Research article
03 May 2021
Research article
| 03 May 2021
Asymmetry and pathways of inter-hemispheric transport in the upper troposphere and lower stratosphere
Xiaolu Yan et al.
Related authors
Xiaolu Yan, Paul Konopka, Felix Ploeger, Aurélien Podglajen, Jonathon S. Wright, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 15629–15649, https://doi.org/10.5194/acp-19-15629-2019, https://doi.org/10.5194/acp-19-15629-2019, 2019
Short summary
Short summary
The Asian and North American summer monsoons (ASM and NASM) have considerable influence on stratospheric chemistry and physics. More air mass is transported from the monsoon regions to the tropical stratosphere when the tracers are released clearly below the tropopause than when they are released close to the tropopause. Results for different altitudes of air origin reveal two transport pathways (monsoon and tropical) from the upper troposphere over the monsoon regions to the tropical pipe.
Qianshan He, Jianzhong Ma, Xiangdong Zheng, Xiaolu Yan, Holger Vömel, Frank G. Wienhold, Wei Gao, Dongwei Liu, Guangming Shi, and Tiantao Cheng
Atmos. Chem. Phys., 19, 8399–8406, https://doi.org/10.5194/acp-19-8399-2019, https://doi.org/10.5194/acp-19-8399-2019, 2019
Short summary
Short summary
An enhanced aerosol layer in the upper troposphere--lower stratosphere was observed by a COBALD over the Tibetan Plateau, in the summer of 2014. The color index of the enhanced aerosol layer indicates the prevalence of dominant fine particles with a mode radius < 0.1 μm. Unlike the very small particles at low relative humidity (RHi < 40%), the relatively large particles in the aerosol layer were generally very hydrophilic as their size increased dramatically with relative humidity.
Mengchu Tao, Paul Konopka, Felix Ploeger, Xiaolu Yan, Jonathon S. Wright, Mohamadou Diallo, Stephan Fueglistaler, and Martin Riese
Atmos. Chem. Phys., 19, 6509–6534, https://doi.org/10.5194/acp-19-6509-2019, https://doi.org/10.5194/acp-19-6509-2019, 2019
Short summary
Short summary
This paper examines the annual and interannual variations as well as long-term trend of modeled stratospheric water vapor with a Lagrangian chemical transport model driven by ERA-I, MERRA-2 and JRA-55. We find reasonable consistency among the annual cycle, QBO and the variabilities induced by ENSO and volcanic aerosols. The main discrepancies are linked to the differences in reanalysis upwelling rates in the lower stratosphere. The trends are sensitive to the reanalyses that drives the model.
Felix Ploeger, Bernard Legras, Edward Charlesworth, Xiaolu Yan, Mohamadou Diallo, Paul Konopka, Thomas Birner, Mengchu Tao, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 19, 6085–6105, https://doi.org/10.5194/acp-19-6085-2019, https://doi.org/10.5194/acp-19-6085-2019, 2019
Short summary
Short summary
We analyse the change in the circulation of the middle atmosphere based on current generation meteorological reanalysis data sets. We find that long-term changes from 1989 to 2015 are similar for the chosen reanalyses, mainly resembling the forced response in climate model simulations to climate change. For shorter periods circulation changes are less robust, and the representation of decadal variability appears to be a major uncertainty for modelling the circulation of the middle atmosphere.
Xiaolu Yan, Paul Konopka, Felix Ploeger, Mengchu Tao, Rolf Müller, Michelle L. Santee, Jianchun Bian, and Martin Riese
Atmos. Chem. Phys., 18, 8079–8096, https://doi.org/10.5194/acp-18-8079-2018, https://doi.org/10.5194/acp-18-8079-2018, 2018
Short summary
Short summary
Many works investigate the impact of ENSO on the troposphere. However, only a few works check the impact of ENSO at higher altitudes.
Here, we analyse the impact of ENSO on the vicinity of the tropopause using reanalysis, satellite, in situ and model data. We find that ENSO shows the strongest signal in winter, but its impact can last until early the next summer. The ENSO anomaly is insignificant in late summer. Our study can help to understand the atmosphere propagation after ENSO.
