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Abstract. Top–down estimates of the spatiotemporal varia-

tions in emissions and uptake of CO2 will benefit from the

increasing measurement density brought by recent and fu-

ture additions to the suite of in situ and remote CO2 mea-

surement platforms. In particular, the planned NASA Active

Sensing of CO2 Emissions over Nights, Days, and Seasons

(ASCENDS) satellite mission will provide greater coverage

in cloudy regions, at high latitudes, and at night than passive

satellite systems, as well as high precision and accuracy. In a

novel approach to quantifying the ability of satellite column

measurements to constrain CO2 fluxes, we use a portable li-

brary of footprints (surface influence functions) generated by

the Stochastic Time-Inverted Lagrangian Transport (STILT)

model in combination with the Weather Research and Fore-

casting (WRF) model in a regional Bayesian synthesis in-

version. The regional Lagrangian particle dispersion model

framework is well suited to make use of ASCENDS ob-

servations to constrain weekly fluxes in North America at

a high resolution, in this case at 1◦ latitude× 1◦ longitude.

We consider random measurement errors only, modeled as

a function of the mission and instrument design specifica-

tions along with realistic atmospheric and surface conditions.

We find that the ASCENDS observations could potentially

reduce flux uncertainties substantially at biome and finer

scales. At the grid scale and weekly resolution, the largest

uncertainty reductions, on the order of 50 %, occur where

and when there is good coverage by observations with low

measurement errors and the a priori uncertainties are large.

Uncertainty reductions are smaller for a 1.57 µm candidate

wavelength than for a 2.05 µm wavelength, and are smaller

for the higher of the two measurement error levels that we

consider (1.0 ppm vs. 0.5 ppm clear-sky error at Railroad Val-

ley, Nevada). Uncertainty reductions at the annual biome

scale range from∼ 40 % to∼ 75% across our four instrument

design cases and from ∼ 65% to ∼ 85 % for the continent as

a whole. Tests suggest that the quantitative results are moder-

ately sensitive to assumptions regarding a priori uncertainties

and boundary conditions. The a posteriori flux uncertainties

we obtain, ranging from 0.01 to 0.06 Pg C yr−1 across the

biomes, would meet requirements for improved understand-

ing of long-term carbon sinks suggested by a previous study.

1 Introduction

Quantification of surface fluxes of CO2 and other greenhouse

gases (GHG) over a range of spatial and temporal scales is of

critical importance for understanding the processes that drive

source/sink variability and climate–biogeochemistry feed-

backs. The need to monitor GHG fluxes also follows from

climate policy initiatives such as the Kyoto Protocol and

possible follow-on agreements, along with their implemen-

tation (e.g., emissions trading and treaty verification). While

direct “bottom–up” (inventory) approaches are considered

accurate to within 10 % in the annual mean for fossil fuel

CO2 emissions in North America (Gurney et al., 2009), “top–
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down” (inverse) methods are the tool of choice to infer CO2

sources and sinks from the terrestrial biosphere and oceans

on a range of scales (Peters et al., 2007). In the top–down

approach, fluxes are inferred from atmospheric CO2 mea-

surements by means of an atmospheric transport model link-

ing the measurements to fluxes upwind. The availability of

abundant and accurate measurements and realistic transport

models is key to the success of this approach (e.g., Enting et

al., 1995). Consequently, large investments have been made

in establishing reliable measurement networks, including in

situ measurements of CO2 concentrations from the surface,

towers, and aircrafts (e.g., the NOAA ESRL Carbon Cycle

Cooperative Global Air Sampling Network; Dlugokencky et

al., 2013 and the Earth Networks Greenhouse Gas Network;

http://ghg.earthnetworks.com/), and satellite missions dedi-

cated to the measurement of CO2 column amounts. The last

include the Greenhouse gases Observing Satellite (GOSAT)

launched in 2009 (Yokota et al., 2009), the Orbiting Carbon

Observatory 2 (OCO-2) launched in 2014 (Crisp et al., 2008;

Eldering et al., 2012), and the planned Active Sensing of CO2

Emissions over Nights, Days, and Seasons (ASCENDS) mis-

sion recommended by the US National Academy of Sciences

Decadal Survey (NRC, 2007).

The objective of our study is to quantify the ability of AS-

CENDS column measurements to constrain CO2 fluxes top–

down at relatively high resolution. The ASCENDS active

measurement concept offers unique capabilities compared

with passive satellite systems that rely on thermal emission

or reflected sunlight (Kawa et al., 2010). These capabilities

will enhance spatial and temporal coverage while providing

high precision and accuracy. ASCENDS will extend cover-

age through its ability to sample between small cloud gaps

and through thin clouds without interference. In addition,

since a lidar-based system does not require the presence of

the sun, it allows for observations of high-latitude regions

during the winter. Measurements can be made both night and

day, thereby reducing sampling bias due to (and potentially

providing constraints on) diurnal variations in CO2 fluxes

driven by ecosystem respiration and primary production.

Global studies of the impact of satellite measurements on

top–down estimates of CO2 fluxes, beginning with the study

by Rayner and O’Brien (2001), have established the benefit

of using satellite measurements for constraining CO2 fluxes

at a precision level similar to or better than that provided by

existing in situ networks. At present, these approaches esti-

mate the reduction of flux uncertainties stemming from the

availability of satellite data using an inverse solution for rel-

atively coarse grid boxes or regions at weekly to monthly

resolution (e.g., Houweling et al., 2004; Chevallier et al.,

2007; Feng et al., 2009; Baker et al., 2010; Kaminski et al.,

2010; Hungershoefer et al., 2010; Basu et al., 2013; Deng

et al., 2014). The present study extends these global studies

to the regional scale using simulated ASCENDS data. Re-

gional trace gas inversions are well suited for making use

of high-density satellite observations to constrain fluxes at

fine scales. Regional transport models are less computation-

ally expensive to run than global transport models for a given

resolution, so it is more tractable to run a regional model at

high resolution. The more precise determination of source–

receptor relationships allows one to solve for fluxes at a finer

resolution. This reduces potential “aggregation error” result-

ing from assuming fixed fine-scale flux patterns when opti-

mizing scaling factors on a coarser scale (Kaminski et al.,

2001; Engelen et al., 2002; Gerbig et al., 2003; Bocquet et

al., 2011).

We use a novel approach for our inversions that facilitates

high-resolution evaluation of satellite column measurements.

