Articles | Volume 24, issue 8
https://doi.org/10.5194/acp-24-5099-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-5099-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Role of the Indian Ocean basin mode in driving the interdecadal variations of summer precipitation over the East Asian monsoon boundary zone
Jing Wang
Tianjin Key Laboratory for Oceanic Meteorology, Tianjin Institute of Meteorological Science, Tianjin, China
National Climate Center, China Meteorological Administration, Beijing, China
Fei Cheng
Ningbo Meteorological Observatory, Ningbo, China
Chengyu Song
Heilongjiang Climate Centre, Harbin, China
Qiaoping Li
CMA Center for Earth System Modeling and Prediction, Beijing, China
Yihui Ding
National Climate Center, China Meteorological Administration, Beijing, China
Xiangde Xu
State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
Related authors
Fan Wang, Gregory R. Carmichael, Jing Wang, Bin Chen, Bo Huang, Yuguo Li, Yuanjian Yang, and Meng Gao
Atmos. Chem. Phys., 22, 13341–13353, https://doi.org/10.5194/acp-22-13341-2022, https://doi.org/10.5194/acp-22-13341-2022, 2022
Short summary
Short summary
Unprecedented urbanization in China has led to serious urban heat island (UHI) issues, exerting intense heat stress on urban residents. We find diverse influences of aerosol pollution on urban heat island intensity (UHII) under different circulations. Our results also highlight the role of black carbon in aggravating UHI, especially during nighttime. It could thus be targeted for cooperative management of heat islands and aerosol pollution.
Liangying Zeng, Yang Yang, Hailong Wang, Jing Wang, Jing Li, Lili Ren, Huimin Li, Yang Zhou, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 21, 10745–10761, https://doi.org/10.5194/acp-21-10745-2021, https://doi.org/10.5194/acp-21-10745-2021, 2021
Short summary
Short summary
Using an aerosol–climate model, the impacts of El Niño with different durations on aerosols in China are examined. The modulation on aerosol concentrations and haze days by short-duration El Niño events is 2–3 times more than that by long-duration El Niño events in China. The frequency of short-duration El Niño has been increasing significantly in recent decades, suggesting that El Niño events have exerted increasingly intense modulation on aerosol pollution in China over the past few decades.
Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Xiangde Xu, Wenqian Zhang, Jinguang Lv, Gang Bai, Bing Chen, Siying Ma, Steffen Ziegler, Sebastian Donner, and Thomas Wagner
Atmos. Chem. Phys., 23, 3655–3677, https://doi.org/10.5194/acp-23-3655-2023, https://doi.org/10.5194/acp-23-3655-2023, 2023
Short summary
Short summary
We made mobile MAX-DOAS measurements in the background atmosphere over the Tibetan Plateau in summer 2021. We retrieved the tropospheric NO2 and HCHO vertical column densities (VCDs) along extended driving routes and found a decreasing trend of the VCDs with altitude. Elevated NO2 VCDs along the driving routes could be attributed to enhanced traffic emissions from the towns crossed. The spatio-temporal distribution of the HCHO VCDs correlated strongly with the surface temperature.
Xiangde Xu, Yi Tang, Yinjun Wang, Hongshen Zhang, Ruixia Liu, and Mingyu Zhou
Atmos. Chem. Phys., 23, 3299–3309, https://doi.org/10.5194/acp-23-3299-2023, https://doi.org/10.5194/acp-23-3299-2023, 2023
Short summary
Short summary
The vertical motion over the Tibetan Plateau (TP) is associated with the anomalous convective activities. The diurnal variations and formation mechanisms of low clouds over the TP, Rocky Mountains and low-elevation regions are analyzed. We further discuss whether there exists a
high-efficiencytriggering mechanism for convection over the TP and whether there is an association among low air density and strong turbulence and ubiquitous popcorn-like cumulus clouds.
