

Supplement of

Ammonium adduct chemical ionization to investigate anthropogenic oxygenated gas-phase organic compounds in urban air

Peeyush Khare et al.

Correspondence to: Jordan E. Krechmer (jordan.krechmer@bruker.com) and Drew R. Gentner (drew.gentner@yale.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Table of Contents

Figures

Fig. S1	Aerial visualization of the sampling	location at the ASRC	(City University	y of New York)
---------	--------------------------------------	----------------------	------------------	----------------

- Fig. S2 Regional map showing radial distances of 10, 20 and 30 kilometers from the sampling site.
- Fig. S3 Stability of ammonium-parent ion adducts as a function of voltage and IMR temperatures.
- Fig. S4 Benzene-to-toluene ratio over the sampling period.
- Fig. S5 Average ambient mass spectra collected using Vocus CI-ToF with NH4+ as the reagent ion.
- Fig. S6 Sensitivity analysis for CI-ToF response factors as a function of isomer.
- **Fig. S7** Comparison between measured concentrations of select analytes by the NH₄⁺-ToF and PTR-ToF instruments over the sampling period.
- Fig. S8 Instrument response to ethanol during on-field calibration periods.
- Fig. S9 Wind speed and direction at the sampling site during the measurement period.
- Fig. S10 Potential chemical losses of different chemical species due to OH oxidation.
- Fig. S11 Geometric mean ion abundances of all measured ions averaged over the duration of the sampling campaign.
- Fig. S12 Geometric mean of absolute concentrations averaged over the entire duration of the sampling campaign.
- Fig. S13 Linear regression slopes vs geometric mean concentration ratios with C₃H₆O.
- Fig. S14 Image plot of concentration-based linear correlation coefficients.
- Fig. S15 Image plot of ion abundance-based linear correlation coefficients.
- **Fig. S16** List of measured ion formulas sorted by ions with the highest counts of concentration-based correlation coefficients exceeding 0.9.
- Fig. S17 The complete list of measured ion formulas sorted by ions with the highest counts of ion abundancebased correlation coefficients exceeding 0.9.
- Fig. S18 Concentration ratios versus annual emissions inventories (compared to acetone) labelled as likely isomers.
- Fig. S19 Comparison of correlation coefficients against select tracer compounds using ion abundances of all target species.
- Fig. S20 Examples of observed strong linear correlations between C₇H₈O and select other species.

Tables

- Table S1
 Chemical composition of the analytical standard cylinder used for mass calibration of select species.
- **Table S2**Mass response factors of select measured ions.
- Table S3
 Geometric mean ion abundances measured for all calibrated and non-calibrated ions.
- Table S4
 Relative importance of different ionization pathways for select oxygenated organic compounds
- **Table S5**The limits of detection for different calibrated ion formulas.
- Table S6
 Emissions contributions to select major species in New York City.
- Table S7
 List of the calibrated ion formulas measured, their possible chemical isomers and examples of uses.
- Table S8List of calibrated ions and their enhancement ratios with tracer compounds with uncertainties over
the sampling period.

S1. Detailed description of correlations observed between trends in measured ions

To supplement the discussion in the main text and accompany correlation-related figures S9-12, here we use both concentration and ion abundance-based linear regressions to compare correlations between oxygenated species that potentially have similar or co-located sources. Only ions with the strongest correlations ranging from 0.85 to 1 were considered here to reduce the effect of meteorological influences on linear regressions. Compounds are also identified whose dynamics in the atmosphere could be important from an emissions or air quality perspective and warrant further investigation in future studies. Given that a wide range of possible uses exist for many of these compounds, mentions of specific sources are not intended to exclude other potential contributing source types, but rather to identify co-varying compounds (and shared uses) where potentially useful to the reader.

Glycols and glycol ethers

 $C_2H_6O_2$, a prominent ion in this study identified primarily as ethylene glycol, showed very good correlations (r > 0.9) with 19 other ions, and was most strongly correlated (r > 0.95) with C₃H₉NO (e.g. aminopropanol). Most of these were volatile C_xH_yO ions with carbon numbers ≤ 6 including C_3H_6O (e.g. acetone), C₄H₆O (e.g. MVK), C₆H₁₀O (e.g. cyclohexanone) and C₅H₈O (e.g. cyclopentanone), but also C₁₀H₁₂O (e.g. benzyl acetone) and among others. The remaining ones were largely ester-containing $C_xH_yO_2$ ions. These compounds are widely used as solvents, with some also likely constituents of personal care products. This suggested that solvents could be an important contributor of C₂H₆O₂ in ambient environments.

Glycol ether-related ions generally did not show very strong correlations with other ions. With the exception of $C_8H_{18}O_2$ (e.g. EGHE) and $C_8H_{18}O_3$ (e.g. dipropylene glycol butyl ether or DGBE), almost all ions in this category were correlated with $r \le 0.9$. EGHE is used in many consumer and commercial products while DGBE is a popular solvent. The strongest correlations (r > 0.95) of $C_8H_{18}O_2$ were with ions representing menthol, linalool and benzyl acetate, which was consistent with the popular use of EGHE in fragrance-related products. EGHE also showed good correlations (r > 0.9) with 29 other ions that were mainly constituted by C_xH_yO and $C_xH_yO_4$ ion groups such as C_7H_8O , $C_{11}H_{20}O$, $C_{16}H_{30}O_4$, $C_{10}H_{22}O_4$ and $C_9H_{18}O_4$. In the case of DGBE, no ions showed r > 0.95 but 17 ions were well-correlated (r > 0.9). The highest of these were ions containing EGHE, benzyl alcohol and some oxy-terpenoids such as menthol and linalool.

 $C_6H_{12}O_3$ likely included propylene glycol methyl ether acetate (PGMEA) and 2-ethoxyethyl acetate that are widely used in coatings, printing inks and cleaning products. However, only 3 other ions correlated well (r > 0.9) with $C_6H_{12}O_3$. These included $C_7H_{14}O_3$ (e.g. ethyl-3-ethoxypropionate), $C_8H_{16}O_3$ (e.g. butoxyethyl acetate) and $C_6H_{12}O$ (e.g. methyl butyl ketone)

while another 33 ions showed an r > 0.85. The highest among these remaining ones were C_xH_yO ions containing acetone, MVK and benzyl acetone.

Select personal care product-related compounds

Personal care products also likely contributed to glycol ether-related ion measurements. For example, $C_8H_{10}O_2$ (e.g. phenoxyethanol) was well-correlated (r > 0.9) with C_7H_8O , $C_{10}H_{12}O$, $C_{10}H_{18}O$ and $C_{10}H_{20}O$ ions, which represent benzyl alcohol, benzyl acetone, menthol and linalool. This was consistent with two major contributing isomers to $C_8H_{10}O_2$ being phenoxyethanol and 1,4 dimethoxybenzene that are used in personal care products. The isomer contributions were further substantiated by $C_8H_{10}O_2$ concentration peaks that coincided with morning and evening commute hours. Among other species in this category, $C_{10}H_{22}O_4$ (e.g. triethylene glycol butyl ether or TEGBE) most strongly correlated with $C_{14}H_{22}O$ (e.g. α -isomethyl ionone) (r > 0.95) that is primarily used in perfumes and other cosmetic products. Other major correlations included ions containing EGHE and benzyl acetate (r > 0.9).

Carbonyls

Ions representing carbonyls also showed good correlations with a wide range of ions. C_3H_6O (e.g. acetone) exhibited strong correlations (r > 0.95) with C_3H_9NO (e.g. aminopropanol), $C_6H_{10}O$ (e.g. cyclohexanone) and $C_8H_{14}O$ (6-methyl-5-hepten-2-one). However, it was also well-correlated (r > 0.9) with 30 more ions that were dominated by C_xH_yO compounds with $C_{\#}$'s ranging from 4 to 12 such as MVK, MEK, cyclopentanone, and benzyl acetone. In addition, $C_xH_yO_2$ ions related to cyclohexyl acetate, ethyl acetoacetate, ethylene glycol and butyl acrylate were also well-correlated with acetone. $C_6H_{10}O$ (e.g. cyclohexanone) correlated strongly with $C_4H_6O_2$, C_5H_8O and $C_8H_{14}O_2$ ions consistent with the popular use of cyclohexanone as a general solvent. $C_6H_{10}O$ also correlated well with $C_8H_{16}O$, $C_{10}H_{12}O$ and $C_6H_{10}O_2$ ions that are related to personal care products.