The approach relies on a Lagrangian, or air-mass-following,

transport model (as opposed to an Eulerian, or fixed-frame-

of-reference, model), run backward in time from the observa-

tion points (receptors) using ensembles of particles to gener-

ate footprints describing the sensitivity of satellite CO2 mea-

surements to surface fluxes in upwind regions. Lagrangian

particle dispersion models enable more precise simulation

of transport in the near field than gridded transport mod-

els since, in the former, particle locations are not restricted

to a grid and meteorological fields are interpolated to the

subgrid-scale locations. Thus filamentation processes, for ex-

ample, can be resolved (Lin et al., 2003), artificial diffusion

over grid cells is avoided, and representation errors (Pillai

et al., 2010) are minimized. The Lagrangian approach, im-

plemented in the backward (receptor-oriented) mode, offers

a natural way of calculating the adjoint of the atmospheric

transport model. The utility of Lagrangian particle disper-

sion models is well established for regional trace gas flux

inversions involving in situ observations (e.g., Gerbig et al.,

2003; Lin et al., 2004; Kort et al., 2008, 2010; Zhao et al.,

2009; Schuh et al., 2010; Göckede et al., 2010a; Brioude et

al., 2011, 2012, 2013; Gourdji et al., 2012; Miller et al., 2012,

2013; McKain et al., 2012; Lauvaux et al., 2012). A conve-

nient feature of Lagrangian footprints is their portability –

they can be shared with other groups and readily applied to

different flux models, inversion approaches, and molecular

species, thus enabling comparisons based on a common mod-

eling component. In addition, footprints for different mea-

surement platforms can be merged easily in an inversion.

In this observing system simulation experiment (OSSE)

we utilize the Stochastic Time-Inverted Lagrangian Trans-

port (STILT) particle dispersion model (Lin et al., 2003),

driven by meteorological fields from the Weather Research

and Forecasting (WRF) model (Skamarock and Klemp,

2008) in a domain encompassing North America, in a

Bayesian inversion. The WRF–STILT (Nehrkorn et al.,

2010) footprints are used to compute weekly flux uncer-

tainties over a 1◦ latitude× 1◦ longitude grid. This study

focuses on land-based biospheric fluxes. We report results

based on realistic sampling and observation errors for a set

of ASCENDS instrument designs and other input data fields

for the year 2007. Section 2 provides details on our inputs

and inversion methods and presents examples of observation
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uncertainties, a priori flux uncertainties, and WRF–STILT

footprint maps. Section 3 presents posterior flux uncertainty

results at various spatial and temporal scales, as well as

comparisons with other studies. Section 4 discusses target

and threshold requirements for instrument design parameters

with respect to addressing key scientific questions. It also

discusses sensitivity to additional sources of uncertainty and

limitations of our analysis, as well as other considerations re-

garding ASCENDS. Section 5 contains concluding remarks.

2 Methods

2.1 Inversion approach

We use a Bayesian synthesis inversion method, which opti-

mizes the agreement between model and observed CO2 con-

centrations and a priori and a posteriori flux estimates in a

least-squares manner (e.g., Enting et al., 1995). Since we fo-

cus on random error levels in constraining the fluxes using

ASCENDS observations, we did not perform a full inversion

and computed only the a posteriori flux error covariance as-

sociated with the inversion solution. The a posteriori flux er-

ror covariance matrix is given by

Ŝ=
(

KT S−1
ε K+S−1

a

)−1

, (1)

where

K is the Jacobian matrix describing the sensitivity of

concentrations to changes in the state vector

elements (in this case, fluxes)

Sε is the observation error covariance matrix

Sa is the a priori flux error covariance matrix.

We directly solve for Ŝ, the square roots of the diagonal ele-

ments of which provide the estimates of the a posteriori flux

uncertainties.

We solve for flux uncertainties in each land cell on a

1◦× 1◦ grid across North America (from 10◦ N to 70◦ N and

from 170◦W to 50◦W). The time span is 5 weeks in each of

the 4 seasons in 2007 (the first 4 weeks of January, April,

July, and October plus the week preceding each of those

months). We focus on weekly flux resolution in this study,

rather than daily or higher resolution, for computational effi-

ciency. In addition, the Decadal Survey called for a satellite

mission that can constrain carbon cycle fluxes at a weekly

resolution on 1◦ grids (NRC, 2007). The ASCENDS obser-

vations would likely also provide significant constraints on

fluxes at higher resolutions (e.g., daily), as suggested by test

inversions not reported here.

We solve Eq. (1) using the standard matrix inversion func-

tion in the Interactive Data Language (IDL) software pack-

age. We also verify the solution using the alternative singu-

lar value decomposition approach (Rayner et al., 1999) in

IDL. Given the large dimensions of the matrices – more than

Figure 1. Vertical weighting functions per ppmv of CO2

(10−6 ppmv−1 hPa−1) for two candidate ASCENDS wavelengths.

These relate differential optical depth lidar measurements (on-line

minus off-line) to column-average CO2 mixing ratios. The precise

on-line wavelengths used here are 1.571121 µm, which is 10 pi-

cometers (pm) offset from line center, and 2.051034 µm.

15 000 10 sec average observations each month and 13 205

weekly flux elements over each 5 week period – the proce-

dure requires large amounts of computer memory but a mod-

est amount of processing time: several hours per monthly in-

version on the NASA Center for Climate Simulation high-

performance computing system.

2.2 Observational sampling and simulated

measurement uncertainties

We consider candidate lidar wavelengths near 1.57 µm and

2.05 µm (Caron and Durand, 2009). These have peak sen-

sitivities in the mid- and lower troposphere, respectively

(Fig. 1). Other candidate wavelengths with different vertical

sensitivities and error characteristics are possible and could

be assessed with the same inversion methodology. We derive

the temporal–spatial sampling and random error characteris-

tics for ASCENDS pseudo-data based on real cloud/aerosol

and surface backscatter conditions for the year 2007 in a

method similar to that of Kawa et al. (2010). Observation

locations are taken from Cloud-Aerosol Lidar and Infrared

Pathfinder Satellite Observation (CALIPSO) satellite orbit

tracks. We use only locations that fall within the domain used

in the WRF runs (Sect. 2.4), excluding those within 400 km

of the boundaries in order to provide adequate WRF cover-

age to simulate back trajectory calculations inside the domain

(Fig. 2). The errors are calculated as a function of optical

depth (OD) measured by CALIPSO and surface backscat-

ter calculated from Moderate Resolution Imaging Spectro-
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Figure 2. Examples of measurement locations (individual 10 sec averages) and 10 sec uncertainties (1σ) for the 0.5 ppm RRV random error

case across 7-day spans for (a) the 1.57 µm wavelength in January and (b) in July; for (c) the 2.05 µm wavelength in January and d) in July.