Xiaolu Yan, Jonathon S. Wright, Xiangdong Zheng, Nathaniel J. Livesey, Holger Vömel, and Xiuji Zhou
Atmos. Meas. Tech., 9, 3547–3566, https://doi.org/10.5194/amt-9-3547-2016, https://doi.org/10.5194/amt-9-3547-2016, 2016
Short summary
Short summary
We evaluate Aura Microwave Limb Sounder retrievals of temperature, water vapour and ozone over the eastern Tibetan Plateau against measurements from balloon-borne instruments. The newest version of the retrievals (v4) represents a slight improvement over the previous version, particularly with respect to data yields and upper tropospheric ozone. We identify several biases that did not appear in evaluations conducted elsewhere, highlighting the unique challenges of remote sensing in this region.
Q. S. He, C. C. Li, J. Z. Ma, H. Q. Wang, X. L. Yan, J. Lu, Z. R. Liang, and G. M. Qi
Atmos. Chem. Phys., 14, 11687–11696, https://doi.org/10.5194/acp-14-11687-2014, https://doi.org/10.5194/acp-14-11687-2014, 2014
Liubov Poshyvailo-Strube, Rolf Müller, Stephan Fueglistaler, Michaela I. Hegglin, Johannes C. Laube, C. Michael Volk, and Felix Ploeger
Atmos. Chem. Phys., 22, 9895–9914, https://doi.org/10.5194/acp-22-9895-2022, https://doi.org/10.5194/acp-22-9895-2022, 2022
Short summary
Short summary
Brewer–Dobson circulation (BDC) controls the composition of the stratosphere, which in turn affects radiation and climate. As the BDC cannot be measured directly, it is necessary to infer its strength and trends indirectly. In this study, we test in the
model worlddifferent methods for estimating the mean age of air trends based on a combination of stratospheric water vapour and methane data. We also provide simple practical advice of a more reliable estimation of the mean age of air trends.
Richard Wilson, Clara Pitois, Aurélien Podglajen, Albert Hertzog, Miléna Corcos, and Riwal Plougonven
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-178, https://doi.org/10.5194/amt-2022-178, 2022
Preprint under review for AMT
Short summary
Short summary
STRATEOLE-2 is an French-US initiative designed to study atmospheric events in the tropical upper troposphere - lower stratosphere (UTLS). It consists in launching several balloons capable of staying aloft at an altitude of 18 to 20 km high for over 3 months. The present article describe methods to detect the occurrence of atmospheric turbulence - one efficient process impacting the properties of the atmosphere - composition, drag - through stirring and mixing.
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
EGUsphere, https://doi.org/10.5194/egusphere-2022-517, https://doi.org/10.5194/egusphere-2022-517, 2022
Short summary
Short summary
The long duration atmospheric impact of the Hunga Tonga eruption is a plume of water and sulphate aerosols in the stratosphere that persisted already during five months. We study this evolution using a battery of satellite instruments and analyse the unusual behaviour of this plume as its two components first moved down rapidly and then separated in two layers. We also observe the curious self-organization in compact and long-lived patches.
Suvarna Fadnavis, Prashant Chavan, Akash Joshi, Sunil M. Sonbawne, Asutosh Acharya, Panuganti C. S. Devara, Alexandru Rap, Felix Ploeger, and Rolf Müller
Atmos. Chem. Phys., 22, 7179–7191, https://doi.org/10.5194/acp-22-7179-2022, https://doi.org/10.5194/acp-22-7179-2022, 2022
Short summary
Short summary
We show that large amounts of anthropogenic aerosols are transported from South Asia to the northern Indian Ocean. These aerosols are then lifted into the UTLS by the ascending branch of the Hadley circulation. They are further transported to the Southern Hemisphere and downward via westerly ducts over the tropical Atlantic and Pacific. These aerosols increase tropospheric heating, resulting in an increase in water vapor, which is then transported to the UTLS.
Mohamadou A. Diallo, Felix Ploeger, Michaela I. Hegglin, Manfred Ern, Jens-Uwe Grooß, Sergey Khaykin, and Martin Riese
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-382, https://doi.org/10.5194/acp-2022-382, 2022
Preprint under review for ACP
Short summary
Short summary
The QBO disruption events in both 2016 and 2020 decreased lower stratospheric water vapor and ozone. Differences in the strength and depth of the anomalous lower stratospheric circulation, ozone and water vapor are due to differences in tropical upwelling and cold point temperature. Tropical upwelling differences are due to lower stratospheric planetary and gravity wave breaking and cold point temperature differences to Australian wildfire.