 C_4H_8O (e.g. MEK) exhibited particularly strong correlations (r > 0.95) with ions prevalent in oxygenated solvents suggesting connections to solvent-related sources. There likely were smaller contributions from personal care products as evidenced by good correlations with C_3H_9NO , $C_6H_{12}O$ and $C_8H_{14}O$. Other carbonyl-related ions (e.g. $C_6H_{12}O$) were mainly strongly correlated with compounds used in fragrances and cosmetic products. C_7H_6O (e.g. benzaldehyde) showed strongest correlation with C_8H_8O (e.g. acetophenone) which is used in solvents and fragrances but also found in automobile exhaust. It also varied strongly with $C_6H_{12}O$, $C_8H_{16}O$, $C_{10}H_{12}O$ and $C_9H_{10}O_2$ that suggest solvents and cosmetics to be major sources. Overall, this supports large contributions of solvent-related sources to carbonyl-related ions.

Some variability was observed in the number of species with which the oxy-terpenoid-related ions were strongly correlated, suggestive of multiple sources types. For example, $C_{10}H_{20}O$ (e.g. menthol) showed good correlations (r > 0.9) with 41 ions. Of these, 14 ions were strongly

correlated (r > 0.95) and included glycol ethers, carbonyls, esters and alcohols. $C_{10}H_{18}O$ correlated nearly perfectly with $C_{10}H_{20}O$. On the other hand, $C_{10}H_{16}O$ (e.g. camphor) was well-correlated (r > 0.9) with only four ions that included other major oxy-terpenoid-related ions, i.e. $C_{10}H_{20}O$ (e.g. menthol), $C_{10}H_{18}O$ (e.g. linalool), $C_{9}H_{12}O_{2}$ (e.g. phenoxy propanol) and $C_{12}H_{20}O_{2}$ (e.g. geranyl acetate). Correlations with $C_{10}H_{30}O_{5}Si_{5}$ (e.g. D5 siloxane) were also around 0.9. Most of these compounds (except D5) can be found in cleaning products, which likely contributed to $C_{10}H_{18}O$ ion signal since it strongly varied with the same ions but also with $C_{11}H_{22}O_{2}$ and $C_{19}H_{18}O_{2}$ (e.g. FAMEs) and $C_{10}H_{20}O_{2}$ (e.g. hydroxycitronellal).

On the contrary, no ions correlated very strongly (r > 0.95) with D5 siloxane but 13 ions showed r > 0.9. Menthol- and linalool-containing ions showed the best correlations with D5 ($r \sim 0.93$) followed by several $C_xH_yO_2$ ions such as $C_{12}H_{20}O_2$ (e.g. α -terpinyl acetate) and $C_9H_{10}O_2$ (e.g. benzyl acetate), which are used in cosmetics and other fragrance-related products. C_7H_8O (e.g. benzyl alcohol) concentrations varied very similarly to several ions containing oxy-terpenoids, monoterpenes, D5 siloxane and acetates that are found in cosmetic products.

Fragrances and related solvents likely also contributed to $C_7H_{14}O_2$ (e.g. amyl acetate) since it showed very strong correlations with $C_4H_6O_2$, $C_8H_{14}O_2$, C_7H_8O , $C_8H_{16}O$ and $C_{10}H_{20}O$ ions. The highest correlations (r>0.96) were observed with $C_8H_{16}O$ (e.g. octanal) and C_7H_8O (e.g. benzyl alcohol) suggesting that fragrance-based products were likely important contributors of $C_7H_{14}O_2$. Similarly, $C_8H_{16}O_2$ (e.g. caprylic acid) also exhibited similar variations as fragrance-related esters and solvents, and correlated strongly with $C_7H_{14}O_2$ suggesting possible similar sources.

 $C_{12}H_{24}O_2$ (e.g. lauric acid) was reasonably correlated (r ~ 0.9) with $C_8H_{14}O_2$, $C_{10}H_{18}O_2$, $C_8H_{16}O_4$ and $C_8H_{16}O$ that are prominently used in fragrances. Among other semivolatile ions, $C_{18}H_{34}O_2$ (e.g. oleic acid), did not show appreciable correlation with other ions potentially due to variations in emissions pathways, sources and gas-to-particle partitioning effects.

Nitrogen-containing species

Among the nitrogen-containing ions measured, C_2H_7NO (e.g. monoethanolamine) correlated strongly with $C_{10}H_{30}O_5Si_5$ (e.g. D5) except the period when it was influenced by biomass burning. C_2H_7NO also correlated very strongly (r > 0.9) with $C_4H_8O_2$ (e.g. ethyl acetate) and with some solvents. Unlike C_2H_7NO , $C_4H_{11}NO_2$ (e.g. diethanolamine) did not show appreciable correlation with tracers of personal care products such as D5 siloxane. This could be due to diethanolamine being primarily used as feedstock for the production of diethanolamides and diethanolamine salts of fatty acids that are used in cosmetic products. Triethanolamine showed very weak correlations (r < 0.85) with majority of the measured ions. Its timeseries varied somewhat similarly with only some aldehyde- and ester-containing ions that are prevalent in fragrance-related products (e.g. phenoxyethyl isobutyrate, pentanal). This suggested that triethanolamine is also likely emitted from personal care products where it sees common usage, though with potential partitioning limitations.

Fatty acid methyl esters

FAME-containing ions strongly correlated with each other suggesting overlap in their sources in urban environments. $C_9H_{18}O_2$ (e.g. methyl octanoate) also correlated strongly with ions containing menthol, octanal, benzyl acetone, hydroxycitronellal and esters that are prevalent in personal care products. Some correlation was also observed with ions containing carbonyl solvents that are used in both consumer and other commercial products suggesting multiple source contributions to $C_9H_{18}O_2$. The same ions formed the best set of correlations for $C_{11}H_{22}O_2$ (e.g. methyl decanoate).

Texanol and TXIB

 $C_{12}H_{24}O_3$ (e.g. texanol) which is a tracer for water-based paints. $C_{16}H_{30}O_4$ represents TXIB that is found in a variety of architectural products (Gkatzelis et al., 2021). They did not correlate significantly with each other given some variations in their use. In fact, $C_{12}H_{24}O_3$ correlated considerably (r > 0.85) only with the $C_8H_{18}O_2$ ion related to EGHE which is also found in waterbased coatings among other wider uses. On the other hand, $C_{16}H_{30}O_4$ showed good correlation with a wider range of compounds and the concentrations of $C_{16}H_{30}O_4$ also exceeded $C_{12}H_{24}O_3$ throughout the measurement period. The strongest similarities in its timeseries were observed with ions containing glycol ethers prevalent in paint-related products, but aromatic esters (e.g. $C_9H_{10}O_2$; benzyl acetate) and some oxy-terpenoids-related ions (e.g. $C_{10}H_{20}O$; menthol, $C_{10}H_{18}O$; linalool) showed good correlation with $C_{16}H_{30}O_4$.

 $C_3H_8O_3$ (e.g. glycerol) showed particularly strong correlation with $C_3H_6O_2$ that is related to methyl acetate, propanoic acid and/or ethyl formate. $C_8H_8O_3$ (e.g. methyl paraben) varied similarly as $C_9H_{12}O_2$ (e.g. phenoxy propanol), $C_5H_6O_2$ (e.g. furfuryl alcohol) and C_7H_8O (e.g. benzyl alcohol) that are used in personal care products (except furfuryl alcohol). It also correlated with oxy-terpenoids found in fragrance-related products.

Figure S1. Aerial visualization (© Google Maps) of the sampling location at the ASRC (City University of New York), with view from NNW. The instrument inlet pointed toward downtown Manhattan shown in the distance in the top-right of the image.

Figure S2. Regional map showing radial distances of 10, 20 and 30 kilometers from the sampling site (starred) at the ASRC (City University of New York). Credits: https://www.calcmaps.com/map-radius/

Figure S3. Stability of ammonium-parent ion adducts as a function of voltage and IMR temperature for select compounds including highly oxygenated species.

Figure S4. Benzene to toluene ratios over the sampling period where a ratio of 1.8:1 was used as a filter to remove major biomass burning influences. Note: Biomass burning emissions span a range of benzene-to-toluene ratios with some variance (Sheu et al., 2020) and the filter is set to be inclusive of the average ratio of 1.9:1 in Koss et al (Koss et al., 2018). We further note that the enhancement in the benzene-to-toluene ratio during 1/26 - 1/30 may be partly influenced by more aged background air masses coming from predominantly west-northwest direction (See discussion in Section 3.2).

Figure S5. Average ambient air mass spectra collected using Vocus CI-ToF with NH₄⁺ as the reagent ion.

Figure S6. Sensitivity analysis of CI-ToF response factors comparing isomer pairs with variations in instrument sensitivity to NH_4^+ ionization (using calibration standards); shown as variations in simulated concentrations of select ion formulas in response to the changes in the magnitude of the mass calibration factor dependent on relative contribution of each isomer in the pair (x-axis).

Figure S7. A comparison between measured concentrations of select analytes by NH₄-ToF and co-located PTR-ToF (Stony Brook University) instruments over the sampling period. The spread observed in comparisons of $C_{10}H_{16}$ and $C_{4}H_{8}O$ could largely be attributed to variations within relative responses to isomers with the different ionization schemes of the two instruments.