Locations with OD > 0.7 are rejected. The uncertainty ratio of the 2.05 µm to 1.57 µm wavelength (e) in January and (f) in July. The WRF

domain for the runs utilized in this study is indicated by the bold black lines in (a).

radiometer (MODIS) satellite reflectance over land or glint

backscatter using 10 m analyzed wind speeds (Hu et al.,

2008) interpolated to the sample locations over oceans. Sam-

ples with total column cloud plus aerosol OD > 0.7 are re-

jected. For each wavelength case, the measurement errors at

each location are scaled to two possible performance levels:

0.5 ppm and 1.0 ppm error (10 sec average) under clear-sky

conditions (cloud/aerosol OD= 0) for a reflectivity equal to

that at a reference site, Railroad Valley (RRV), Nevada. The

errors for each 5 km (0.74 sec) individual CALIPSO obser-

vation point are aggregated over 10 sec (67 km) intervals to

increase signal-to-noise for pseudo-data using the formula

σ(10s)=

√
N∑
i=1

σ(5 km)2i

N2 , whereN is the number of valid 5 km

observations across the 10 sec span. Such a 10 sec, condition-

ally sampled measurement is expected to represent the basic

ASCENDS CO2 data granule. The uncertainties in the series

of 10 sec pseudo-data are assumed to be uncorrelated, i.e., the

observation error covariance matrix Sε is diagonal.

Examples of the coverage of ASCENDS observations

available for analysis and their associated uncertainties (for a

reference uncertainty at RRV of 0.5 ppm) are shown in Fig. 2

over 7-day periods in January and July for the two candi-

date wavelengths. ASCENDS provides dense coverage over

the domain with few large gaps, especially in July. A large

majority of the 10-second-average observations have uncer-

tainties of < 2 ppm in all four cases except for 2.05 µm in Jan-

uary. The uncertainties are especially small over land areas,

which is helpful for constraining terrestrial fluxes. The un-

certainties are generally larger for 2.05 µm than for 1.57 µm

(by a factor of 1–1.6 over snow-free land and a factor of 1.6–

1.8 over snow-/ice-covered areas) except in ice-free oceanic

areas, where the uncertainties are similar (Fig. 2e and f).

Atmos. Chem. Phys., 14, 12897–12914, 2014 www.atmos-chem-phys.net/14/12897/2014/
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Table 1. Spatiotemporal correlation parameters used.

Month Spatial correlation Temporal correlation

e-folding length (km) e-folding length (days)

January 481 17.2

April 419 7.2

July 284 6.9

October 638 1.6

2.3 A priori flux uncertainties

We derived a priori flux uncertainties at 1◦× 1◦ resolution

from the variability of net ecosystem exchange (NEE) in the

Carnegie–Ames–Stanford Approach (CASA) biogeochemi-

cal model coupled to version 3 of the Global Fire Emissions

Database (GFED3) (Randerson et al., 1996; van der Werf et

al., 2006, 2010). CASA-GFED is driven by meteorological

data from the Modern-Era Retrospective Analysis for Re-

search and Applications (MERRA) (Rienecker et al., 2011).

In the version of CASA used here, a sink of ∼ 100 Tg C yr−1

is induced by crop harvest in the US Midwest, prescribed

based on National Agriculture Statistics Service data on crop

area and harvest. We neglected uncertainties in fossil fuel

emissions, assuming like most previous inversion studies

that those emissions are relatively well known. We ignored

oceanic fluxes as well for this study since their uncertainties

are also relatively small (e.g., Baker et al., 2010).

The a priori flux uncertainties were specifically derived

from the standard deviations of daily mean CASA-GFED

NEE over each month in 2007 divided by
√

7 to scale ap-

proximately to weekly uncertainties. This approach assumes

that the more variable the model fluxes are in a particular grid

cell and month, the larger the errors tend to be; the same rea-

soning has been applied in previous inversion studies to the

estimation of model–data mismatch errors (e.g., Wang et al.,

2008). We enlarged the resulting uncertainties uniformly by a

factor of 4 to approximate the magnitude of those used in the

global ASCENDS OSSE described in Sect. 3.2 of this paper;

these are, in turn, essentially the same as the standard ones of

Baker et al. (2010), based on differences between two sets of

bottom–up flux estimates. In addition to allowing for better

comparison of the two OSSEs, the enlargement by a factor

of 4 is consistent with suggestions by biospheric model in-

tercomparisons that the true flux uncertainty is greater than

that based on a single model’s variability (Huntzinger et al.,

2012).

Off-diagonal elements of the a priori flux error covariance

matrix are filled using spatial and temporal error correla-

tions derived from an isotropic exponential decay model with

month-specific correlation lengths (Table 1) estimated from

ground-based and aircraft CO2 data in a North America re-

gional inversion by Gourdji et al. (2012). Although these cor-

relation lengths are not strictly applicable to our study, which

has a different setup from that in the geostatistical inverse

modeling system of Gourdji et al. (2012), they are nonethe-

less reasonable estimates in general for the purposes of this

study. Note that Gourdji et al. (2012) used a 3-hourly flux

resolution, so the temporal correlation lengths may be too

short for the coarser weekly resolution of our study. Cheval-

lier et al. (2012) show that aggregation of fluxes to coarser

scales increases the error correlation length. The analysis by

Chevallier et al. (2012) using global flux tower data found

a weekly-scale temporal error correlation length of 36 days,

longer than the values we use. They found a spatial corre-

lation length of less than 100 km at the site scale (∼ 1 km),

increasing to 500 km at a 300 km-grid scale; our correlation

lengths (100 km grid) mostly fall within that range. In a test,

we used alternative values for the spatiotemporal correlation

lengths derived from the Chevallier et al. study and found

that the inversion results are moderately sensitive (Sect. 4.2).

Our CASA-GFED-based a priori flux uncertainties, scaled

to approximate the values used by Baker et al. (2010), are

shown in Fig. 3. The largest uncertainties occur generally

where the absolute value of NEE is highest, e.g., in the “Corn

Belt” of the US in summer. The spatial and seasonal varia-

tions exhibit similarities to those of Baker et al. (2010).

