Articles | Volume 22, issue 21
https://doi.org/10.5194/acp-22-14377-2022
https://doi.org/10.5194/acp-22-14377-2022
Research article
 | 
09 Nov 2022
Research article |  | 09 Nov 2022

Ammonium adduct chemical ionization to investigate anthropogenic oxygenated gas-phase organic compounds in urban air

Peeyush Khare, Jordan E. Krechmer, Jo E. Machesky, Tori Hass-Mitchell, Cong Cao, Junqi Wang, Francesca Majluf, Felipe Lopez-Hilfiker, Sonja Malek, Will Wang, Karl Seltzer, Havala O. T. Pye, Roisin Commane, Brian C. McDonald, Ricardo Toledo-Crow, John E. Mak, and Drew R. Gentner

Related authors

Considering the future of anthropogenic gas-phase organic compound emissions and the increasing influence of non-combustion sources on urban air quality
Peeyush Khare and Drew R. Gentner
Atmos. Chem. Phys., 18, 5391–5413, https://doi.org/10.5194/acp-18-5391-2018,https://doi.org/10.5194/acp-18-5391-2018, 2018
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The impact of organic nitrates on summer ozone formation in Shanghai, China
Chunmeng Li, Xiaorui Chen, Haichao Wang, Tianyu Zhai, Xuefei Ma, Xinping Yang, Shiyi Chen, Min Zhou, Shengrong Lou, Xin Li, Limin Zeng, and Keding Lu
Atmos. Chem. Phys., 25, 3905–3918, https://doi.org/10.5194/acp-25-3905-2025,https://doi.org/10.5194/acp-25-3905-2025, 2025
Short summary
Differences in the key volatile organic compound species between their emitted and ambient concentrations in ozone formation
Xudong Zheng and Shaodong Xie
Atmos. Chem. Phys., 25, 3807–3820, https://doi.org/10.5194/acp-25-3807-2025,https://doi.org/10.5194/acp-25-3807-2025, 2025
Short summary
Mechanistic insights into chloroacetic acid production from atmospheric multiphase volatile organic compound–chlorine chemistry
Mingxue Li, Men Xia, Chunshui Lin, Yifan Jiang, Weihang Sun, Yurun Wang, Yingnan Zhang, Maoxia He, and Tao Wang
Atmos. Chem. Phys., 25, 3753–3764, https://doi.org/10.5194/acp-25-3753-2025,https://doi.org/10.5194/acp-25-3753-2025, 2025
Short summary
Accurate elucidation of oxidation under heavy ozone pollution: a full suite of radical measurements in the chemically complex atmosphere
Renzhi Hu, Guoxian Zhang, Haotian Cai, Jingyi Guo, Keding Lu, Xin Li, Shengrong Lou, Zhaofeng Tan, Changjin Hu, Pinhua Xie, and Wenqing Liu
Atmos. Chem. Phys., 25, 3011–3028, https://doi.org/10.5194/acp-25-3011-2025,https://doi.org/10.5194/acp-25-3011-2025, 2025
Short summary
Emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from different cumulative-mileage diesel vehicles at various ambient temperatures
Shuwen Guo, Xuan Zheng, Xiao He, Lewei Zeng, Liqiang He, Xian Wu, Yifei Dai, Zihao Huang, Ting Chen, Shupei Xiao, Yan You, Sheng Xiang, Shaojun Zhang, Jingkun Jiang, and Ye Wu
Atmos. Chem. Phys., 25, 2695–2705, https://doi.org/10.5194/acp-25-2695-2025,https://doi.org/10.5194/acp-25-2695-2025, 2025
Short summary

Cited articles

Abbatt, J. P. D. and Wang, C.: The atmospheric chemistry of indoor environments, Environ. Sci. Process. Impacts, 22, 25–48, https://doi.org/10.1039/C9EM00386J, 2020. 
Asaf, D., Tas, E., Pedersen, D., Peleg, M., and Luria, M.: Long-Term Measurements of NO3 Radical at a Semiarid Urban Site: 2. Seasonal Trends and Loss Mechanisms, Environ. Sci. Technol., 44, 5901–5907, https://doi.org/10.1021/es100967z, 2010. 
Aschmann, S. M., Martin, P., Tuazon, E. C., Arey, J., and Atkinson, R.: Kinetic and product studies of the reactions of selected glycol ethers with OH radicals, Environ. Sci. Technol., 35, 4080–4088, https://doi.org/10.1021/es010831k, 2001. 
Bennet, F., Hart-Smith, G., Gruendling, T., Davis, T. P., Barker, P. J., and Barner-Kowollik, C.: Degradation of poly(methyl methacrylate) model compounds under extreme environmental conditions, Macromol. Chem. Phys., 211, 1083–1097, 2010. 
Bi, C., Liang, Y., and Xu, Y.: Fate and Transport of Phthalates in Indoor Environments and the Influence of Temperature: A Case Study in a Test House, Environ. Sci. Technol., 49, 9674–9681, https://doi.org/10.1021/acs.est.5b02787, 2015. 
Download
Short summary
Ammonium adduct chemical ionization is used to examine the atmospheric abundances of oxygenated volatile organic compounds associated with emissions from volatile chemical products, which are now key contributors of reactive precursors to ozone and secondary organic aerosols in urban areas. The application of this valuable measurement approach in densely populated New York City enables the evaluation of emissions inventories and thus the role these oxygenated compounds play in urban air quality.
Share
Altmetrics
Final-revised paper
Preprint