Figure S8. Instrument response to ethanol during on-field calibration periods.

Figure S9. Wind speed and direction at the sampling site during the measurement period. The missing data for the on-site weather station included a period of high wind speeds and periodic heavy rain in the afternoon (until 4:30 LT) followed by calm conditions with winds from South-Northeast between 12-7 PM and West-Northwest thereafter as shown by regional data from the LaGuardia weather station.

Figure S10. Potential chemical losses due to OH oxidation, shown as fraction remaining with distance after wintertime daytime atmospheric oxidation at different wind speeds for the chemical species listed in table S2. Note: An aerial distance of 10-15 kilometers from the sampling site at ASRC, CUNY covers the commercial areas of New York City, as well as, parts of New Jersey as shown in Figure S2. Daytime monoterpene and sesquiterpene losses may vary between specific isomers, but are shown here as α-pinene and α-cedrene, respectively.

Figure S11. Geometric mean ion abundances of all measured ions averaged over the duration of the sampling campaign.

Figure S12. Geometric mean of absolute concentrations (i.e. without 5th percentile background subtraction) of mass calibrated ions averaged over the entire duration of the sampling campaign and color coded by their annual emissions as estimated by the VCPy inventory.

Figure S13. Concentration ratios of measured analytes relative to acetone as determined by linear regression slopes (y-axis) compared to background-subtracted geometric mean concentration ratios (x-axis) and colored by correlation coefficient.

Figure S14. Image-based representation of the various degrees of concentration-based linear correlations between mass calibrated compound pairs.

Figure S15. Image-based representation of the various degrees of ion abundance-based linear correlations between all measured ions.

Figure S16. List of measured formulas sorted by ions with the highest counts of concentrationbased large correlation coefficients exceeding 0.9. The number of poor correlations (i.e. < 0.5) for each compound is also shown.

Figure S17. The complete list of targeted ion formulas sorted by ions with the highest counts of ion abundance-based correlation coefficients exceeding 0.9. The number of poor correlations (i.e. < 0.5) for each compound is also shown.

Figure S18. Concentration ratios versus annual emissions inventories (compared to acetone), labelled as likely isomers. Note: Supporting figure for Figure 4 showing same data.

Figure S19. Comparison of correlation coefficients against select tracer compounds using ion abundances of all target species. Nearly 35% of the measured ions correlated highly (0.9 < r < 1) with benzyl alcohol's ion.

Figure S20. Examples of observed strong linear correlations between C_7H_8O (e.g. benzyl alcohol) and, (a) $C_9H_{10}O_2$ (e.g. benzyl acetate) (b) $C_4H_{10}O_2$ (e.g. 1-methoxy-2-propanol) and (c) $C_8H_{10}O_2$ (e.g. phenoxyethanol).

Multicomponent calibration	Multicomponent calibration mixture in nitrogen				
Compound	Concentration (ppb), (uncertainty:				
	5%)				
Ethanol	981				
Acetonitrile	993				
Acetone	989				
Acrylonitrile	987				
Isoprene	954				
Methyl vinyl ketone	997				
Methyl ethyl ketone	994				
Benzene	989				
o-Xylene	1003				
a-Pinene	1000				
1,2,4-Trimethylbenzene	973				
Octamethylcyclotetrasiloxane	968				
Decamethylcyclopentasiloxane	962				
b-Caryophyllene	99.5				

Table S1. Chemical composition of the analytical standard cylinder (Apel-Riemer Environmental) used for mass calibration of select species.

Table S2. Mass response factors (and standard deviations) for mass calibration of selectmeasured ions (using analytical standards; e.g. AccuStandard, Sigma-Aldrich). Standarddeviations are determined based on linear regressions with multi-point LCS calibration curves.Cylinder-based standard calibrations are shown in italics (i.e. Table S1).

Analytical standard	Formula	Res. fac. (avg)	Res. fac. (st. dev)
Glycerol	$C_3H_8O_3$	2617	923
D5-siloxane	C10H30O5Si5	2200	110
Triethylene glycol	$C_6H_{14}O_4$	1876.504	71
Ethyl acetoacetate	$C_{6}H_{10}O_{3}$	1548.422	112
Furfural	$C_5H_4O_2$	1522	64
Ethylene glycol hexyl ether	$C_8H_{18}O_2$	1320.445	40
Cyclohexanone	$C_6H_{10}O$	1042.756	69
Hydroxycitronellal	$C_{10}H_{20}O_2$	1007.586	63
Texanol	$C_{12}H_{24}O_{3}$	995.1243	65
Acetophenone	C ₈ H ₈ O	937.9794	20
Benzvl acetone	$C_{10}H_{12}O$	761.2294	86
Pentadioic acid, dimethyl ester	C7H12O4	737.1291	60
Propylene glycol methyl ether acetate	$C_6H_{12}O_3$	679.011	55
1-Methoxy-2-propanol	$C_4H_{10}O_2$	645,9141	69
n-Butyl acetate	C4H1002	521,7066	34
2-Butoxyethanol	C ₆ H ₁₄ O ₂	495,2152	40
2-(2-Butoxyethoxy)ethanol	C ₀ H ₁₀ O ₂	450.3138	184
6-Methyl 5-henten-2-one	C.H.O	424 3785	11
Propyl paraben	CueHueOs	389 7354	74
Maltol	$C_{10}\Pi_{12}O_3$	380 425	37
Dimethyl phthalate	$C_6\Pi_6O_3$	366 3753	23
Cuelementamena	$C_{10}\Pi_{10}O_4$	255 6606	23
Cyclopentanone Mathul athul katana		250	9
Meinyi einyi kelone	$C_4\Pi_8O$	245 2000	10
2-Hexanone	$C_6H_{12}O$	345.8908	18
Phenoxy ethanol	$C_8H_{10}O_2$	345.677	119
Methyl pyrrolidone	C ₅ H ₉ NO	331.8216	41
Benzyl alcohol	C_7H_8O	329.976	23
Ethyl paraben	$C_9H_{10}O_3$	323.4804	/3
Dipropylene glycol	$C_6H_{14}O_3$	303.4106	43
2-Methoxy ethanol	$C_3H_8O_2$	295.6414	30
Methyl methacrylate	$C_5H_8O_2$	260	13
Acetone	C ₃ H ₆ O	251	13
MVK	C_4H_6O	250	12
Butyl paraben	$C_{11}H_{14}O_3$	238.0273	43
Isopropyl acetate	$C_5H_{10}O_2$	209.0689	23
Benzaldehyde	C_7H_6O	203.1	14
Methyl paraben	$C_8H_8O_3$	199.2943	53
Menthol	$C_{10}H_{20}O$	180.1444	11
D4-siloxane	C ₈ H ₂₄ O ₄ Si ₄	170.36	52.26
Diethylene glycol	$C_4H_{10}O_3$	160.6576	28
Eugenol	$C_{10}H_{12}O_2$	148.3496	7
Diethyl phthalate	$C_{12}H_{14}O_4$	140.7306	8
TXIB	$C_{16}H_{30}O_4$	131.0738	14
Dipropylene glycol propyl ether	$C_9H_{20}O_3$	118.3448	15
Acetonitrile	C_2H_3N	115	6
Methyl acetate	$C_3H_6O_2$	113.0	6
Cyclohexyl acetate	$C_8H_{14}O_2$	112.9	6
Benzyl acetate	$C_9H_{10}O_2$	104.4707	10
2-Phenoxyethyl isobutyrate	$C_{12}H_{16}O_3$	100.8308	9
Butyric acid	$C_4H_8O_2$	100.464	19
Methyl benzoate	$C_8H_8O_2$	81.46912	6
Monoterpenes	$C_{10}H_{16}$	70	3
Benzoic acid	$C_7H_6O_2$	57.82037	4
Octanoic acid	$C_8H_{16}O_2$	56.12189	4
Methyl octanoate	$C_9H_{18}O_2$	38.58139	3
Vinyl acetate	$C_4H_6O_2$	28	2
Sesquiterpenes	C15H24	27	1
Ethylene glycol	$C_2H_6O_2$	11.48517	1

Note: In some cases, response factors were calculated by averaging the responses for isomer standards. These include C₈H₁₈O₂ (EGHE and 1,2 octanediol), C₆H₁₂O₃ (PGMEA and 2-ethoxyethyl acetate), C₈H₁₈O₃ (2-(2-butoxyethoxy) ethanol and diethylene glycol butyl ether, C₆H₁₂O (2-hexanone and 4-methyl-2-pentanone), C₅H₁₀O₂ (Isopropyl acetate and n-propyl acetate) and C₄H₈O₂ (Butyric acid and ethyl acetate).