2.4 WRF–STILT model, footprints, and Jacobians

The STILT Lagrangian model, driven by WRF meteorolog-

ical fields, has features (including a realistic treatment of

convective fluxes and mass conservation properties) that are

important for accurate top–down estimates of GHG fluxes

that rely on small gradients in the measured concentra-

tions (Nehrkorn et al., 2010). In the present application of

STILT (www.stilt-model.org, revision 640), hourly output

from WRF version 2.2 is used to provide the transport fields

over a North American domain at a resolution of 40 km hori-

zontally and 31 eta levels vertically (Fig. 2a). Meteorolog-

ical fields from the North American Regional Reanalysis

(NARR) at 32 km resolution are used to provide initial and

boundary conditions for the WRF runs. To prevent drift of

the WRF simulations from the analyses, the meteorologi-

cal fields (horizontal winds, temperature, and water vapor

at all levels) are nudged to the NARR analysis every 3 h

with a 1 h relaxation time and are reinitialized every 24 h (at

00:00 UTC). Simulations are run out for 30 h, but only hours

7–30 from each simulation are used to avoid spin-up effects

during the first 6 h. The WRF physics options used here are

the same as those described by Nehrkorn et al. (2010).

A footprint quantitatively describes how much surface

fluxes originating in upwind regions contribute to the to-

tal mixing ratio at a particular measurement location; it has

units of mixing ratio per unit flux. This is to be distinguished

from a satellite footprint, which is the area of earth reflect-

ing the lidar signal. In the current application, footprints are

computed for each 5 km simulated observation that passes

the cloud/aerosol filter in January, April, July, and October

www.atmos-chem-phys.net/14/12897/2014/ Atmos. Chem. Phys., 14, 12897–12914, 2014
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Figure 3. A priori weekly flux uncertainty for (a) January, (b) April, (c) July, and (d) October. Average fractional flux uncertainties over the

domain are given in each panel (where F is flux). 1 µmol m−2 s−1
= 1.037 g C m−2 d−1

= 4.4× 10−8 kg CO2 m−2 s−1.

2007 at 3 h intervals back to 10 days prior to the observa-

tion time. Separate footprint maps have been computed for

15 receptor positions above ground level for the purpose of

vertically convolving with the lidar weighting functions and

producing one weighted-average footprint per measurement.

The receptors are spaced 1 km apart in the vertical from 0.5

to 14.5 km a.g.l. This procedure results in ∼ 90 000 footprint

calculations per day, placing stringent demands on our com-

putational approach. In this study, STILT simulates the re-

lease of an ensemble of 500 particles at each receptor in the

column.

It is important to note that although a footprint is defined

for each of the 15 vertical levels, the footprint expresses the

sensitivity of the mixing ratio (measured at the receptor point

located at that vertical level) to the surface fluxes upwind, not

to the fluxes upwind at the same level. Thus the footprints de-

fined for receptor points located at high altitudes (e.g., 12.5,

13.5, 14.5 km) are often zero, indicating that a receptor at

that upper level is not influenced by surface fluxes inside

the domain (within the 10-day span examined here). Con-

versely, receptor points located at the lowest levels (e.g., 0.5,

1.5, 2.5 km) tend to have large footprints (with values of the

order of 10−3 ppm/(µmol m−2 s−1) or higher), being most in-

fluenced by nearby surface fluxes.

Figure 4 shows the vertically-weighted footprints of a se-

lected column measurement location (in southern Canada)

over 10 days for the 1.57 and 2.05 µm wavelengths. Non-

zero footprints occur wherever air observed at the receptor

site has been in contact with the surface within the past 10

days. Patterns of vertical and horizontal atmospheric motion

explain the somewhat unexpected spatial patterns of the foot-

prints in this particular example, with very high values oc-

curring at a significant distance upwind of the receptor (in

the vicinity of Texas and Oklahoma) as well as immediately

upwind. Vertical mixing lifts the signature of surface fluxes

to higher levels so it can be detected by receptors at multiple

levels, resulting in a higher value for the vertically convolved

footprint; slower winds in a particular area, such as Texas

and Oklahoma, can result in a larger time-integrated impact

of fluxes on the observation. The footprint values are larger

for 2.05 µm due to the higher sensitivity of that measurement

near the surface, as previously discussed.

To construct the Jacobians, K, that enter Eq. (1), we aver-

aged the footprints of all the 5 km receptor locations within

a given 10 sec averaging period along the satellite track, in-

cluding only the land cells. We arranged the averaged foot-

prints in a two-dimensional Jacobian, running across flux

time intervals and grid cells in one direction and across ob-

servations in the other (the 3 h flux intervals associated with

each transport run are defined relative to fixed UTC times

and not relative to the observation times). We then aggre-

gated the Jacobian elements to the final flux resolution, e.g.,

weekly. For any particular month, we solved only for fluxes

Atmos. Chem. Phys., 14, 12897–12914, 2014 www.atmos-chem-phys.net/14/12897/2014/
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Figure 4. Footprint maps for one simulated ASCENDS mea-

surement location (marked by black star) on 1 January 2007 at

18:00 UTC, integrated over 10 days and convolved over the 500–

14 500 m AGL range with two candidate ASCENDS weighting

functions: the CO2 laser lines at 2.05 µm (top) and 1.57 µm (bot-

tom). Note that the native temporal resolution of the footprints is

3 h; the 10-day integral in this figure is for illustrative purposes only.

Only footprints over land are used in the analysis.

occurring in the week prior to the beginning of the month and

in the first 4 weeks of that month.

Figure 5 shows the overall influence of the surface fluxes

on the observations during each month (i.e., the average

weekly Jacobian values for the 1.57 µm weighting function).

Values tend to decrease from west to east, reflecting the gen-

eral westerly wind, which transports CO2 influences out of

the domain more quickly for fluxes occurring closer to the

eastern edge than for those farther west. Values also tend to

decrease towards the north and northwest and in the south-

ernmost part of the continent; these areas lie close to the

edges of the domain shown in Fig. 2a. Areas with smaller

average footprint values are generally not as well constrained

by the observations, as will be discussed later in this paper;

thus, our domain boundaries artificially limit flux constraints

in certain parts of the continent. Previous regional inversion

studies may not have highlighted this issue because they used

ground-based observations, whose sensitivities are more con-

fined to near-field fluxes than those of satellite column mea-

surements. We will quantify the impact of the boundaries on

average footprint gradients in future work, providing guid-

ance for future studies on optimal sizes and shapes of do-

mains (e.g., shifted eastward) to avoid large gradients while

controlling computational cost.

Footprint values are largest in summer due once again to

horizontal and vertical motions. Winds during this season are

relatively light and allow the fluxes to stay inside the domain

for a long time, maximizing their integrated influence on ob-

servations in the domain; vertical mixing across the deep

boundary layer brings particles over a large portion of the

column into contact with the surface.

Although WRF–STILT provides the capability to gener-

ate and optimize boundary condition influences on observed

concentrations, this was not available at the time of this study

and, consequently, we neglect uncertainties in the influence

of boundary conditions in our standard inversion (discussed

further in Sect. 4.2). Similarly, we neglect uncertainties re-

garding the influence of North American fluxes occurring

more than 10 days before a particular observation. Note that

fluxes are often transported out of the domain within 10 days,

so that these fluxes can only influence the observations via

the boundary conditions.