Paul Konopka, Mengchu Tao, Marc von Hobe, Lars Hoffmann, Corinna Kloss, Fabrizio Ravegnani, C. Michael Volk, Valentin Lauther, Andreas Zahn, Peter Hoor, and Felix Ploeger
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-97, https://doi.org/10.5194/gmd-2022-97, 2022
Preprint under review for GMD
Short summary
Short summary
Pure trajectory-based transport models driven by meteorology derived from reanalysis products (ERA5) take into account only the resolved, advective part of transport. That means neither mixing processes nor unresolved subgrid-scale advective processes like convection are included. The Chemical Lagrangian Model of the Stratosphere (CLaMS) includes these processes. We show that isentropic mixing dominates unresolved transport. The second most important transport process is unresolved convection.
Felix Ploeger and Hella Garny
Atmos. Chem. Phys., 22, 5559–5576, https://doi.org/10.5194/acp-22-5559-2022, https://doi.org/10.5194/acp-22-5559-2022, 2022
Short summary
Short summary
We investigate hemispheric asymmetries in stratospheric circulation changes in the last 2 decades in model simulations and atmospheric observations. We find that observed trace gas changes can be explained by a structural circulation change related to a deepening circulation in the Northern Hemisphere relative to the Southern Hemisphere. As this asymmetric signal is small compared to internal variability observed circulation trends over the recent past are not in contradiction to climate models.
Jan Clemens, Felix Ploeger, Paul Konopka, Raphael Portmann, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 22, 3841–3860, https://doi.org/10.5194/acp-22-3841-2022, https://doi.org/10.5194/acp-22-3841-2022, 2022
Short summary
Short summary
Highly polluted air flows from the surface to higher levels of the atmosphere during the Asian summer monsoon. At high levels, the air is trapped within eddies. Here, we study how air masses can leave the eddy within its cutoff, how they distribute, and how their chemical composition changes. We found evidence for transport from the eddy to higher latitudes over the North Pacific and even Alaska. During transport, trace gas concentrations within cutoffs changed gradually, showing steady mixing.
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys., 22, 1059–1079, https://doi.org/10.5194/acp-22-1059-2022, https://doi.org/10.5194/acp-22-1059-2022, 2022
Short summary
Short summary
Extreme storms transport humidity from the troposphere to the stratosphere. Here it has a strong impact on the climate. With ongoing global warming, we expect more storms and, hence, an enhancement of this effect. A case study was performed in order to measure the impact of the direct injection of water vapor into the lower stratosphere. The measurements displayed a significant transport of water vapor into the lower stratosphere, and this was supported by satellite and reanalysis data.
Christoph Mahnke, Ralf Weigel, Francesco Cairo, Jean-Paul Vernier, Armin Afchine, Martina Krämer, Valentin Mitev, Renaud Matthey, Silvia Viciani, Francesco D'Amato, Felix Ploeger, Terry Deshler, and Stephan Borrmann
Atmos. Chem. Phys., 21, 15259–15282, https://doi.org/10.5194/acp-21-15259-2021, https://doi.org/10.5194/acp-21-15259-2021, 2021
Short summary
Short summary
In 2017, in situ aerosol measurements were conducted aboard the M55 Geophysica in the Asian monsoon region. The vertical particle mixing ratio profiles show a distinct layer (15–18.5 km), the Asian tropopause aerosol layer (ATAL). The backscatter ratio (BR) was calculated based on the aerosol size distributions and compared with the BRs detected by a backscatter probe and a lidar aboard M55, and by the CALIOP lidar. All four methods show enhanced BRs in the ATAL altitude range (max. at 17.5 km).