Fan Wang, Gregory R. Carmichael, Jing Wang, Bin Chen, Bo Huang, Yuguo Li, Yuanjian Yang, and Meng Gao
Atmos. Chem. Phys., 22, 13341–13353, https://doi.org/10.5194/acp-22-13341-2022, https://doi.org/10.5194/acp-22-13341-2022, 2022
Short summary
Short summary
Unprecedented urbanization in China has led to serious urban heat island (UHI) issues, exerting intense heat stress on urban residents. We find diverse influences of aerosol pollution on urban heat island intensity (UHII) under different circulations. Our results also highlight the role of black carbon in aggravating UHI, especially during nighttime. It could thus be targeted for cooperative management of heat islands and aerosol pollution.
Xiangde Xu, Chan Sun, Deliang Chen, Tianliang Zhao, Jianjun Xu, Shengjun Zhang, Juan Li, Bin Chen, Yang Zhao, Hongxiong Xu, Lili Dong, Xiaoyun Sun, and Yan Zhu
Atmos. Chem. Phys., 22, 1149–1157, https://doi.org/10.5194/acp-22-1149-2022, https://doi.org/10.5194/acp-22-1149-2022, 2022
Short summary
Short summary
A vertical transport window of tropospheric vapor exists on the Tibetan Plateau (TP). The TP's thermal forcing drives the vertical transport
windowof vapor in the troposphere. The effects of the TP's vertical transport window of vapor are of importance in global climate change.
Xiangde Xu, Wenyue Cai, Tianliang Zhao, Xinfa Qiu, Wenhui Zhu, Chan Sun, Peng Yan, Chunzhu Wang, and Fei Ge
Atmos. Chem. Phys., 21, 14131–14139, https://doi.org/10.5194/acp-21-14131-2021, https://doi.org/10.5194/acp-21-14131-2021, 2021
Short summary
Short summary
We found that the structure of atmospheric thermodynamics in the troposphere can be regarded as a strong forewarning signal for variations of surface PM2.5 concentration in heavy air pollution.
Xinghong Cheng, Zilong Hao, Zengliang Zang, Zhiquan Liu, Xiangde Xu, Shuisheng Wang, Yuelin Liu, Yiwen Hu, and Xiaodan Ma
Atmos. Chem. Phys., 21, 13747–13761, https://doi.org/10.5194/acp-21-13747-2021, https://doi.org/10.5194/acp-21-13747-2021, 2021
Short summary
Short summary
We develop a new inversion method of emission sources based on sensitivity analysis and the three-dimension variational technique. The novel explicit observation operator matrix between emission sources and the receptor’s concentrations is established. Then this method is applied to a typical heavy haze episode in North China, and spatiotemporal variations of SO2, NO2, and O3 concentrations simulated using a posterior emission sources are compared with results using an a priori inventory.
Liangying Zeng, Yang Yang, Hailong Wang, Jing Wang, Jing Li, Lili Ren, Huimin Li, Yang Zhou, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 21, 10745–10761, https://doi.org/10.5194/acp-21-10745-2021, https://doi.org/10.5194/acp-21-10745-2021, 2021
Short summary
Short summary
Using an aerosol–climate model, the impacts of El Niño with different durations on aerosols in China are examined. The modulation on aerosol concentrations and haze days by short-duration El Niño events is 2–3 times more than that by long-duration El Niño events in China. The frequency of short-duration El Niño has been increasing significantly in recent decades, suggesting that El Niño events have exerted increasingly intense modulation on aerosol pollution in China over the past few decades.
Cited articles
Chang, L., Wu, Z., and Xu, J.: Contribution of Northeastern Asian stratospheric warming to subseasonal prediction of the early winter haze pollution in Sichuan Basin, China, Sci. Total Environ., 751, 141823, https://doi.org/10.1016/j.scitotenv.2020.141823, 2021.
Chen, F.-H., Chen, J.-H., Holmes, J., Boomer, I., Austin, P., Gates, J. B., Wang, N.-L., Brooks, S. J., and Zhang, J.-W.: Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region, Quaternary Sci. Rev., 29, 1055–1068, https://doi.org/10.1016/j.quascirev.2010.01.005, 2010.