3 Results

In the following, we present results for four cases involv-

ing different combinations of measurement wavelength and

baseline error level: 1.57 µm and 0.5 ppm RRV error (case 1),

1.57 µm and 1.0 ppm (case 2), 2.05 µm and 0.5 ppm (case 3),

and 2.05 µm and 1.0 ppm (case 4).

3.1 A posteriori flux uncertainties at the grid level

A posteriori uncertainties (Fig. 6) are smaller than the a pri-

ori values (Fig. 3), an expected result of the incorporation

of observational information. The reduction in uncertainty is

often larger in areas that have higher a priori uncertainties,

as can be seen more clearly in the maps of percentage reduc-

tion in uncertainty in Fig. 7. Uncertainty reductions are rel-

atively large year-round in places such as southern Mexico

and the Pacific Northwest of the US; in April and October

in the southeastern US; and in July in the US Midwest, ar-

eas with forest fire emissions in central Canada (appearing

as hot spots of uncertainty reduction), and Alaska and west-

ern Canada. A priori uncertainties are relatively high in these

areas so that there is more room for observations to tighten

the constraint. In contrast, where a priori uncertainties are

already small, observations are not able to provide a much

tighter constraint.
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Figure 5. Jacobian values averaged over all observations and weekly flux intervals for the 1.57 µm weighting function in (a) January, (b)

April, (c) July, and (d) October.

Figure 6. A posteriori weekly flux uncertainty during (a) January, (b) April, (c) July, and (d) October, for case 1 (1.57 µm and

0.5 ppm RRV error). Shown here are RMS values from the first 4 weeks of each month. 1 µmol m−2 s−1
= 1.037 g C m−2 d−1

=

4.4× 10−8 kg CO2 m−2 s−1.
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Figure 7. Weekly fractional flux uncertainty reduction over (a) January, (b) April, (c) July, and (d) October, for case 1 (1.57 µm and 0.5 ppm

RRV error). Shown here are results from the first 4 weeks of each month.

Of course, the uncertainty reductions are not dependent

simply on the prior uncertainties. For example, the highest

uncertainty reductions, up to 50 %, occur in southern Mex-

ico in October, where a priori uncertainties are not especially

large. The high uncertainty reductions here can be explained

by the large Jacobian values (Fig. 5) combined with the low

uncertainties of nearby observations (not shown). Although

a priori uncertainties and Jacobian values in July in this area

are similar to those in October, observation uncertainties are

higher, resulting in lower uncertainty reductions. The ten-

dency of uncertainty reductions to be higher where average

Jacobian values are larger can also be seen in the similarity

of the spatial patterns in the January maps in Figs. 5a and 7a,

for example. As described in Sect. 2.4, fluxes in western and

central areas of the continent are captured by more observa-

tions in the domain than fluxes in the east and close to the

other edges; thus, the former can be better constrained in this

inversion.

In July, the largest uncertainty reductions occur in northern

Alaska and northwestern Canada, which have much smaller

a priori uncertainties than places such as the Midwest. This

is an effect of the smaller grid cells at higher latitudes: the

a priori errors are correlated over larger numbers of cells at

these latitudes given the spatially uniform correlation lengths

we specify, so that the average flux over each cell is more

tightly constrained than that for an otherwise comparable cell

at lower latitudes. This is a less important issue when results

are aggregated to the larger scales dealt with in later sections

of this paper.

Uncertainty reductions are smallest in January, for the fol-

lowing reasons: (1) a priori flux uncertainties are smallest

during the dormant season, (2) observation errors are largest

in winter due to the low reflectance of snow and ice cover

at the measurement wavelengths, and (3) there is fast disper-

sion of fluxes in winter by strong winds, transporting fluxes

out of the domain and out of detection by observations in

the domain and thus reducing the average Jacobian values in

January relative to the other months (Fig. 5). The ratio of the

averaged Jacobian elements for January to those for July is

0.51 for the 1.57 µm wavelength.

Inversions for the 2.05 µm wavelength, with its higher sen-

sitivity near the surface, result in greater uncertainty reduc-

tion despite the larger observation errors over land (Fig. 8c

vs. 8a, and 8d vs. 8b). Inversions assuming 1.0 ppm instead

of 0.5 ppm error at RRV result in less uncertainty reduction

(Fig. 8b vs. 8a, and 8d vs. 8c) as expected, with maximum un-

certainty reduction of ∼ 30% vs. ∼ 40 %, for 1.57 µm. These

cases are compared further in the section below on biome-

aggregated results.

3.2 Results aggregated to biomes and continent, and

compared with other inversion systems

For assessing large-scale changes in carbon sources and sinks

it is useful to aggregate high-resolution results to biomes and
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Figure 8. Weekly fractional flux uncertainty reduction (RMS over the 4 months) for (a) case 1 (1.57 µm and 0.5 ppm RRV error), (b) case 2

(1.57 µm and 1.0 ppm), (c) case 3 (2.05 µm and 0.5 ppm), and (d) case 4 (2.05 µm and 1.0 ppm).

Figure 9. Biomes used, taken from Olson et al. (2001) with modifi-

cations by Gourdji et al. (2012).

the entire continent, and to seasons and years. We use the

biome definitions in Fig. 9 taken from Olson et al. (2001)

with modifications by Gourdji et al. (2012). To aggregate the

flux uncertainties we summed up the variances within each

biome and over each month and then the year, in units of

(Pg C yr−1)2, as well as the error covariances between grid

cells and weeks.

We compare our results with those from two other inver-

sion systems: a global inversion using ASCENDS observa-

tions (a companion study to this one) and a North American

regional inversion using the same WRF–STILT Lagrangian

model as ours but with a network of ground-based observa-

tion sites (Gourdji et al., 2012). The global OSSE uses the

same ASCENDS data set sampling and underlying observa-

tion error model as the regional OSSE. Among the primary

differences are the global domain of the analysis (and thus

the use of observations outside and inside the North Amer-

ican domain) and the coarser spatial resolution of the trans-

port and flux solution, 4.5◦ latitude× 6◦ longitude. Other dif-

ferences include the mathematical technique of the inversion

(variational data assimilation, as in an earlier study by Baker

et al., 2010), the Eulerian transport model (PCTM; Kawa et

al. 2004), the spatial patterns of the a priori flux uncertain-

ties (the overall magnitudes are not different, as described

in Sect. 2.3), the assumption of zero a priori error correla-

tions, and the use of (estimate-truth) statistics as a proxy for

flux uncertainty (Baker et al., 2010), given that the varia-

tional method does not directly compute a full a posteriori

error covariance matrix. We aggregated the global inversion

results to the same biomes, summing the (estimate-truth) val-

ues and accounting for fractional biome coverage in each

of the coarse grid cells. Gourdji et al. (2012) used a set of

ground-based and aircraft measurements and a geostatisti-

cal inverse model to solve for biospheric fluxes and their
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uncertainties at a 1◦× 1◦, 3-hourly resolution in 2004. We

present these comparisons mainly to provide context for our

results rather than to quantitatively analyze effects of various

methodological differences.