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Antonis Dragoneas, Bärbel Vogel, Felix Ploeger, Silvia Viciani, Francesco D'Amato, Silvia Bucci, Bernard Legras, Beiping Luo, and Stephan Borrmann
Atmos. Chem. Phys., 21, 11689–11722, https://doi.org/10.5194/acp-21-11689-2021, https://doi.org/10.5194/acp-21-11689-2021, 2021
Short summary
Short summary
In July and August 2017, eight StratoClim mission flights of the Geophysica reached up to 20 km in the Asian monsoon anticyclone. New particle formation (NPF) was identified in situ by abundant nucleation-mode aerosols (6–15 nm in diameter) with mixing ratios of up to 50 000 mg−1. NPF occurred most frequently at 12–16 km with fractions of non-volatile residues of down to 15 %. Abundance and productivity of observed NPF indicate its ability to promote the Asian tropopause aerosol layer.
Lukas Krasauskas, Jörn Ungermann, Peter Preusse, Felix Friedl-Vallon, Andreas Zahn, Helmut Ziereis, Christian Rolf, Felix Plöger, Paul Konopka, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 21, 10249–10272, https://doi.org/10.5194/acp-21-10249-2021, https://doi.org/10.5194/acp-21-10249-2021, 2021
Short summary
Short summary
A Rossby wave (RW) breaking event was observed over the North Atlantic during the WISE measurement campaign in October 2017. Infrared limb sounding measurements of trace gases in the lower stratosphere, including high-resolution 3-D tomographic reconstruction, revealed complex spatial structures in stratospheric tracers near the polar jet related to previous RW breaking events. Backward-trajectory analysis and tracer correlations were used to study mixing and stratosphere–troposphere exchange.
Nuria Pilar Plaza, Aurélien Podglajen, Cristina Peña-Ortiz, and Felix Ploeger
Atmos. Chem. Phys., 21, 9585–9607, https://doi.org/10.5194/acp-21-9585-2021, https://doi.org/10.5194/acp-21-9585-2021, 2021
Short summary
Short summary
We study the role of different processes in setting the lower stratospheric water vapour. We find that mechanisms involving ice microphysics and small-scale mixing produce the strongest increase in water vapour, in particular over the Asian Monsoon. Small-scale mixing has a special relevance as it improves the agreement with observations at seasonal and intra-seasonal timescales, contrary to the North American Monsoon case, in which large-scale temperatures still dominate its variability.
Felix Ploeger, Mohamadou Diallo, Edward Charlesworth, Paul Konopka, Bernard Legras, Johannes C. Laube, Jens-Uwe Grooß, Gebhard Günther, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 21, 8393–8412, https://doi.org/10.5194/acp-21-8393-2021, https://doi.org/10.5194/acp-21-8393-2021, 2021
Short summary
Short summary
We investigate the global stratospheric circulation (Brewer–Dobson circulation) in the new ECMWF ERA5 reanalysis based on age of air simulations, and we compare it to results from the preceding ERA-Interim reanalysis. Our results show a slower stratospheric circulation and higher age for ERA5. The age of air trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, related to multi-annual variability and a potential contribution from changes in the reanalysis system.
Mohamadou Diallo, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 21, 7515–7544, https://doi.org/10.5194/acp-21-7515-2021, https://doi.org/10.5194/acp-21-7515-2021, 2021
Short summary
Short summary
Despite good agreement in the spatial structure, there are substantial differences in the strength of the Brewer–Dobson circulation (BDC) and its modulations in the UTLS and upper stratosphere. The tropical upwelling is generally weaker in ERA5 than in ERAI due to weaker planetary and gravity wave breaking in the UTLS. Analysis of the BDC trend shows an acceleration of the BDC of about 1.5 % decade-1 due to the long-term intensification in wave breaking, consistent with climate predictions.
Hugo Lestrelin, Bernard Legras, Aurélien Podglajen, and Mikail Salihoglu
Atmos. Chem. Phys., 21, 7113–7134, https://doi.org/10.5194/acp-21-7113-2021, https://doi.org/10.5194/acp-21-7113-2021, 2021
Short summary
Short summary
Following the 2020 Australian fires, it was recently discovered that stratospheric wildfire smoke plumes self-organize as anticyclonic vortices that persist for months and rise by 10 km due to the radiative heating from the absorbing smoke. In this study, we show that smoke-charged vortices previously occurred in the aftermath of the 2017 Canadian fires. We use meteorological analysis to characterize this new object in geophysical fluid dynamics, which likely impacts radiation and climate.