Ion formula	Mean abundance ±	Ion formula	Mean abundance ±	Ion formula	Mean abundance ±
	standard deviation		standard deviation		standard deviation
C ₃ H ₆ O	239.76±183.96	C ₆ H ₈ O	6.46±3.06	C ₄ H ₁₁ NO ₂	2.62±1.11
$C_4H_8O_2$	68.26±66.72	$C_5H_{10}O_3$	6.29±3.34	$C_8H_{10}O$	$2.57{\pm}0.82$
$C_6H_{12}O_2$	53.77±71.95	$C_9H_{18}O$	6.25 ± 2.82	$C_{14}H_{22}O$	2.52 ± 0.74
$C_3H_6O_2$	49.2±42.65	$C_9H_{14}O$	6.13±2.57	C ₄ H ₇ NO	2.51±0.49
C_4H_8O	43.98±28.61	$C_5H_8O_4$	$6.05{\pm}2.1$	$C_{10}H_{10}O_4$	2.42 ± 0.54
$C_2H_4O_2$	36.06±21.25	C ₃ H ₇ NO ₂	5.92±2.61	$C_{10}H_{22}O_4$	2.4 ± 0.74
C10H30O5Si5	35.12±33.31	$C_8H_{14}O$	5.74 ± 2.96	$C_{10}H_{12}O_2$	2.38 ± 0.76
C ₃ H ₈ O	29.66±19.76	$C_4H_4O_4$	5.59±1.59	$C_{18}H_{36}O_2$	2.33 ± 0.16
C ₂ H ₃ N	28.91±12.8	$C_{10}H_{20}O$	5.57±3.22	C ₇ H ₆ O ₃	2.32 ± 0.22
C ₅ H ₈ O ₂	28.07±31.59	$C_7H_{10}O$	5.35 ± 3.01	$C_{10}H_{22}O_3$	2.31 ± 0.69
$C_2H_6O_2$	27.99±41.6	$C_4H_{10}O_3$	5.11±2.77	$C_{12}H_{24}O$	2.31±0.73
C ₂ H ₅ NO	27.5±5.14	$C_8H_{16}O_2$	4.89 ± 2.65	$C_{16}H_{30}O_4$	2.3±0.57
$C_3H_8O_2$	24.32±14.97	$C_8H_{14}O_2$	4.85±2.3	$C_8H_{18}O$	2.29 ± 0.73
C5H10O2	23.79 ± 22.06	C7H8O	$4.7{\pm}2.05$	$C_{17}H_{34}O_{2}$	2.2±0.44
$C_4H_6O_2$	22.68±11.09	$C_{6}H_{10}O_{4}$	4.62±2.15	$C_6H_{14}O_4$	$2.17{\pm}0.65$
$C_5H_{10}O$	21.12±9.91	C ₄ H ₉ NO	4.35±3.29	C ₆ H ₁₅ NO	$2.12{\pm}0.9$
C ₆ H ₁₂ O	20.24 ± 14.68	$C_7H_{16}O_2$	4.34 ± 3.08	$C_8H_{14}O_4$	2.11 ± 0.51
C5H4O2	19.93 ± 9.62	C6H6O3	4.18 ± 0.97	C8H16O3	2.11 ± 0.66
C ₄ H ₆ O ₃	19.25±9.42	C ₆ H ₆ O	4.07±0.94	$C_{12}H_{14}O_4$	2.11 ± 0.42
C ₁₀ H ₁₆ O	17.72 ± 8.34	C ₀ H ₁₀ O ₂	4.07 ± 2.01	C ₆ H ₇ NO ₂	2.08 ± 0.26
C ₂ H ₆ O	16.29 ± 6.17	C5H12O2	3.97 ± 1.83	$C_{11}H_{22}O_2$	2.07 ± 0.55
$C_2H_6O_2$	15.28 ± 7.64	C ₈ H ₂₄ O ₄ Si ₄	3.91±0.6	$C_{14}H_{20}O$	2.05 ± 0.58
C ₇ H ₆ O	15.03 ± 7.09	CoH18O4	3.64±1.86	$C_{15}H_{22}O_{2}$	1.97 ± 0.4
C4H4O	13.89±8.85	C ₀ H ₁₆ O ₂	3.61 ± 1.38	CuH2O2Si	1.94 ± 0.5
C6H10O2	13.75±9.21	C7H16O2	3.57±1.82	CoH10O2	1.93 ± 0.34
C ₂ H ₁₄ O	13.47±9.28	C.H 1003	3.46 ± 1.73	C18H24O2	1.93 ± 0.69
C_2H_4O	13.13±3.82	$C_7H_6O_2$	3.42 ± 0.5	CoH20O2	1.91 ± 0.47
C ₆ H ₁₀ O	12.39 ± 6.54	C ₄ H ₁₁ NO	3.38 ± 1.66	C15H24	1.87 ± 0.29
$C_6H_{14}O_2$	11.62 ± 9.17	$C_7H_{12}O_2$	3.38 ± 1.29	C18H26O	1.84 ± 0.34
$C_6H_{14}O_2$	10.87 ± 8.58	$C_{11}H_{20}O$	3.35 ± 1.64	$C_{11}H_{14}O_{2}$	1.81 ± 0.38
CH4OSi	10.85±4.6	$C_5H_{12}O_2$	3.34 ± 1.34	C16H24O	1.8 ± 0.21
C ₅ H ₈ O	10.56 ± 5.52	C ₂ H ₈ O ₂	3.31 ± 1.37	$C_{14}H_{28}O_2$	1.78 ± 0.24
C10H16	10.55 ± 6.75	C.H.102	3.27±1.39	$C_{12}H_{24}O_{2}$	1.78 ± 0.27
C.H.O	9.82 ± 5.9	$C_{10}H_{18}O_{2}$	3.23 ± 1.19	$C_{10}H_{12}O_{2}$	1.74 ± 0.42
C ₆ H ₆ O ₂	9.1±3.23	C10H12O	3.19 ± 1.43	C.H.O.	1.72 ± 0.27
C_2H_4O	8.67±1.77	$C_{12}H_{20}O_{2}$	3.14 ± 1.19	C12H22O	1.71 ± 0.33
C10H18O	8.58±5.34	$C_{8}H_{10}O_{2}$	3±1.07	$C_{13}H_{10}O$	1.69 ± 0.39
C6H12O2	8.45±7.3	C ₈ H ₄ O ₂	2.98 ± 0.92	C ₆ H ₁₅ NO ₂	1.66 ± 0.41
$C_4H_{10}O_2$	8.29±5.17	CoH10O2	2.96±0.91	$C_{12}H_{16}O_{2}$	1.65 ± 0.22
C ₂ H ₀ NO	7.62±3.67	$C_7H_{14}O_2$	2.94 ± 1.41	$C_{12} H_{22}O_{2}$	1.62 ± 0.46
C ₀ H ₀ O ₂	7.49 ± 1.25	C ₅ H ₀ NO	2.85 ± 1.07	CeH16O4	1.62 ± 0.27
$C_{10}H_{16}O_{2}$	7.41±4.34	$C_0H_{14}O_2$	2.82 ± 0.97	CoH20O4	1.58 ± 0.32
C ₅ H ₄ O	7.22 ± 2.94	C ₀ H ₁₂ O ₂	2.81±1	CoH10NO4	1.57 ± 0.51
CeH16O	6.92±3.2	C16H22O2	2.75 ± 0.43	C15H24O	1.56 ± 0.24
C4H10O2	6.8 ± 3.59	C.H.O.	2.69 ± 0.8	$C_{11}H_{14}O_{2}$	1.53 ± 0.26
C ₆ H ₆ O ₂	6.79±3.34	C10H20O2	2.68±0.84	$C_{12}H_{18}O_2$	1.5 ± 0.23
$C_7H_1O_2$	6.71 ± 3.96	$C_{10}H_{14}O$	2.66 ± 0.65	C ₆ H ₁₀ O ₂	1.46 ± 0.23
$C_7H_{14}O_2$	6.69±3.85	C ₂ H ₇ NO	2.65 ± 1.42	$C_{11}H_{14}O_2$	1.4 ± 0.27
$C_4H_{14}O_2$	6.63 ± 3.77	C7H12O4	2.62 ± 0.84	C11H22O4	1.25 ± 0.17
$C_{12}H_{24}O_3$	6.58±3.95	$C_{11}H_{22}O$	2.62 ± 0.99	11 -22 - 4	

Table S3. Geometric mean ion abundances (ions s⁻¹) and standard deviations measured for all calibrated and non-calibrated ions.

Table S4. Relative importance of different ionization pathways for select oxygenated organic compounds during Vocus-NH4⁺ ionization.

Standard compound	$[M+NH_4]^+$	$[M+H]^+$	$[\mathbf{M}]^+$
Methyl benzoate	100%	0%	0%
Cyclohexyl acetate	100%	0%	0%
2-Butoxy ethanol	100%	0%	0%
Glycerol	100%	0%	0%
Ethylene glycol hexyl ether	99.8%	0.2%	0%
6-methyl-5-hepten-2-one	63%	37%	0%
2-Hexanone	100%	0%	0%
PGMEA	88%	12%	0%
Pentanedioic acid dimethyl ester	86%	14%	0%
1-Methoxy-2-propanol	96%	1%	3%
Di(propylene glycol) propyl	97%	3%	0%
ether			
Benzyl alcohol	100%	0%	0%

Note: The presence of an unsaturated double bond (C=C) in 6-methyl-5-hepten-2-one results in significant ionization via the proton-transfer ionization pathway (Xu et al., 2022).