Uncertainty reductions are largest in July and smallest in

January at the continental scale (Table 2). The uncertainty

reductions for the 1.57 µm wavelength are on average 8 %

smaller than those for 2.05 µm. The uncertainty reductions

for the 1.57 µm wavelength with 0.5 ppm error are larger than

those for 2.05 µm with 1.0 ppm error. The uncertainty reduc-

tions for 0.5 ppm error are on average 16 % larger than those

for 1.0 ppm error.

At the annual biome scale our uncertainty reductions range

from 50 % for the desert biome (averaged across the cases) to

70 % for the temperate grassland/shrubland biome (Fig. 10c).

The reductions scale, as before, with increasing a priori un-

certainty (Fig. 10a), observation quality and density, and now

with the biome area (Fig. 10d). We find a modest correlation

between uncertainty reduction and area in the set of biomes,

with a linear correlation coefficient of 0.5. In addition, the

uncertainty reduction is higher on the continental scale than

on the biome scale. The a posteriori uncertainty increases

with increasing area more slowly than does the a priori uncer-

tainty because many of the a posteriori error covariance terms

summed in the aggregation to biome are negative, whereas

all of the a priori error covariance terms are positive or zero.

This explains why uncertainty reduction tends to increase

with increasing area.

Our a posteriori uncertainties range from 0.12 to

0.33 Pg C yr−1 at the monthly continental scale across all

four cases (Table 2), from 0.04 to 0.08 Pg C yr−1 at the

annual continental scale (Fig. 10a), and from 0.01 to

0.06 Pg C yr−1 at the annual biome scale (Fig. 10a). To

put these numbers into perspective, the estimated current

global terrestrial sink is roughly 2.5 Pg C yr−1 (Le Quéré et

al., 2012). Our uncertainties are generally similar to those

from the North American regional inversion of Gourdji et

al. (2012) (Fig. 10a) and the global inversion (Fig. 10b), a no-

table exception being the overall continental result of Gourdji

et al. (2012). Our a posteriori uncertainty for North America

is small compared to Gourdji et al. (2012) likely because of

the greater spatial coverage of ASCENDS as compared to the

in situ network; some of the biomes are not well constrained

by the in situ network (i.e., the ones for which Gourdji et al.,

2012 did not report aggregated results). Note that the com-

parison is not totally consistent, given the methodological

differences. The global inversion method for estimating un-

certainties based on (estimate-truth) statistics cannot provide

an annual uncertainty estimate for the one-year inversion and

produces somewhat noisy results for individual months. Thus

to compare the regional and global inversions we took the

RMS of the four monthly uncertainties. The uncertainty re-

duction for our regional inversion is similar on average to that

of the global inversion for case 1, across biomes and the en-

tire continent (Fig. 10c), with continent-level values of 78 %

and 72 %, respectively. There are larger differences between

the regional and global inversions for particular biomes. Al-

though differences in prior uncertainties (Fig. 10b) could

possibly explain the differences in uncertainty reduction for

some of the biomes (subtropical/tropical, eastern temperate,

temperate coniferous, desert), they do not for the others (bo-

real, tundra, temperate grassland/shrubland), suggesting that

prior uncertainties are not the only factor producing the spa-

tial pattern in the comparison.

4 Discussion

4.1 Target and threshold requirements

We now discuss the implications of our analysis for the AS-

CENDS design. Hungershoefer et al. (2010) suggested lev-

els of posterior flux uncertainty on different spatiotemporal

scales that global CO2 measurement missions should strive

for in order to answer key carbon cycle science questions.

In the following we evaluate our results relative to those re-

quirements, the only such specific guidelines for CO2 satel-

lite missions in the scientific literature.

Hungershoefer et al. suggested that to determine the lo-

cation of the global terrestrial C sink and whether C cycle

feedbacks are occuring one requires annual net carbon flux

estimates with a precision better than 0.1 Pg C yr−1 (thresh-

old) or 0.02 Pg C yr−1 (target) at a scale of 2000× 2000 km,

similar to the biomes we consider. These precision levels

are based on the range of estimated fluxes across various

biomes. The proposed A-SCOPE active CO2 measurement

mission defined a similar target requirement: 0.02 Pg C yr−1

at a scale of 1000× 1000 km (Ingmann et al., 2008). Accord-

ing to our results (Fig. 10a) all tested ASCENDS cases would

meet the minimum threshold requirement across all biomes

easily, with a posteriori uncertainties ranging from 0.01 to

0.06 Pg C yr−1. In addition, the two cases with 0.5 ppm er-

ror would meet the more stringent target requirement for a

majority of biomes, while the two cases with 1.0 ppm error

would meet it for 3 out of 7 biomes. The meeting of the target

requirement is a consequence of the information provided by

the observations and not merely an effect of the specified a

priori uncertainty, given that the a priori uncertainty is higher

than the target level for all biomes excepting desert (the prior

uncertainty of which is already at the target level). One mea-

sure of the contribution of the observations to meeting the

target is shown in Fig. 10e, which is a plot of the fractional

uncertainty reduction necessary for different biomes to meet

the target. The amounts are mostly greater than 50 %, reach-

ing 85 % for eastern temperate.

4.2 Sensitivity tests: boundary conditions, a priori

uncertainties, and correlation lengths

A simplifying assumption in our standard inversion is the ne-

glect of uncertainties in the boundary conditions (BCs). It
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Figure 10. Results aggregated to biomes and continent and compared with other studies. (a) A priori and a posteriori uncertainties for the

year, including results from Gourdji et al. (2012). (b) RMS of the four monthly uncertainties, including results from the global inversion. (c)

Fractional uncertainty reductions. (d) Land area of the biomes. (e) Fractional uncertainty reduction necessary to meet the target requirement.