Chen, J., Huang, W., Jin, L., Chen, J., Chen, S., and Chen, F.: A climatological northern boundary index for the East Asian summer monsoon and its interannual variability, Sci. China Earth Sci., 61, 13–22, https://doi.org/10.1007/s11430-017-9122-x, 2018.
Chen, J., Huang, W., Feng, S., Zhang, Q., Kuang, X., Chen, J., and Chen, F.: The modulation of westerlies-monsoon interaction on climate over the monsoon boundary zone in East Asia, Int. J. Climatol., 41, E3049–E3064, https://doi.org/10.1002/joc.6903, 2021.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project, Q. J. R. Meteorol. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
CRU: CRU TS3.26, monthly, CRU [data set] https://catalogue.ceda.ac.uk/uuid/3f8944800cc48e1cbc29a5ee12d8542d, last access: 5 July 2022.
Ding, Y. and Chan, J. C. L.: The East Asian summer monsoon: An overview, Meteorol. Atmos. Phys., 89, 117–142, https://doi.org/10.1007/s00703-005-0125-z, 2005.
Dou, J. and Wu, Z.: Southern Hemisphere origins for interannual variations of snow cover over the western Tibetan Plateau in boreal summer, J. Clim., 31, 7701–7718, https://doi.org/10.1175/JCLI-D-17-0327.1, 2018.
Duchon, C. E.: Lanczos filtering in one and two dimensions, J. Appl. Meteorol. Clim., 18, 1016–1022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2, 1979.
Gill, A. E.: Some simple solutions for heat-induced tropical circulation, Q. J. R. Meteorol. Soc., 106, 447–462, https://doi.org/10.1002/qj.49710644905, 1980.
Han, T., Zhang, M., Zhu, J., Zhou, B., and Li, S.: Impact of early spring sea ice in Barents Sea on midsummer rainfall distribution at Northeast China, Clim. Dynam., 57, 1023–1037, https://doi.org/10.1007/s00382-021-05754-4, 2021.
Han, W., Vialard, J., McPhaden, M. J., Lee, T., Masumoto, Y., Feng, M., and de Ruijter, W. P. M.: Indian Ocean decadal variability: A review, Bull. Am. Meteorol. Soc., 95, 1679–1703, https://doi.org/10.1175/BAMS-D-13-00028.1, 2014.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Henley, B. J., Gergis, J., Karoly, D. J., Power, S., Kennedy, J., and Folland, C. K.: A Tripole Index for the Interdecadal Pacific Oscillation, Clim. Dynam., 45, 3077–3090, https://doi.org/10.1007/s00382-015-2525-1, 2015.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons, J. Clim., 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Huang, J., Ma, J., Guan, X., Li, Y., and He, Y.: Progress in semi-arid climate change studies in China, Adv. Atmos. Sci., 36, 922–937, https://doi.org/10.1007/s00376-018-8200-9, 2019.
Huang, J., Zhang, G., Zhang, Y., Guan, X., Wei, Y., and Guo, R.: Global desertification vulnerability to climate change and human activities, Land Degrad. Dev., 31, 1380–1391, https://doi.org/10.1002/ldr.3556, 2020.
Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., Shinoda, M., Ma, Z., Guo, W., Li, Z., Zhang, L., Liu, Y., Yu, H., He, Y., Xie, Y., Guan, X., Ji, M., Lin, L., Wang, S., Yan, H., and Wang, G.: Dryland climate change: Recent progress and challenges, Rev. Geophys., 55, 719–778, https://doi.org/10.1002/2016RG000550, 2017.
Huang, W., Chen, J., Zhang, X., Feng, S., and Chen, F.: Definition of the core zone of the “westerlies-dominated climatic regime”, and its controlling factors during the instrumental period, Sci. China Earth Sci., 58, 676–684, https://doi.org/10.1007/s11430-015-5057-y, 2015.