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Short summary
The Asian summer monsoon (ASM) is known to foster transport of polluted tropospheric air into the stratosphere. To test and amend our picture of ASM vertical transport, we analyse distributions of airborne trace gas observations up to 20 km altitude near the main ASM vertical conduit south of the Himalayas. We also show that a new high-resolution version of the global chemistry climate model WACCM is able to reproduce the observations well.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Ghassan Taha, Mariam Tidiga, Maxim Eremenko, Adriana Bossolasco, Fabrice Jégou, Jean-Baptiste Renard, and Bernard Legras
Atmos. Chem. Phys., 21, 535–560, https://doi.org/10.5194/acp-21-535-2021, https://doi.org/10.5194/acp-21-535-2021, 2021
Short summary
Short summary
The year 2019 was particularly rich for the stratospheric aerosol layer due to two volcanic eruptions (at Raikoke and Ulawun) and wildfire events. With satellite observations and models, we describe the exceptionally complex situation following the Raikoke eruption. The respective plume overwhelmed the Northern Hemisphere stratosphere in terms of aerosol load and resulted in the highest climate impact throughout the past decade.
Manuel Baumgartner, Ralf Weigel, Allan H. Harvey, Felix Plöger, Ulrich Achatz, and Peter Spichtinger
Atmos. Chem. Phys., 20, 15585–15616, https://doi.org/10.5194/acp-20-15585-2020, https://doi.org/10.5194/acp-20-15585-2020, 2020
Short summary
Short summary
The potential temperature is routinely used in atmospheric science. We review its derivation and suggest a new potential temperature, based on a temperature-dependent parameterization of the dry air's specific heat capacity. Moreover, we compare the new potential temperature to the common one and discuss the differences which become more important at higher altitudes. Finally, we indicate some consequences of using the new potential temperature in typical applications.
Edward J. Charlesworth, Ann-Kristin Dugstad, Frauke Fritsch, Patrick Jöckel, and Felix Plöger
Atmos. Chem. Phys., 20, 15227–15245, https://doi.org/10.5194/acp-20-15227-2020, https://doi.org/10.5194/acp-20-15227-2020, 2020
Short summary
Short summary
Modeling the stratosphere requires models with good representations of chemical transport. To do this, nearly all models divide the atmosphere into boxes. This creates some unwanted problems. However, the only other option is to divide the atmosphere into balloons, and this method is very complicated. Here, we use a model which uses this balloon-like method to estimate the impacts of this method on chemical transport. We find significant differences in sensitive regions of the stratosphere.
Yuli Zhang, Mengchu Tao, Jinqiang Zhang, Yi Liu, Hongbin Chen, Zhaonan Cai, and Paul Konopka
Atmos. Chem. Phys., 20, 13343–13354, https://doi.org/10.5194/acp-20-13343-2020, https://doi.org/10.5194/acp-20-13343-2020, 2020
Johannes C. Laube, Emma C. Leedham Elvidge, Karina E. Adcock, Bianca Baier, Carl A. M. Brenninkmeijer, Huilin Chen, Elise S. Droste, Jens-Uwe Grooß, Pauli Heikkinen, Andrew J. Hind, Rigel Kivi, Alexander Lojko, Stephen A. Montzka, David E. Oram, Steve Randall, Thomas Röckmann, William T. Sturges, Colm Sweeney, Max Thomas, Elinor Tuffnell, and Felix Ploeger
Atmos. Chem. Phys., 20, 9771–9782, https://doi.org/10.5194/acp-20-9771-2020, https://doi.org/10.5194/acp-20-9771-2020, 2020
Short summary
Short summary
We demonstrate that AirCore technology, which is based on small low-cost balloons, can provide access to trace gas measurements such as CFCs at ultra-low abundances. This is a new way to quantify ozone-depleting, and related, substances in the stratosphere, which is largely inaccessible to aircraft. We show two potential uses: (a) tracking the stratospheric circulation, which is predicted to change, and (b) assessing three common meteorological reanalyses driving a global stratospheric model.