Gourdji et al. (2012) reported results for only the three biomes that were well constrained by their in situ observation network, along with

results aggregated over the full continent; we show the approximate average of their “Simple” and “NARR” inversions. The figure does not

include a priori uncertainties for Gourdji et al. (2012) since their method does not rely on a priori estimates.

is especially important in a regional inversion (Eulerian or

Lagrangian) to accurately account for the influence of lat-

eral boundary inflow on concentrations within the domain

(Göckede et al., 2010b; Lauvaux et al., 2012; Gourdji et al.,

2012). Because we neglect BC uncertainties, we essentially

assume that all of the information in the ASCENDS obser-

vations can be applied to reducing regional flux uncertain-

ties rather than the combination of BC and flux uncertainties.

Thus the amount of flux uncertainty reduction reported for

our standard inversion may be higher than it would be if we

accounted for BC uncertainties.

We conducted a test inversion for July (1.57 µm and

0.5 ppm error case) in which BCs are added as parame-

ters (specifically, weekly average CO2 mixing ratios over

each of the four lateral walls of the domain) to be esti-

mated in the state, with corresponding elements added to

the Jacobian. Given that the actual Jacobian values are not

available, we prescribed values that are somewhat realistic:

0.5 ppm ppm−1 if an observation occurs in the same week as

or after a BC, and 0 if an observation occurs before a BC. We

assumed a priori uncertainties of 1 ppm for the BC, with no

correlations among BC uncertainties or between BC and flux

uncertainties. As expected, the reductions in flux uncertainty

are smaller than the ones reported above, although the differ-

ences are only a factor of 0.01 or less. Weekly uncertainties

for the BCs are reduced by 7–13 %. A different experimen-
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Table 2. Flux uncertainties aggregated to entire continent and month or year (Pg C yr−1).

January April July October Annual

Standard inversion

A priori 0.42 0.78 1.26 0.82 0.24

A posteriori (uncertainty reduction)

Case 1 0.24 (43 %) 0.17 (78 %) 0.15 (88 %) 0.2 (76 %) 0.05 (78 %)

Case 2 0.33 (21 %) 0.28 (65 %) 0.26 (80 %) 0.31 (61 %) 0.08 (66 %)

Case 3 0.18 (57%) 0.13 (83%) 0.12 (91%) 0.15 (81%) 0.04 (83%)

Case 4 0.28 (35 %) 0.22 (72 %) 0.2 (84 %) 0.25 (69 %) 0.07 (73 %)

Inversion with alternative correl. lengths (200 km, 35 days)

A priori 0.23 0.59 1.27 0.59 0.21

A posteriori (uncertainty reduction)

Case 1 0.17 (25 %) 0.15 (74 %) 0.14 (89 %) 0.16 (73 %) 0.04 (80 %)

tal setup (e.g., larger Jacobian values for the BCs or a larger

number of disaggregated BC parameters) could potentially

result in a much larger effect on the flux uncertainty reduc-

tions.

In addition to containing random errors, BCs can also

be a source of systematic errors. For example, Gourdji

et al. (2012) found that two plausible sets of BC around

North America generated inferred fluxes that differed by 0.7–

0.9 Pg C yr−1 on the annual continental scale (which is a very

large amount compared to the annual a posteriori uncertain-

ties for North America of 0.04–0.08 Pg C yr−1 that we esti-

mated in our OSSE; Fig. 10a). They concluded that BC errors

may be the primary control on flux errors in regional inver-

sions at this coarse scale, while other factors such as flux

resolution, priors, and model transport are more important at

subdomain scales.

Sparseness of observations has been a major cause of un-

certainty in the boundary influence in previous regional in-

versions. Lauvaux et al. (2012), who conducted mesoscale

inversions for the US Midwest using tower measurements,

found BC errors to be a significant source of uncertainty in

the C budget over 7 months. They estimated that a poten-

tial bias of 0.55 ppm in their BCs translates into a flux er-

ror of 24 Tg C over 7 months in their 1000 km× 1000 km

domain. Although they applied corrections to the model-

derived BCs using weekly aircraft profiles at four locations

near their domain boundaries, they stated that the BC un-

certainties were still large given the limited duration (a few

hours per week) and spatial extent of the airborne observa-

tions, and concluded that additional observations would be

necessary to reduce the uncertainties. ASCENDS is promis-

ing in this respect, as it (along with other satellites) will pro-

vide more frequent and widespread observations of concen-

trations at regional boundaries, possibly reducing the role of

BCs in the overall C budget uncertainty to a minor one. AS-

CENDS observations could specifically be used in a global

CO2 data assimilation system to provide accurate BCs for the

regional flux inversion.

Posterior uncertainties are generally sensitive to the as-

sumed prior uncertainties, although one might not expect the

sensitivity to be so great in the case of a dense observational

data set such as the one examined here. We test this hypoth-

esis with an alternative prior uncertainty estimate, one that

is uniformly larger than that of the standard inversion by a

factor of 2. Figure 11a–d shows the ratio of the posterior un-

certainty of the large-prior inversion to that of the standard

inversion, normalized by a factor of 2. Large areas of the do-

main have ratios significantly less than 1, especially in July

and October. Where the ratio is close to 1, the posterior un-

certainty is sensitive to the prior, indicating that the obser-

vations have a relatively weak influence; where the ratio is

significantly less than 1, the posterior uncertainty is not so

sensitive to the prior. The test demonstrates that the poste-

rior uncertainty in many areas is not highly sensitive to the

prior uncertainty and is strongly influenced by the observa-

tions. However, the sensitivity is high in the tundra and the

desert due to the tight (small) prior constraints in those re-

gions (Fig. 3).

Although the posterior uncertainty is not highly sensitive

to the prior in all areas, it still increases everywhere in the

large-prior inversion relative to the standard inversion, im-

plying that our findings regarding whether or not the observa-

tions meet the target requirement (Sect. 4.1) are dependent on

the assumed priors. However, our standard priors are already

enlarged uniformly by a factor of 4 relative to one set of prior

uncertainty estimates, and they would have to be enlarged

further over large areas to substantially increase biome-level

posterior uncertainties. In addition, the larger the prior uncer-

tainties are, the larger the uncertainty reductions are in gen-

eral. Wherever the posterior uncertainty increases by a factor

smaller than the prior uncertainty does (e.g., where the ratio

is less than 1 in Fig. 11), the uncertainty reduction increases.

Altogether, the results of this sensitivity test suggest that it
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Figure 11. Ratio of the posterior uncertainty for the 2× prior inversion to that for the standard inversion, normalized by a factor of 2 for

case 1 in (a) January, (b) April, (c) July, and (d) October.

is important to consider different measures of the impact of

observations on flux estimates, such as posterior uncertainty

and uncertainty reduction, as we have done in this OSSE,

given that different measures can be affected differently by

assumptions such as prior uncertainties.