Huang, Y., Wu, B., Li, T., Zhou, T., and Liu, B.: Interdecadal Indian Ocean basin mode driven by interdecadal Pacific oscillation: A season-dependent growth mechanism, J. Clim., 32, 2057–2073, https://doi.org/10.1175/JCLI-D-18-0452.1, 2019.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J. F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model: A framework for collaborative research, Bull. Am. Meteorol. Soc., 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.
Jeong, J. I., Park, R. J., Yeh, S.-W., and Roh, J.-W.: Statistical predictability of wintertime PM2.5 concentrations over East Asia using simple linear regression, Sci. Total Environ., 776, 146059, https://doi.org/10.1016/j.scitotenv.2021.146059, 2021.
Jiang, J., Zhou, T., Chen, X., and Wu, B.: Central Asian precipitation shaped by the tropical Pacific decadal variability and the Atlantic multidecadal variability, J. Clim., 34, 7541–7553, https://doi.org/10.1175/JCLI-D-20-0905.1, 2021.
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J. F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The community earth system model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability, Bull. Am. Meteorol. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1, 2015.
Klein, S. A., Soden, B. J., and Lau, N.-C.: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge, J. Clim., 12, 917–932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2, 1999.
Li, J. and Zeng, Q.: A unified monsoon index, Geophys. Res. Lett., 29, 115-111–115-114, https://doi.org/10.1029/2001GL013874, 2002.
Li, J., Sun, C., and Jin, F.-F.: NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability, Geophys. Res. Lett., 40, 5497–5502, https://doi.org/10.1002/2013GL057877, 2013.
Li, J., Zheng, C., Yang, Y., Lu, R., and Zhu, Z.: Predictability of spatial distribution of pre-summer extreme precipitation days over southern China revealed by the physical-based empirical model, Clim. Dynam., 61, 2299–2316, https://doi.org/10.1007/s00382-023-06681-2, 2023.
Li, M. and Ma, Z.: Decadal changes in summer precipitation over arid northwest China and associated atmospheric circulations, Int. J. Climatol., 38, 4496–4508, https://doi.org/10.1002/joc.5682, 2018.
Lu, W. and Jia, G.: Fluctuation of farming-pastoral ecotone in association with changing East Asia monsoon climate, Climatic Change, 119, 747–760, https://doi.org/10.1007/s10584-013-0761-0, 2013.
Mastyło, M.: Bilinear interpolation theorems and applications, J. Funct. Anal., 265, 185–207, https://doi.org/10.1016/j.jfa.2013.05.001, 2013.
Matsuno, T.: Quasi-geostrophic motions in the equatorial area, J. Meteorol. Soc. Jpn., 44, 25–43, https://doi.org/10.2151/jmsj1965.44.1_25, 1966.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment, Nature, 463, 747–756, https://doi.org/10.1038/nature08823, 2010.
NCAR: CESM1_LENS, NCAR [data set], https://www.cesm.ucar.edu/community-projects/lens/data-sets (last access: 28 April 2023), 2023a.
NCAR: CESM1_IOPES, NCAR [data set], https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.IOD-PACEMAKER.html (last access: 4 May 2023), 2023b.
NOAA: ERSSTv5, NOAA [data set], https://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v5/netcdf/, last access: 15 October 2020.
NOAA-CIRES: 20CRv2c, NOAA-CIRES [data set], https://psl.noaa.gov/data/gridded/data.20thC_ReanV2c.html, last access: 26 June 2022.
North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J.: Sampling errors in the estimation of empirical orthogonal functions, Mon. Weather Rev., 110, 699–706, https://doi.org/10.1175/1520-0493(1982)110<0699:seiteo>2.0.co;2, 1982.
Ou, T. H. and Qian, W. H.: Vegetation variations along the monsoon boundary zone in East Asia, Chinese J. Geophys., 49, 698–705, https://doi.org/10.1002/cjg2.876, 2006.
