Articles | Volume 23, issue 20
https://doi.org/10.5194/acp-23-13523-2023
https://doi.org/10.5194/acp-23-13523-2023
Research article
 | 
27 Oct 2023
Research article |  | 27 Oct 2023

Evaluation of liquid cloud albedo susceptibility in E3SM using coupled eastern North Atlantic surface and satellite retrievals

Adam C. Varble, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Shuaiqi Tang, and Jerome Fast

Related authors

General circulation models simulate negative liquid water path­–droplet number correlations, but anthropogenic aerosols still increase simulated liquid water path
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
EGUsphere, https://doi.org/10.5194/egusphere-2024-4,https://doi.org/10.5194/egusphere-2024-4, 2024
Short summary
Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 2: assessing aerosols, clouds, and aerosol–cloud interactions via field campaign and long-term observations
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023,https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
Opinion: A critical evaluation of the evidence for aerosol invigoration of deep convection
Adam C. Varble, Adele L. Igel, Hugh Morrison, Wojciech W. Grabowski, and Zachary J. Lebo
Atmos. Chem. Phys., 23, 13791–13808, https://doi.org/10.5194/acp-23-13791-2023,https://doi.org/10.5194/acp-23-13791-2023, 2023
Short summary
Droplet collection efficiencies estimated from satellite retrievals constrain effective radiative forcing of aerosol-cloud interactions
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
EGUsphere, https://doi.org/10.5194/egusphere-2023-2161,https://doi.org/10.5194/egusphere-2023-2161, 2023
Short summary
Aerosol-Induced Closure of Marine Cloud Cells: Enhanced Effects in the Presence of Precipitation
Matthew W. Christensen, Peng Wu, Adam C. Varble, Heng Xiao, and Jerome D. Fast
EGUsphere, https://doi.org/10.5194/egusphere-2023-2416,https://doi.org/10.5194/egusphere-2023-2416, 2023
Short summary

Related subject area

Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A colorful look at climate sensitivity
Bjorn Stevens and Lukas Kluft
Atmos. Chem. Phys., 23, 14673–14689, https://doi.org/10.5194/acp-23-14673-2023,https://doi.org/10.5194/acp-23-14673-2023, 2023
Short summary
Sensitivity of cirrus and contrail radiative effect on cloud microphysical and environmental parameters
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 23, 14003–14037, https://doi.org/10.5194/acp-23-14003-2023,https://doi.org/10.5194/acp-23-14003-2023, 2023
Short summary
Evaluation of downward and upward solar irradiances simulated by the Integrated Forecasting System of ECMWF using airborne observations above Arctic low-level clouds
Hanno Müller, André Ehrlich, Evelyn Jäkel, Johannes Röttenbacher, Benjamin Kirbus, Michael Schäfer, Robin J. Hogan, and Manfred Wendisch
EGUsphere, https://doi.org/10.5194/egusphere-2023-2443,https://doi.org/10.5194/egusphere-2023-2443, 2023
Short summary
Constraints on simulated past Arctic amplification and lapse rate feedback from observations
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023,https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Comparison of methods to estimate aerosol effective radiative forcings in climate models
Mark D. Zelinka, Christopher J. Smith, Yi Qin, and Karl E. Taylor
Atmos. Chem. Phys., 23, 8879–8898, https://doi.org/10.5194/acp-23-8879-2023,https://doi.org/10.5194/acp-23-8879-2023, 2023
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, https://doi.org/10.1029/1999JD901161, 2000. 
Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, https://doi.org/10.1038/nature03174, 2004. 
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
ARM – Atmospheric Radiation Measurement user facility: Interpolated Sonde (INTERPOLATEDSONDE), 2016-01-01 to 2020-12-31, Eastern North Atlantic (ENA) Graciosa Island, Azores, Portugal (C1), compiled by: Jensen, M., Giangrande, S., Fairless, T., and Zhou, A., ARM Data Center [data set], https://doi.org/10.5439/1095316, 2013a.  
ARM – Atmospheric Radiation Measurement user facility: Minnis Cloud Products Using Visst Algorithm (VISSTGRIDM10MINNIS), 2016-01-01 to 2018-02-20, Eastern North Atlantic (ENA) External Data (satellites and others) (X1), ARM Data Center [data set], https://adc.arm.gov/discovery/#/results/datastream::enavisstgridm10minnisX1.c1 (last access: 12 August 2021), 2013b. 
Download
Short summary
We evaluate how clouds change in response to changing atmospheric particle (aerosol) concentrations in a climate model and find that the model-predicted cloud brightness increases too much as aerosols increase because the cloud drop number increases too much. Excessive drizzle in the model mutes this difference. Many differences between observational and model estimates are explained by varying assumptions of how much liquid has been lost in clouds, which impacts the estimated cloud drop number.
Altmetrics
Final-revised paper
Preprint