Table S5. Limits of detection (in parts per trillion, ppt) for different mass calibrated ion formulas calculated using 1 minute averages of zero periods that occurred 79 times over a 24-hour sampling period.

Compound formula, i	Probable compounds, i	Limit of detection, ppt
$C_4H_6O_2$	Vinyl acetate, Methyl acrylate	228
C_3H_6O	Acetone	203
$C_2H_6O_2$	Ethylene glycol	161
$C_4H_8O_2$	Ethyl acetate, Butyric acid	75
C_2H_3N	Acetonitrile	65
CUO	Methyl acetate, Propionic acid,	22
$C_3H_6O_2$	Hydroxyacetone, Ethyl formate	32
$C_8H_8O_2$	Methyl benzoate	31
C_4H_6O	MVK, MACR	26
$C_{9}H_{18}O_{2}$	Methyl octanoate	19
$C_7H_6O_2$	Benzoic acid	19
C_4H_8O	MEK, THF, Cyclopropyl carbinol	18
$C_{15}H_{24}$	Sesquiterpenes	18
C ₇ H ₆ O	Benzaldehyde	16
$C_{10}H_{16}$	Monoterpenes	14
$C_4H_{10}O_3$	Diethylene glycol	11
C ₅ H ₈ O ₂	Methyl methacrylate	11
$C_3H_8O_2$	2-Methoxy ethanol, propylene glycol	7.6
$C_5H_{10}O_2$	Isopropyl acetate, n-propyl acetate	7.4
C ₈ H ₂₄ O ₄ Si ₄	D4-siloxane	6.9
C ₈ H ₁₆ O ₂	Caprylic acid (i.e., Octanoic acid)	6.3
$C_0H_{10}O_2$	Benzyl acetate	6.2
C ₄ H ₁₀ O	2-Hexanone 4-Methyl-2-nentanone	47
C ₆ H ₁₂ O	Cyclopentanone	43
$C_{4}H_{4}O_{2}$	Maltol	4 1
CioHaoOcSic	D5-siloxane	4.0
$C_10H_10O_2$	Cyclobexyl acetate	4.0
C ₂ H ₂ O	Benzyl alcohol	3 7
$C_{1}H_{8}O$	Dipropylene glycol	3.6
$C_{6}H_{14}O_{3}$	Furfural	3 3
$C_{114}O_2$	Fugenol	3.1
CroHerOn	2 Phenoxyethyl isobutyrate	3.1
C-H-O-	Methyl paraben	2.9
$C_8H_8O_3$	TXIB	2.9
$C_{16}H_{30}O_4$	Diethyl nhthalate	2.9
$C_{12}H_{14}O_{4}$	n Butyl acetate	2.9
$C_{6}H_{12}O_{2}$	Menthol	2.8
$C_{10}\Pi_{20}O$	Dimethyl phthalate	1.7
C H O	Dimensiona glycal propyl athor	1.7
$C_{9}I_{20}O_{3}$	Ethyl norshon	1./
C H O	1 Methovy 2 propend	1.5
C H O	A actorhanona	1.5
	Acctophenone Butul perchap	1.5
$C_1 H_1 O_3$	Dutyl paraoen Dhonovy othenol	1.2
$C_8\Pi_{10}O_2$	6 Mathul 5 hantan 2 ana	1.2
$C_8\Pi_{14}O$	Dromyl morph on	1.1
$C_{10}I_{12}O_3$	Cyclobeyenene	1.1
$C_{6}\Pi_{10}O$	Mathail as malidana	1.0
C_5H_9NO	Promulano alvool mothul athen operate	0.9
$C_6H_{12}O_5$	Propylene glycol melnyl etner acetate	0.9
$C_{12}H_{24}O_3$		0.9
$C_3H_8U_3$	Giycerol	0.8
$C_8\Pi_{18}O_3$	2-(2-Butoxyetnoxy)ethanol, DGBE	0.8
$C_6H_{14}O_2$	2-Butoxyetnanol, 1-propoxy-2-propanol	0.8
$C_7 \Pi_{12} O_4$	Pentadioic acid, dimethyl ester	0./
$C_6H_{10}O_3$	Ethyl acetoacetate	0.6
$C_{10}H_{20}O_2$	Hydroxycitronellal	0.6
$C_{10}H_{12}O$	Benzyl acetone	0.5
$C_6H_{14}O_4$	I riethylene glycol	0.5
$C_8H_{18}O_2$	Ethylene glycol hexyl ether	0.2

Note: While the hourly measurements used in this study will utilize a greater number of points for averaging, the ion signal averages over longer (> 1 min) durations are not expected to yield significant differences in the detection limits (Bertram et al., 2011; Novak, Vermeuel, & Bertram, 2020).

 Table S6. Emissions contributions to select major species in New York City calculated using VCPy, anthropogenic emissions from the National Emissions Inventory (NEI) and SPECIATE databases. Note: Fractions of contribution are calculated using total emissions of all isomers in each source category. This table includes all table 1 compounds with emissions in the NEI inventory and were calibrated in this study.

	% Contributions from individual source types [¶]					
Compounds	Point	On-road	Non-road	VCPs	Other non- point	
Ethylene glycol	0.0	0.0	0.0	100.0	0.0	
Acetone	0.1	0.2	0.4	99.0	0.3	
Ethyl acetate, Butyric acid	0.0	0.0	0.0	92.5	7.5	
Methyl acetate, Propionic acid, Hydroxyacetone, Ethyl formate	0.0	0.0	0.0	100.0	0.0	
Monoterpenes (e.g., limonene, α-Pinene)	0.0	0.2	0.0	99.8	0.0	
MEK, THF, Cyclopropyl carbinol	0.1	6.6	4.8	72.0	16.5	
Isopropyl acetate, n-propyl acetate	0.0	0.0	0.0	82.3	17.7	
Methyl methacrylate	0.0	0.0	0.0	100.0	0.0	
Butyl acetate	0.0	0.0	0.0	92.9	7.1	
2-Methoxy ethanol, propylene glycol	0.0	0.0	0.0	100.0	0.0	
2-Hexanone, 4-Methyl-2-pentanone	0.0	0.0	0.0	100.0	0.0	
Dipropylene glycol	0.0	0.0	0.0	100.0	0.0	
2-Butoxyethanol*, 1-propoxy-2-propanol	0.0	0.0	0.0	98.6	1.4	
D4 siloxane	0.0	0.0	0.0	100.0	0.0	
D5 siloxane	0.0	0.0	0.0	100.0	0.0	
Benzyl alcohol	0.0	0.0	0.0	100.0	0.0	
1-Methoxy-2-propanol	0.1	0.0	0.0	95.7	4.3	
Cyclohexanone	0.0	0.0	0.0	99.9	0.1	
PGMEA, 2-Ethoxyethyl acetate	0.0	0.0	0.0	97.0	3.0	
Methyl pyrrolidone	0.0	0.0	0.0	100.0	0.0	
Phenoxyethanol	0.0	0.0	0.0	100.0	0.0	
2-(2-Butoxyethoxy)ethanol, DGBE	0.0	0.0	0.0	99.4	0.6	
Dimethyl phthalate	0.0	0.0	0.0	100.0	0.0	
Benzaldehyde	0.0	36	58	4.5	0.6	
Texanol	0.0	0.0	0.0	100.0	0.0	
Pentadioic acid, dimethyl ester	0.0	0.0	0.0	100.0	0.0	
Ethylene glycol hexyl ether, 1,2-Octanediol	0.0	0.0	0.0	100.0	0.0	
Glycerol	0.0	0.0	0.0	100.0	0.0	
Triethylene glycol	0.0	0.0	0.0	100.0	0.0	
Diethylene glycol	0.0	0.0	0.0	100.0	0.0	
Menthol	0.0	0.0	0.0	100.0	0.0	
Dipropylene glycol propyl ether	0.0	0.0	0.0	100.0	0.0	

Source types are defined as per the National Emissions Inventory (NEI) framework. Point sources include industrial and non-industrial commercial facilities; Other non-point sources include cooking, residential heating, commercial combustion, asphalt paving and other commercial and consumer solvent use; On-road sources are primarily heavy- and light-duty vehicles driven on gasoline, diesel and other fuels; Non-road sources include off-road vehicles and equipment that use gasoline, diesel or other fuels, and, VCPs are volatile chemical products used in both commercial and consumer applications.

Table S7. List of the calibrated ion formulas measured using the NH₄⁺-ToF instrument, their possible chemical names and examples of known uses. Listed examples (for calibrated compounds and other potential isomers) are not intended to be comprehensive, but provide examples of common uses that can aid in the interpretation of observations.

