, S. A., Trainer, M., Fehsenfeld, F. C., Holloway, J. S., Ryerson, T. B., Williams, E. J., Petron, G., and Fast, J. D.: Top–down estimate of anthropogenic emission inventories and interannual variability in Houston using a mesoscale inverse modeling technique, J. Geophys. Res., 116, D20305, https://doi.org/10.1029/2011JD016215, 2011.
Brioude, J., Petron, G., Frost, G. J., Ahmadov, R., Angevine, W. M., Hsie, E.-Y., Kim, S.-W., Lee, S.-H., McKeen, S. A., Trainer, M., Fehsenfeld, F. C., Holloway, J. S., Peischl, J., Ryerson, T. B., and Gurney, K. R.: A new inversion method to calculate emission inventories without a prior at mesoscale: Application to the anthropogenic CO2 emission from Houston, Texas, J. Geophys. Res., 117, D05312, https://doi.org/10.1029/2011JD016918, 2012.
Download
Short summary
Our simulations suggest that CO2 measurements by the planned ASCENDS satellite could improve estimates of emissions and uptake by up to 50% at the weekly 1° by 1° scale, 40-75% at the annual biome scale, and 65-85% for the whole of North America. The results depend on the laser wavelength used and the assumed precision of the measurements. The resulting biome flux uncertainties, 0.01-0.06 billion tons of C per year, would satisfy one definition of mission success.
Altmetrics
Final-revised paper
Preprint