Piao, J., Chen, W., and Chen, S.: Water vapour transport changes associated with the interdecadal decrease in the summer rainfall over Northeast Asia around the late-1990s, Int. J. Climatol., 41, E1469–E1482, https://doi.org/10.1002/joc.6780, 2021.
Qian, W., Ding, T., Hu, H., Lin, X., and Qin, A.: An overview of dry-wet climate variability among monsoon-westerly regions and the monsoon northernmost marginal active zone in China, Adv. Atmos. Sci., 26, 630–641, https://doi.org/10.1007/s00376-009-8213-5, 2009.
Sardeshmukh, P. D. and Hoskins, B. J.: The generation of global rotational flow by steady idealized tropical divergence, J. Atmos. Sci., 45, 1228–1251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2, 1988.
Schiemann, R., Lüthi, D., and Schär, C.: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region, J. Clim., 22, 2940–2957, https://doi.org/10.1175/2008jcli2625.1, 2009.
Schneider, D. P. and Deser, C.: Tropically driven and externally forced patterns of Antarctic sea ice change: Reconciling observed and modeled trends, Clim. Dynam., 50, 4599–4618, https://doi.org/10.1007/s00382-017-3893-5, 2018.
Schneider, D. P., Deser, C., and Fan, T.: Comparing the impacts of tropical SST variability and polar stratospheric ozone loss on the southern ocean westerly winds, J. Clim., 28, 9350–9372, https://doi.org/10.1175/JCLI-D-15-0090.1, 2015.
Si, D. and Ding, Y.: Oceanic forcings of the interdecadal variability in East Asian summer rainfall, J. Clim., 29, 7633–7649, https://doi.org/10.1175/JCLI-D-15-0792.1, 2016.
Si, D., Jiang, D., Hu, A., and Lang, X.: Variations in northeast Asian summer precipitation driven by the Atlantic multidecadal oscillation, Int. J. Climatol., 41, 1682–1695, https://doi.org/10.1002/joc.6912, 2021.
Song, C., Wang, J., Liu, Y., Zhang, L., Ding, Y., Li, Q., Shen, X., Song, Y., and Yan, Y.: Toward role of westerly-monsoon interplay in linking interannual variations of late spring precipitation over the southeastern Tibetan Plateau, Atmos. Sci. Lett., 23, e1074, https://doi.org/10.1002/asl.1074, 2022.
Sun, B., Li, H., and Zhou, B.: Interdecadal variation of Indian Ocean basin mode and the impact on Asian summer climate, Geophys. Res. Lett., 46, 12388–12397, https://doi.org/10.1029/2019GL085019, 2019a.
Sun, B., Wang, H., Zhou, B., and Li, H.: Interdecadal variation in the synoptic features of mei-yu in the Yangtze River valley region and relationship with the Pacific decadal oscillation, J. Clim., 32, 6251–6270, https://doi.org/10.1175/jcli-d-19-0017.1, 2019b.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, Bull. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Touma, D., Stevenson, S., Lehner, F., and Coats, S.: Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather, Nat. Commun., 12, 212, https://doi.org/10.1038/s41467-020-20570-w, 2021.
Wang, B., Wu, Z., Li, J., Liu, J., Chang, C.-P., Ding, Y., and Wu, G.: How to measure the strength of the East Asian summer monsoon, J. Clim., 21, 4449–4463, https://doi.org/10.1175/2008jcli2183.1, 2008.
Wang, B., Xiang, B., Li, J., Webster, P. J., Rajeevan, M. N., Liu, J., and Ha, K.-J.: Rethinking Indian monsoon rainfall prediction in the context of recent global warming, Nat. Commun., 6, 7154, https://doi.org/10.1038/ncomms8154, 2015.
Wang, J., Liu, Y., Ding, Y., and Wu, Z.: Towards influence of Arabian Sea SST anomalies on the withdrawal date of Meiyu over the Yangtze-Huaihe River basin, Atmos. Res., 249, 105340, https://doi.org/10.1016/j.atmosres.2020.105340, 2021.