Mass calibrated ions	Analytical standards used	Other likely contributing isomers	Example uses/sources of all listed isomers
C10H30O5Si5	D5-siloxane		Cosmetic products, antiperspirants
$C_6H_{14}O_4$	Triethylene glycol		Automobile fluids, lubricants, solvents
$C_6H_{10}O_3$	Ethyl acetoacetate		
$C_5H_4O_2$	Furfural		Feedstock chemical, specialty solvent, wood off- gassing, biomass burning
$C_8H_{18}O_2$	Ethylene glycol hexyl ether; 1,2 Octanediol		
$C_6H_{10}O$	Cyclohexanone		Solvent for paints, degreasers, polymers, etc.
$C_{10}H_{20}O_2$	Hydroxycitronellal	Octyl acetate, p-Menthane-3,8-diol	Fragrances, solvents, insect repellants
$C_{12}H_{24}O_3$	Texanol		Paint solvent, other solvents
C_8H_8O	Acetophenone	2-methyl benzaldehyde, phenyl acetaldehyde	Automobile exhaust, fragrances
$C_{10}H_{12}O$	Benzyl acetone	Anethole, Estragole, Cuminaldehyde	Perfumery, cosmetic products
$C_7H_{12}O_4$	Pentadioic acid, dimethyl ester	Diethyl malonate	Fragrances
$C_6H_{12}O_3$	PGMEA; 2-Ethoxyethyl acetate		Coatings, printing inks, deicing formulations
$C_4H_{10}O_2$	1-Methoxy-2-propanol	2-Ethoxyethanol, 1,4 Butanediol	Industrial solvent
$C_6H_{12}O_2$	Butyl acetate	Propyl propanoate, Methyl pentanoate, Ethyl butyrate, Diacetone alcohol	Fragrances, paints, solvents
$\mathrm{C_6H_{14}O_2}$	2-Butoxyethanol	2-Methyl-2,4-pentanediol	Solvents, cosmetic products, coatings, surfactant stabilizer
$C_3H_8O_2$	2-Methoxy ethanol; Propylene glycol	Dimethoxymethane	Solvent for varnishes, dyes, wood stains
$C_8H_{18}O_3$	2-(2-Butoxyethoxy)ethanol; DGBE		Paints, inks, surface cleaners, varnishes
$C_8H_{14}O$	6-Methyl 5-hepten-2-one	Filbertone	Skin oil oxidation product, fragrances
$C_{10}H_{12}O_3$	Propyl paraben		Cosmetics
$C_6H_6O_3$	Maltol	Pyrolgallol, Hydroxymethylfurfural	Dyes, other industrial processing, food additive
$C_{10}H_{10}O_4$	Dimethyl pthalate		Insect repellents, lacquer coatings, plastics
C_5H_8O	Cyclopentanone	3-Penten-2-one	Precursor to fragrances, flavoring agent
C_4H_8O	Methyl ethyl ketone	Tetrahydrofuran	Paints, dyes, adhesive remover, degreasers, solvent
$C_6H_{12}O$	2-Hexanone; 4-Methyl-2- pentanone	Methyl isobutyl ketone	Solvent
$C_8H_{10}O_2$	Phenoxy ethanol	Anisyl alcohol, 1,4-Dimethoxybenzene	Fragrances, soaps
C ₅ H ₉ NO	Methyl pyrrolidone		Industrial solvent
C_7H_8O	Benzyl alcohol	Anisole	General solvent
$C_9H_{10}O_3$	Ethyl paraben	Ethyl salicylate	Cosmetics
$C_6H_{14}O_3$	Dipropylene glycol	2-(2-Ethoxyethoxy)ethanol	Industrial solvent, paints, wood stains, textile inks, brake fluids
$C_5H_8O_2$	Methyl methacrylate	Acetylpropionyl, 2- Methyltetrahydrofuran-3-one	Solvents for paints, inks and lacquers, coffee aroma
C_3H_6O	Acetone	Propionaldehyde	Wide-use solvent, disinfectant
C_4H_6O	Methyl vinyl ketone	Methacrolein, Crotonaldehyde	Chemical precursor
$C_{11}H_{14}O_3$	Butyl paraben		Antioxidant, cosmetic preservatives
$C_5H_{10}O_2$	Isopropyl acetate; n-Propyl acetate	Isobutyl formate, Methyl isobutyrate	Fragrances, industrial solvent

C_7H_6O	Benzaldehyde		Soaps, dyes, fragrances
$C_8H_8O_3$	Methyl paraben		Cosmetics, personal care products
$C_{10}H_{20}O$	Menthol	Citronellal, Decanal, Rhodinol	Fragrances, insect repellants, food flavoring
$C_4H_{10}O_3$	Diethylene glycol		Solvent for resins, dyes, oils
$C_{10}H_{12}O_2$	Eugenol	Chavibetol, Propyl benzoate, Hinokitiol	Fragrances, cosmetic preservatives, food flavoring, consumer products
$C_{12}H_{14}O_4$	Diethyl phthalate		Plasticizer in consumer products
$C_{16}H_{30}O_4$	TXIB		Inks, coatings, lacquers
$C_{9}H_{20}O_{3}$	Dipropylene glycol propyl ether		Industrial solvent, inks, coatings
C_2H_3N	Acetonitrile		Industrial solvent, chemical precursor, combustion by-product
$\mathrm{C_3H_6O_2}$	Methyl acetate; Propionic acid	Hydroxyacetone, Ethyl formate	Industrial solvent, naturally occurring
$\mathrm{C_8H_{14}O_2}$	Cyclohexyl acetate		Flavoring agent, fragrances
$C_9H_{10}O_2$	Benzyl acetate	Ethyl benzoate, Acetanisole	Fragrances, food flavoring
$\mathrm{C_{12}H_{16}O_{3}}$	2-Phenoxyethyl isobutyrate		
$C_4H_8O_2$	Butyric acid; Ethyl acetate	Methyl propionate, Acetoin	Industrial solvent, coatings, fragrances, food flavoring
$C_8H_8O_2$	Methyl benzoate	Phenylacetic acid	Fragrances
$C_{10}H_{16}$	Monoterpenes		Widely-used fragrances, Food flavoring, biogenic sources
$\mathrm{C_7H_6O_2}$	Benzoic acid		Fragrances, dyes, insect repellents
$C_8H_{16}O_2$	Octanoic acid	Hexyl acetate	Disinfectants, skin products, industrial solvent
$C_8H_{24}O_4Si_4$	D4-siloxane		Adhesives, silicone rubbers, gels
$C_9H_{18}O_2$	Methyl octanoate	Heptyl acetate, Pentyl butyrate	Fragrances, cigarette additive
$C_{15}H_{24}$	Sesquiterpenes		Fragrances, biogenic sources
$C_2H_6O_2$	Ethylene glycol	Methoxymethanol	Antifreeze, coolant, de-icing agent, paints, printing inks
$C_4H_6O_2$	Vinyl acetate; Methyl acrylate	γ-Butyrolactone, Methacrylic acid, Diacetyl	Monomer, precursor/feedstock, nail primers, fragrances
$C_3H_8O_3$	Glycerol		Personal care products, foods

Table S8. List of ions calibrated with authentic standards (Table S2), probable contributing isomers, background subtracted geometric mean concentrations (with standard deviations), annual emissions in each inventory, and measured mean concentration enhancement ratios (with standard deviations over the measurement period and linear correlation coefficients) with acetone and other tracers.