Aurélien Podglajen, Albert Hertzog, Riwal Plougonven, and Bernard Legras
Atmos. Chem. Phys., 20, 9331–9350, https://doi.org/10.5194/acp-20-9331-2020, https://doi.org/10.5194/acp-20-9331-2020, 2020
Short summary
Short summary
Thanks to the increase in resolution, numerical weather prediction models resolve a growing fraction of the gravity wave (GW) spectrum. Here, we assess the representation of Lagrangian GW fluctuations by comparing trajectories in the models to long-duration balloon observations. Most characteristics of the observed GW spectrum, such as near-inertial oscillations, are qualitatively present. However, the variability remains underestimated, emphasizing the continuous need for GW parameterizations.
Jonathon S. Wright, Xiaoyi Sun, Paul Konopka, Kirstin Krüger, Bernard Legras, Andrea M. Molod, Susann Tegtmeier, Guang J. Zhang, and Xi Zhao
Atmos. Chem. Phys., 20, 8989–9030, https://doi.org/10.5194/acp-20-8989-2020, https://doi.org/10.5194/acp-20-8989-2020, 2020
Short summary
Short summary
High clouds are influential in tropical climate. Although reanalysis cloud fields are essentially model products, they are indirectly constrained by observations and offer global coverage with direct links to advanced water and energy cycle metrics, giving them many useful applications. We describe how high cloud fields are generated in reanalyses, assess their realism and reliability in the tropics, and evaluate how differences in these fields affect other aspects of the reanalysis state.
Marius Hauck, Harald Bönisch, Peter Hoor, Timo Keber, Felix Ploeger, Tanja J. Schuck, and Andreas Engel
Atmos. Chem. Phys., 20, 8763–8785, https://doi.org/10.5194/acp-20-8763-2020, https://doi.org/10.5194/acp-20-8763-2020, 2020
Short summary
Short summary
This study features an extended inversion method that includes transport across the extratropical tropopause to derive age spectra in the lowermost stratosphere from in situ trace gas measurements. The refined method is validated in a model setup and applied to data gained with the HALO research aircraft. Results are congruent with the findings of previous studies so that the method provides a promising toolset for the analysis of stratospheric dynamics based on observations in the future.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Felix Ploeger, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 20, 4133–4152, https://doi.org/10.5194/acp-20-4133-2020, https://doi.org/10.5194/acp-20-4133-2020, 2020
Short summary
Short summary
Low ozone and low water vapour signatures in the UTLS were investigated using balloon-borne measurements and trajectory calculations. The results show that deep convection in tropical cyclones over the western Pacific transports boundary air parcels with low ozone into the tropopause region. Subsequently, these air parcels are dehydrated when passing the lowest temperature region (< 190 K) during quasi-horizontal advection.
Timo Keber, Harald Bönisch, Carl Hartick, Marius Hauck, Fides Lefrancois, Florian Obersteiner, Akima Ringsdorf, Nils Schohl, Tanja Schuck, Ryan Hossaini, Phoebe Graf, Patrick Jöckel, and Andreas Engel
Atmos. Chem. Phys., 20, 4105–4132, https://doi.org/10.5194/acp-20-4105-2020, https://doi.org/10.5194/acp-20-4105-2020, 2020
Short summary
Short summary
In this paper we summarize observations of short-lived halocarbons in the tropopause region. We show that, especially during winter, the levels of short-lived bromine gases at the extratropical tropopause are higher than at the tropical tropopause. We discuss the impact of the distributions on stratospheric bromine levels and compare our observations to two models with four different emission scenarios.
Xiaolu Yan, Paul Konopka, Felix Ploeger, Aurélien Podglajen, Jonathon S. Wright, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 15629–15649, https://doi.org/10.5194/acp-19-15629-2019, https://doi.org/10.5194/acp-19-15629-2019, 2019
Short summary
Short summary
The Asian and North American summer monsoons (ASM and NASM) have considerable influence on stratospheric chemistry and physics. More air mass is transported from the monsoon regions to the tropical stratosphere when the tracers are released clearly below the tropopause than when they are released close to the tropopause. Results for different altitudes of air origin reveal two transport pathways (monsoon and tropical) from the upper troposphere over the monsoon regions to the tropical pipe.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Silvia Bucci, Sergey Khaykin, Fabrice Jégou, Ghassan Taha, Larry W. Thomason, Brice Barret, Eric Le Flochmoen, Marc von Hobe, Adriana Bossolasco, Nelson Bègue, and Bernard Legras
Atmos. Chem. Phys., 19, 13547–13567, https://doi.org/10.5194/acp-19-13547-2019, https://doi.org/10.5194/acp-19-13547-2019, 2019
Short summary
Short summary
With satellite measurements and transport models, we show that a plume resulting from strong Canadian fires in July/August 2017 was not only distributed throughout the northern/higher latitudes, but also reached the faraway tropics, aided by the circulation of Asian monsoon anticyclone. The regional climate impact in the wider Asian monsoon area in September exceeds the impact of the Asian tropopause aerosol layer by a factor of ~ 3 and compares to that of an advected moderate volcanic eruption.