Wang, J., Zhu, Z. W., Qi, L., Zhao, Q. H., He, J. H., and Wang, J. X. L.: Two pathways of how remote SST anomalies drive the interannual variability of autumnal haze days in the Beijing–Tianjin–Hebei region, China, Atmos. Chem. Phys., 19, 1521–1535, https://doi.org/10.5194/acp-19-1521-2019, 2019.
Wang, J., Liu, Y., Song, C., Ding, Y., Li, Q., Wu, P., Xu, Y., and Xu, X.: Synergistic impacts of westerlies and monsoon on interdecadal variations of late spring precipitation over the southeastern extension of the Tibetan Plateau, Int. J. Climatol., 42, 7342–7361, https://doi.org/10.1002/joc.7648, 2022.
Wang, J., Liu, Y., Yang, Y., Wu, P., Yang, J., Liang, P., Song, C., Zhang, S., and Ding, Y.: Impact of early winter North Atlantic Oscillation on the dramatic alternation of seesaw haze intensity between late winter months in the North China Plain, Atmos. Res., 281, 106483, https://doi.org/10.1016/j.atmosres.2022.106483, 2023.
Wang, L., Chen, W., Huang, G., and Zeng, G.: Changes of the transitional climate zone in East Asia: Past and future, Clim. Dynam., 49, 1463–1477, https://doi.org/10.1007/s00382-016-3400-4, 2017.
Wang, Q., Wang, L., Huang, G., Piao, J., and Chotamonsak, C.: Temporal and spatial variation of the transitional climate zone in summer during 1961–2018, Int. J. Climatol., 41, 1633–1648, https://doi.org/10.1002/joc.6902, 2021.
Wang, Q., Wang, L., Huang, G., and Wang, T.: Mechanism of the summer rainfall interannual variability in transitional climate zone in East Asia: Roles of teleconnection patterns and associated moisture processes, Clim. Dynam., 61, 1177–1192, https://doi.org/10.1007/s00382-022-06618-1, 2022.
Wang, Q., Huang, G., Wang, L., Piao, J., Ma, T., Hu, P., Chotamonsak, C., and Limsakul, A.: Mechanism of the summer rainfall variation in Transitional Climate Zone in East Asia from the perspective of moisture supply during 1979–2010 based on the Lagrangian method, Clim. Dynam., 60, 1225–1238, https://doi.org/10.1007/s00382-022-06344-8, 2023.
Wang, S., Huang, J., Huang, G., Luo, F., Ren, Y., and He, Y.: Enhanced impacts of Indian Ocean sea surface temperature on the dry/wet variations over Northwest China, J. Geophys. Res.-Atmos., 127, e2022JD036533, https://doi.org/10.1029/2022JD036533, 2022.
Wu, B., Zhou, T., and Li, T.: Impacts of the Pacific–Japan and circumglobal teleconnection patterns on the interdecadal variability of the East Asian summer monsoon, J. Clim., 29, 3253–3271, https://doi.org/10.1175/JCLI-D-15-0105.1, 2016.
Wu, G., Guan, Y., Liu, Y., Yan, J., and Mao, J.: Air–sea interaction and formation of the Asian summer monsoon onset vortex over the Bay of Bengal, Clim. Dynam., 38, 261–279, https://doi.org/10.1007/s00382-010-0978-9, 2012.
Wu, P., Liu, Y., Ding, Y., Li, X., and Wang, J.: Modulation of sea surface temperature over the North Atlantic and Indian-Pacific warm pool on interdecadal change of summer precipitation over northwest China, Int. J. Climatol., 42, 8526–8538, https://doi.org/10.1002/joc.7743, 2022.
Xie, S.-P., Hu, K., Hafner, J., Tokinaga, H., Du, Y., Huang, G., and Sampe, T.: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño, J. Clim., 22, 730–747, https://doi.org/10.1175/2008jcli2544.1, 2009.