Geo mean Emissions, <u>Ratios to t</u>			atios to tracer compo	is to tracer compounds (Δ mol/ Δ mol) †			
Compound formula, i	Probable compounds, i	concentration, ppt, i	kg yr ⁻¹ VCPy+, FIVE-VCP	$\Delta i / \Delta Benzene (r)$	∆i*1000/∆CO (r)	∆i/∆Acetone (r)	∆i/∆Benzyl alcohol (r)
$C_2H_6O_2$	Ethylene glycol	2437±3622	361511, 236310	1.1E+01±2.5E+01 (0.79)	9.1E+00±2.0E+01 (0.83)	2.8E+00±6.4E+00	3.0E+02±6.5E+02
C_3H_6O	Acetone*	977±783	1360720, 1587220	3.8E+00±6.7E+00 (0.83)	3.3E+00±5.2E+00 (0.87)		$1.1E+02\pm1.6E+02$ (0.92)
$C_4H_6O_2$	Methyl acrylate*, Diacetyl*	810±396	1905, 4638	2.1E+00±3.6E+00 (0.82)	1.8E+00±2.7E+00 (0.89)	5.6E-01±8.9E-01 (0.95)	5.9E+01±8.6E+01 (0.94)
$C_4H_8O_2$	Ethyl acetate*, Butyric acid	679±664	30225, 293	2.8E+00±5.3E+00 (0.72)	2.3E+00±4.1E+00 (0.73)	7.2E-01±1.3E+00 (0.73)	7.6E+01±1.3E+02 (0.67)
$C_3H_6O_2$	Methyl acetate*, Propionic acid, Hydroxyacetone, Ethyl formate	435±377	50747, 103808	1.7E+00±3.1E+00 (0.64)	1.5E+00±2.4E+00 (0.65)	4.5E-01±7.9E-01 (0.76)	4.8E+01±7.7E+01 (0.7)
C_2H_3N	Acetonitrile	246±102		8.5E-01±1.2E+00 (0.32)	7.2E-01±9.1E-01 (0.24)	2.2E-01±3.0E-01 (0.35)	2.3E+01±2.8E+01 (0.33)
$C_{10}H_{16}$	Monoterpenes (e.g., limonene*, α-Pinene*)	156±105	60327, 15516	5.1E-01±9.0E-01 (0.79)	4.3E-01±6.9E-01 (0.87)	1.3E-01±2.3E-01 (0.85)	1.4E+01±2.2E+01 (0.94)
C_4H_8O	MEK, THF, Cyclopropyl carbinol*	126±82	57457, 277556	4.3E-01±7.3E-01 (0.79)	3.7E-01±5.6E-01 (0.84)	1.1E-01±1.8E-01 (0.93)	1.2E+01±1.8E+01 (0.85)
$C_5H_{10}O_2$	Isopropyl acetate*, n- propyl acetate*	114±106	3457, 5289	4.4E-01±8.3E-01 (0.61)	3.7E-01±6.5E-01 (0.69)	1.1E-01±2.1E-01 (0.69)	1.2E+01±2.1E+01 (0.58)
$C_5H_8O_2$	Methyl methacrylate*	108±121	1102, -	4.1E-01±8.8E-01 (0.45)	3.5E-01±7.0E-01 (0.37)	1.1E-01±2.2E-01 (0.5)	1.1E+01±2.2E+01 (0.41)
$C_6H_{12}O_2$	Butyl acetate*	103±138	80120, 56862	4.9E-01±1.0E+00 (0.76)	4.1E-01±8.1E-01 (0.77)	1.3E-01±2.6E-01 (0.87)	1.3E+01±2.6E+01 (0.83)
$C_8H_8O_2$	Methyl benzoate*	92±15		1.1E-01±1.6E-01 (0.72)	9.1E-02±1.2E-01 (0.75)	2.8E-02±4.1E-02 (0.78)	3.0E+00±3.8E+00 (0.79)
$C_8H_{16}O_2$	Caprylic acid* (i.e., Octanoic acid)	87±47	5281, -	2.5E-01±4.2E-01 (0.81)	2.1E-01±3.2E-01 (0.92)	6.5E-02±1.1E-01 (0.92)	6.9E+00±1.0E+01 (0.95)
$C_3H_8O_2$	2-Methoxy ethanol, propylene glycol*	82±51	240692, -	2.9E-01±4.7E-01 (0.71)	2.4E-01±3.6E-01 (0.71)	7.5E-02±1.2E-01 (0.85)	7.9E+00±1.1E+01 (0.77)
$C_{9}H_{18}O_{2}$	Methyl octanoate, Nonanoic acid*	77±24		1.4E-01±2.3E-01 (0.79)	1.2E-01±1.7E-01 (0.9)	3.7E-02±5.7E-02 (0.9)	3.9E+00±5.4E+00 (0.94)
C_7H_6O	Benzaldehyde*	76±37	3156, 14833	2.1E-01±3.4E-01 (0.83)	1.8E-01±2.6E-01 (0.88)	5.4E-02±8.6E-02 (0.88)	5.7E+00±8.2E+00 (0.93)
$C_{15}H_{24}$	Sesquiterpenes (e.g., β- Caryophyllene)	70±11		7.3E-02±1.2E-01 (0.73)	6.2E-02±8.6E-02 (0.83)	1.9E-02±2.9E-02 (0.78)	2.0E+00±2.7E+00 (0.9)
$C_6H_{12}O$	2-Hexanone*, 4-Methyl- 2-pentanone	59±42	6162, 14990	2.0E-01±3.6E-01 (0.83)	1.7E-01±2.8E-01 (0.84)	5.3E-02±9.0E-02 (0.92)	5.6E+00±8.8E+00 (0.91)
$C_7H_6O_2$	Benzoic acid*	59±9		5.8E-02±9.0E-02 (0.48)	4.9E-02±6.7E-02 (0.39)	1.5E-02±2.2E-02 (0.4)	1.6E+00±2.1E+00 (0.45)
C_4H_6O	MVK, MACR	58±39		1.9E-01±3.3E-01 (0.83)	1.6E-01±2.5E-01 (0.87)	4.9E-02±8.3E-02 (0.94)	5.1E+00±8.0E+00 (0.94)
$C_8H_{14}O_2$	Cyclohexyl acetate	43±20		1.2E-01±2.0E-01 (0.81)	1.0E-01±1.5E-01 (0.89)	3.2E-02±4.9E-02 (0.95)	3.4E+00±4.7E+00 (0.95)
$C_9H_{10}O_2$	Benzyl acetate	39±19	7, -	1.0E-01±1.7E-01 (0.82)	8.8E-02±1.3E-01 (0.89)	2.7E-02±4.4E-02 (0.87)	2.9E+00±4.2E+00 (0.95)
$C_6H_{14}O_3$	Dipropylene glycol	36±28	41085, 105732	1.4E-01±2.4E-01 (0.65)	1.2E-01±1.9E-01 (0.71)	3.6E-02±6.1E-02 (0.7)	3.8E+00±5.9E+00 (0.8)
$C_4H_{10}O_3$	Diethylene glycol	32±17	7026, 110939	8.9E-02±1.5E-01 (0.84)	7.5E-02±1.2E-01 (0.87)	2.3E-02±3.8E-02 (0.91)	2.4E+00±3.7E+00 (0.92)
$C_{10}H_{20}O$	Menthol, Decanal*	31±18	971, 0.05	9.4E-02±1.6E-01 (0.77)	7.9E-02±1.2E-01 (0.89)	2.4E-02±4.0E-02 (0.9)	2.6E+00±3.8E+00 (0.96)
C_5H_8O	Cyclopentanone	30±16		8.4E-02±1.4E-01 (0.84)	7.1E-02±1.1E-01 (0.9)	2.2E-02±3.5E-02 (0.95)	2.3E+00±3.4E+00 (0.95)
$C_6H_{14}O_2$	2-Butoxyethanol*, 1- propoxy-2-propanol*	23±19	109288, 72125	8.9E-02±1.6E-01 (0.8)	7.5E-02±1.2E-01 (0.87)	2.3E-02±3.9E-02 (0.91)	2.4E+00±3.8E+00 (0.9)
$C_8H_{24}O_4Si_4$	D4 siloxane*	23±3	12872, 92707	2.3E-02±3.6E-02 (0.38)	2.0E-02±2.7E-02 (0.48)	6.0E-03±8.9E-03 (0.48)	6.4E-01±8.5E-01 (0.59)
$C_{16}H_{30}O_4$	TXIB*	18±4	-,2264	2.6E-02±4.2E-02 (0.73)	2.2E-02±3.2E-02 (0.83)	6.8E-03±1.1E-02 (0.75)	7.2E-01±1.0E+00 (0.86)