The inversion results are potentially sensitive to the as-

sumed a priori flux error correlation lengths, with longer cor-

relation lengths leading to smoother uncertainty reduction

patterns and larger uncertainty reductions. Rodgers (2000)

shows that the inclusion of a priori error correlations can re-

sult in more “degrees of freedom for signal,” i.e., more infor-

mation provided by the measurements on the unknowns. We

carried out a test with alternative values for the correlation

lengths derived from the study by Chevallier et al. (2012):

a shorter spatial correlation length of 200 km and a longer

temporal correlation length of 35 days for all months (we es-

timated these values from Fig. 5a and b of Chevallier et al. for

the ∼ 100 km and 7 day aggregation of our inversion). The

resulting uncertainty reductions are smaller everywhere than

those in our standard inversion at the grid scale, with values

of up to 40 % in July and up to 15 % in January for case 1

(compared to 45 % and 25 %, respectively, in the standard

inversion). Apparently, the decrease in the spatial correlation

length relative to the standard inversion has a larger effect

than the increase in the temporal correlation length. Aggre-

gated to the continent and month, the uncertainty reduction is

less than that for the standard inversion for all months except

July, for which the uncertainty reduction is marginally larger

(Table 2). For July, the impact of the much longer temporal

correlation length relative to the standard inversion on the ag-

gregated result more than offsets that of the slightly shorter

spatial correlation length. The annual uncertainty reduction

of the alternative inversion is slightly larger than that of the

standard inversion because of the disproportionate influence

of the large a priori uncertainty of July. We conclude that our

inversion results vary moderately given two reasonable sets

of estimates for the a priori spatiotemporal error correlation

lengths.

4.3 Other sources of error

This analysis did not evaluate the impact of potential sys-

tematic errors (biases) in the observations or the transport

model, which are not well represented by the Gaussian er-

rors assumed in traditional linear error analysis (Baker et al.,

2010). Chevallier et al. (2007) demonstrated that potential bi-

ases in OCO satellite CO2 measurements related to the pres-

ence of aerosols can completely negate the improvements

to prior uncertainties provided by the measurements for the

most polluted land regions and for ocean regions. In an-

other OCO OSSE, Baker et al. (2010) found that a combina-

tion of systematic errors from aerosols, model transport, and

incorrectly-assumed statistics could degrade both the magni-
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tude and spatial extent of uncertainty improvements by about

a factor of two over land and even more over the ocean. Thus,

it will be important to control systematic errors in ASCENDS

observations and the transport model as well as minimizing

random errors. Note that systematic observation errors can

be expected to decrease over the course of the mission as ad-

justments are made to the measurement system and to the

retrieval algorithms in calibration/validation activities.

4.4 Other considerations in evaluating ASCENDS

The potential combined use of multiple wavelengths in

the ASCENDS measurements, e.g., various offsets from

1.57 µm, could provide additional information on surface

fluxes given the sensitivities to concentrations at differ-

ent levels of the atmosphere. Furthermore, other CO2 data

sets will certainly be available alongside ASCENDS data

(e.g., from in situ networks), and the combination of data

sets will provide stronger constraints on fluxes than any indi-

vidual data set (Hungershoefer et al., 2010).

Our comparison of the results for the 1.57 and 2.05 µm

wavelengths over North America may be less applicable to

other parts of the world. The global OSSE study by Hunger-

shoefer et al. (2010), which compared various observing sys-

tems including a satellite lidar system similar to ASCENDS,

A-SCOPE, found that the 1.6 µm wavelength results in larger

uncertainty reductions over South America but performs less

well than 2.0 µm over temperate and cold regions. They at-

tribute the better performance of 1.6 µm over South Amer-

ica to the strong vertical mixing of air there, which lessens

the disadvantage of that wavelength’s having weaker sensi-

tivity to the lower troposphere. However, they used a sim-

pler error formulation. On the other hand, in our global in-

version, 2.05 µm results in 8 % larger uncertainty reductions

than 1.57 µm throughout the world on average (for RRV error

of 0.5–1.0 ppm).

5 Conclusions

We have conducted an observing system simulation for North

America using projected ASCENDS observation uncertainty

estimates and a novel approach utilizing a portable footprint

library generated from a high-resolution Lagrangian trans-

port model to quantify the surface CO2 flux constraints pro-

vided by the future observations. We consider four possible

configurations for the active optical remote sensing instru-

ment covering two weighting functions and two random er-

ror levels. We find that the ASCENDS observations poten-

tially reduce flux uncertainties substantially at fine and biome

scales. At the 1◦× 1◦ grid scale, weekly uncertainty reduc-

tions up to 30–45 % (averaged over the year) are achieved

depending on the presumed instrument configuration. Rela-

tively large uncertainty reductions occur year-round in south-

ern Mexico and the Pacific Northwest and seasonally in the

southeastern and mid-western U.S. and parts of Canada and

Alaska, when and where there is good coverage by obser-

vations with low uncertainties and a priori uncertainties are

large. Uncertainty reductions at the annual biome scale range

from ∼ 40 % to ∼ 75 % across the four experimental cases,

and from∼ 65 % to∼ 85 % for the continent as a whole. The

uncertainty reductions for the 1.57 µm candidate wavelength

are on average 10 % smaller than those for 2.05 µm across the

biomes and the two RRV reference error levels; for 0.5 ppm

RRV error the uncertainty reductions are on average ∼ 25 %

larger than those for 1.0 ppm error across biomes and the two

wavelengths.

Based on the flux precision on an annual biome scale sug-

gested by Hungershoefer et al. (2010) for understanding the

global carbon sink and feedbacks, ASCENDS observations

would meet a threshold requirement for all biomes within

the range of the measurement designs considered here. The

observations constrain a posteriori uncertainties to a level of

0.01–0.06 Pg C yr−1 and could thus help pin down the loca-

tion and magnitude of long-term C sinks. With regards to the

more stringent target requirement, a subset of the instrument

designs would meet the target for a majority of biomes.

The results we have presented may be optimistic, since po-

tential systematic errors in the observations, boundary con-

ditions, and transport model that we have neglected would

degrade the flux estimates. However, modifications to the

size and location of our regional domain (e.g., an eastward

shift) could improve the constraints by satellite observations

on North American fluxes. In addition, our consideration of

different measures of the impact of observations on flux es-

timates, such as posterior uncertainty and uncertainty reduc-

tion, strengthens the study, given that different measures can

be affected differently by assumptions such as prior uncer-

tainties.

In future work, inversions in various regions (including,

for example, South America) with a more comprehensive

treatment of error sources could more definitively establish

the usefulness of ASCENDS observations for constraining

fluxes at fine and large scales and answering global carbon

cycle science questions.
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