Xing, W. and Wang, B.: Predictability and prediction of summer rainfall in the arid and semi-arid regions of China, Clim. Dynam., 49, 419–431, https://doi.org/10.1007/s00382-016-3351-9, 2017.
Yang, D., Arblaster, J. M., Meehl, G. A., England, M. H., Lim, E.-P., Bates, S., and Rosenbloom, N.: Role of tropical variability in driving decadal shifts in the Southern Hemisphere summertime eddy-driven jet, J. Clim., 33, 5445–5463, https://doi.org/10.1175/JCLI-D-19-0604.1, 2020.
Yang, J., Liu, Q., Xie, S.-P., Liu, Z., and Wu, L.: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon, Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571, 2007.
Yeh, T.-C., Dao, S.-Y., and Li, M.-T. (Eds.): The abrupt change of circulation over the Northern Hemisphere during June and October, The Atmosphere and the Sea in Motion, Rockefeller Institute Press and Oxford University Press, New York, 249–267, ISBN 9780874700336, 1959.
Ying, K., Jiang, D., Zheng, X., Frederiksen, C. S., Peng, J., Zhao, T., and Zhong, L.: Seasonal predictable source of the East Asian summer monsoon rainfall in addition to the ENSO–AO, Clim. Dynam., 60, 2459–2480, https://doi.org/10.1007/s00382-022-06461-4, 2023.
You, Y. and Jia, X.: Interannual variations and prediction of spring precipitation over China, J. Clim., 31, 655–670, https://doi.org/10.1175/JCLI-D-17-0233.1, 2018.
Zeng, J. and Zhang, Q.: A humidity index for the summer monsoon transition zone in East Asia, Clim. Dynam., 53, 5511–5527, https://doi.org/10.1007/s00382-019-04876-0, 2019.
Zhang, L., Han, W., Karnauskas, K. B., Meehl, G. A., Hu, A., Rosenbloom, N., and Shinoda, T.: Indian Ocean warming trend reduces Pacific warming response to anthropogenic greenhouse gases: An interbasin thermostat mechanism, Geophys. Res. Lett., 46, 10882–10890, https://doi.org/10.1029/2019GL084088, 2019.
Zhang, Z., Sun, X., and Yang, X.-Q.: Understanding the interdecadal variability of East Asian summer monsoon precipitation: Joint influence of three oceanic signals, J. Clim., 31, 5485–5506, https://doi.org/10.1175/jcli-d-17-0657.1, 2018.
Zhao, W., Chen, S., Chen, W., Yao, S., Nath, D., and Yu, B.: Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China, Clim. Dynam., 53, 2031–2046, https://doi.org/10.1007/s00382-019-04762-9, 2019a.
Zhao, W., Chen, W., Chen, S., Yao, S.-L., and Nath, D.: Inter-annual variations of precipitation over the monsoon transitional zone in China during August–September: Role of sea surface temperature anomalies over the tropical Pacific and North Atlantic, Atmos. Sci. Lett., 20, e872, https://doi.org/10.1002/asl.872, 2019b.
Zhao, W., Chen, W., Chen, S., Nath, D., and Wang, L.: Interdecadal change in the impact of North Atlantic SST on August rainfall over the monsoon transitional belt in China around the late 1990s, Theor. Appl. Climatol., 140, 503–516, https://doi.org/10.1007/s00704-020-03102-w, 2020.
Short summary
Based on long-term observational, reanalysis, and numerical model simulation datasets from 1901 through 2014, this study shows that precipitation over the East Asian monsoon boundary zone featured prominent interdecadal changes, with dry summers during the periods preceding 1927, 1939–1945, 1968–1982, and 1998–2010 and wet summers during 1928–1938, 1946–1967, and 2011 onwards. The Indian Ocean basin mode is an important oceanic modulator responsible for its interdecadal variations.
Based on long-term observational, reanalysis, and numerical model simulation datasets from 1901...
Altmetrics
Final-revised paper
Preprint