$C_{10}H_{12}O_2$	Eugenol	16±5	45, -	3.1E-02±4.9E-02 (0.82)	2.6E-02±3.7E-02 (0.85)	7.9E-03±1.2E-02 (0.91)	8.4E-01±1.2E+00 (0.92)
$C_9H_{20}O_3$	Dipropylene glycol propyl ether	16±4	4150, 5966	2.3E-02±3.8E-02 (0.65)	2.0E-02±2.9E-02 (0.71)	6.1E-03±9.5E-03 (0.62)	6.4E-01±9.1E-01 (0.73)
$C_{12}H_{16}O_{3}$	2-Phenoxyethyl isobutyrate	16±2		1.6E-02±2.4E-02 (0.73)	1.3E-02±1.8E-02 (0.76)	4.1E-03±5.9E-03 (0.79)	4.4E-01±5.6E-01 (0.83)
$C_{10}H_{30}O_5Si_5$	D5 siloxane*	16±15	272778, 323982	6.7E-02±1.2E-01 (0.7)	5.7E-02±9.6E-02 (0.82)	1.7E-02±3.1E-02 (0.82)	1.8E+00±3.0E+00 (0.9)
$C_{12}H_{14}O_4$	Diethyl phthalate	15±3	17138, -	2.3E-02±3.4E-02 (0.64)	1.9E-02±2.5E-02 (0.7)	5.9E-03±8.4E-03 (0.65)	6.2E-01±7.8E-01 (0.71)
C_7H_8O	Benzyl alcohol	14±6	22898, 20791	3.6E-02±5.9E-02 (0.85)	3.1E-02±4.5E-02 (0.92)	9.5E-03±1.5E-02 (0.92)	
$C_8H_{14}O$	6-Methyl 5-hepten-2-one	14±7		4.1E-02±6.6E-02 (0.81)	3.4E-02±5.0E-02 (0.89)	1.1E-02±1.6E-02 (0.96)	1.1E+00±1.6E+00 (0.96)
$C_8H_8O_3$	Methyl paraben	14±4		2.4E-02±3.9E-02 (0.83)	2.1E-02±2.9E-02 (0.86)	6.3E-03±9.7E-03 (0.83)	6.7E-01±9.2E-01 (0.87)
$C_4H_{10}O_2$	1-Methoxy-2-propanol	13±8	3558, 2182	4.1E-02±7.1E-02 (0.78)	3.5E-02±5.4E-02 (0.85)	1.1E-02±1.8E-02 (0.89)	1.1E+00±1.7E+00 (0.89)
$C_5H_4O_2$	Furfural*	13±6	- , 0.01	3.4E-02±5.7E-02 (0.71)	2.9E-02±4.3E-02 (0.62)	8.8E-03±1.4E-02 (0.56)	9.3E-01±1.4E+00 (0.66)
$C_6H_{10}O$	Cyclohexanone	12±6	384, 96838	3.6E-02±5.9E-02 (0.84)	3.0E-02±4.5E-02 (0.91)	9.4E-03±1.5E-02 (0.96)	9.9E-01±1.4E+00 (0.92)
$C_6H_{12}O_3$	PGMEA, 2-Ethoxyethyl acetate	12±11	10327, 7450	4.7E-02±8.8E-02 (0.78)	4.0E-02±6.8E-02 (0.76)	1.2E-02±2.2E-02 (0.9)	1.3E+00±2.2E+00 (0.86)
$C_6H_6O_3$	Maltol	11±3		1.3E-02±2.3E-02 (0.59)	$1.1E-02\pm1.7E-02$ (0.44)	3.4E-03±5.6E-03 (0.42)	3.6E-01±5.4E-01 (0.49)
C ₈ H ₈ O	Acetophenone*	10±6	4, -	3.2E-02±5.5E-02 (0.81)	2.7E-02±4.2E-02 (0.85)	8.4E-03±1.4E-02 (0.89)	8.8E-01±1.3E+00 (0.9)
C ₅ H ₉ NO	Methyl pyrrolidone	9±3	12749, 14015	1.9E-02±3.1E-02 (0.72)	1.6E-02±2.3E-02 (0.78)	5.0E-03±7.7E-03 (0.77)	5.3E-01±7.4E-01 (0.78)
$C_8H_{10}O_2$	Phenoxyethanol*	9±3	9851, 0.23	1.7E-02±2.9E-02 (0.78)	1.5E-02±2.2E-02 (0.84)	4.5E-03±7.2E-03 (0.86)	4.8E-01±6.9E-01 (0.91)
$C_8H_{18}O_3$	2-(2- Butoxyethoxy)ethanol, DGBE	8±4	48681, 62011	2.1E-02±3.5E-02 (0.85)	1.8E-02±2.7E-02 (0.91)	5.4E-03±8.7E-03 (0.89)	5.7E-01±8.4E-01 (0.94)
$C_{10}H_{10}O_4$	Dimethyl phthalate	7±1	70, -	9.1E-03±1.5E-02 (0.62)	7.7E-03±1.1E-02 (0.62)	2.4E-03±3.6E-03 (0.55)	2.5E-01±3.4E-01 (0.65)
$C_{12}H_{24}O_3$	Texanol*	7±4	267615, 179276	2.0E-02±3.5E-02 (0.57)	1.7E-02±2.7E-02 (0.74)	5.3E-03±8.7E-03 (0.67)	5.6E-01±8.4E-01 (0.74)
$C_9H_{10}O_3$	Ethyl paraben	6±1		7.0E-03±1.1E-02 (0.84)	5.9E-03±8.2E-03 (0.84)	1.8E-03±2.7E-03 (0.85)	1.9E-01±2.6E-01 (0.9)
$C_{11}H_{14}O_3$	Butyl paraben	6±1		8.5E-03±1.3E-02 (0.71)	7.2E-03±9.4E-03 (0.74)	2.2E-03±3.1E-03 (0.8)	2.3E-01±2.9E-01 (0.76)
$C_6H_{10}O_3$	Ethyl acetoacetate	4±2		1.3E-02±2.2E-02 (0.85)	1.1E-02±1.6E-02 (0.87)	3.4E-03±5.4E-03 (0.93)	3.6E-01±5.2E-01 (0.91)
$C_{10}H_{12}O$	Benzyl acetone	4±2		1.0E-02±1.7E-02 (0.85)	8.5E-03±1.3E-02 (0.91)	2.6E-03±4.2E-03 (0.94)	2.8E-01±4.1E-01 (0.97)
$C_7H_{12}O_4$	Pentadioic acid, dimethyl ester	4±1	4942, 25606	7.2E-03±1.1E-02 (0.8)	6.1E-03±8.5E-03 (0.84)	1.9E-03±2.8E-03 (0.87)	2.0E-01±2.7E-01 (0.89)
$C_{10}H_{12}O_3$	Propyl paraben	4±1		6.3E-03±1.0E-02 (0.54)	5.3E-03±7.7E-03 (0.46)	$1.6E-03\pm 2.5E-03$ (0.42)	1.7E-01±2.4E-01 (0.51)
$C_{10}H_{20}O_2$	Hydroxycitronellal	3±1		5.3E-03±8.4E-03 (0.78)	4.5E-03±6.3E-03 (0.88)	1.4E-03±2.1E-03 (0.92)	1.5E-01±2.0E-01 (0.95)
$C_8H_{18}O_2$	Ethylene glycol hexyl ether*, 1,2-Octanediol	2±1	15836, 7749	5.8E-03±9.6E-03 (0.8)	4.9E-03±7.3E-03 (0.88)	1.5E-03±2.4E-03 (0.87)	1.6E-01±2.3E-01 (0.94)
$C_3H_8O_3$	Glycerol	1±0.5	148441, 949405	3.3E-04±4.9E-03 (0.64)	1.6E-03±3.7E-03 (0.65)	5.3E-04±1.2E-03 (0.74)	6.3E-02±1.2E-01 (0.73)
$C_6H_{14}O_4$	Triethylene glycol	1±0.3	1718, 955	2.1E-03±3.4E-03 (0.47)	1.8E-03±2.6E-03 (0.45)	5.5E-04±8.4E-04 (0.4)	5.8E-02±8.0E-02 (0.51)

References

- Bertram, T. H., Kimmel, J. R., Crisp, T. A., Ryder, O. S., Yatavelli, R. L. N., Thornton, J. A., ... Worsnop, D. R. (2011). A field-deployable, chemical ionization time-of-flight mass spectrometer. *Atmospheric Measurement Techniques*, 4(7), 1471–1479. https://doi.org/10.5194/AMT-4-1471-2011
- Gkatzelis, G. I., Coggon, M. M., McDonald, B. C., Peischl, J., Aikin, K. C., Gilman, J. B., ...
 Warneke, C. (2021). Identifying Volatile Chemical Product Tracer Compounds in U.S. Cities. *Environmental Science and Technology*, 55(1), 188–199. https://doi.org/10.1021/ACS.EST.0C05467/SUPPL FILE/ES0C05467 SI 001.PDF
- Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., ... De Gouw, J. (2018). Non-methane organic gas emissions from biomass burning: Identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment. *Atmospheric Chemistry and Physics*, 18(5), 3299–3319. https://doi.org/10.5194/ACP-18-3299-2018
- Novak, G. A., Vermeuel, M. P., & Bertram, T. H. (2020). Simultaneous detection of ozone and nitrogen dioxide by oxygen anion chemical ionization mass spectrometry: A fast-timeresponse sensor suitable for eddy covariance measurements. *Atmospheric Measurement Techniques*, 13(4), 1887–1907. https://doi.org/10.5194/AMT-13-1887-2020
- Sheu, R., Stönner, C., Ditto, J. C., Klüpfel, T., Williams, J., & Gentner, D. R. (2020). Human transport of thirdhand tobacco smoke: A prominent source of hazardous air pollutants into indoor nonsmoking environments. *Science Advances*, 6(10), eaay4109. https://doi.org/10.1126/sciadv.aay4109
- Xu, L., Coggon, M. M., Stockwell, C. E., Gilman, J. B., Robinson, M. A., Breitenlechner, M., ...
 Warneke, C. (2022). A Chemical Ionization Mass Spectrometry Utilizing Ammonium Ions (NH + 4 CIMS) for Measurements of Organic Compounds in the Atmosphere. *Aerosol Measurement Techniques Discussions*. https://doi.org/10.5194/amt-2022-228