Matthias Nützel, Aurélien Podglajen, Hella Garny, and Felix Ploeger
Atmos. Chem. Phys., 19, 8947–8966, https://doi.org/10.5194/acp-19-8947-2019, https://doi.org/10.5194/acp-19-8947-2019, 2019
Short summary
Short summary
We investigate the transport pathways of water vapour from the upper troposphere in the Asian monsoon region to the stratosphere. In the employed chemistry-transport model we use a tagging method, such that the impact of different source regions on the stratospheric water vapour budget can be quantified. A key finding is that the Asian monsoon (compared to other source regions) is very efficient in transporting air masses and water vapour to the tropical and extratropical stratosphere.
Qianshan He, Jianzhong Ma, Xiangdong Zheng, Xiaolu Yan, Holger Vömel, Frank G. Wienhold, Wei Gao, Dongwei Liu, Guangming Shi, and Tiantao Cheng
Atmos. Chem. Phys., 19, 8399–8406, https://doi.org/10.5194/acp-19-8399-2019, https://doi.org/10.5194/acp-19-8399-2019, 2019
Short summary
Short summary
An enhanced aerosol layer in the upper troposphere--lower stratosphere was observed by a COBALD over the Tibetan Plateau, in the summer of 2014. The color index of the enhanced aerosol layer indicates the prevalence of dominant fine particles with a mode radius < 0.1 μm. Unlike the very small particles at low relative humidity (RHi < 40%), the relatively large particles in the aerosol layer were generally very hydrophilic as their size increased dramatically with relative humidity.
Paul Konopka, Mengchu Tao, Felix Ploeger, Mohamadou Diallo, and Martin Riese
Geosci. Model Dev., 12, 2441–2462, https://doi.org/10.5194/gmd-12-2441-2019, https://doi.org/10.5194/gmd-12-2441-2019, 2019
Short summary
Short summary
CLaMS is a Lagrangian transport model suitable for simulating atmospheric transport and chemistry. The novel approach of CLaMS is its description of atmospheric mixing. Whereas the common approach is to minimize the numerical diffusion ever present in the modeling of transport, CLaMS is a first attempt to apply this
undesirable disturbing effectto parametrize the true physical mixing. In this paper, we show how this concept works both in the stratosphere and in the troposphere.
Mengchu Tao, Paul Konopka, Felix Ploeger, Xiaolu Yan, Jonathon S. Wright, Mohamadou Diallo, Stephan Fueglistaler, and Martin Riese
Atmos. Chem. Phys., 19, 6509–6534, https://doi.org/10.5194/acp-19-6509-2019, https://doi.org/10.5194/acp-19-6509-2019, 2019
Short summary
Short summary
This paper examines the annual and interannual variations as well as long-term trend of modeled stratospheric water vapor with a Lagrangian chemical transport model driven by ERA-I, MERRA-2 and JRA-55. We find reasonable consistency among the annual cycle, QBO and the variabilities induced by ENSO and volcanic aerosols. The main discrepancies are linked to the differences in reanalysis upwelling rates in the lower stratosphere. The trends are sensitive to the reanalyses that drives the model.
Felix Ploeger, Bernard Legras, Edward Charlesworth, Xiaolu Yan, Mohamadou Diallo, Paul Konopka, Thomas Birner, Mengchu Tao, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 19, 6085–6105, https://doi.org/10.5194/acp-19-6085-2019, https://doi.org/10.5194/acp-19-6085-2019, 2019
Short summary
Short summary
We analyse the change in the circulation of the middle atmosphere based on current generation meteorological reanalysis data sets. We find that long-term changes from 1989 to 2015 are similar for the chosen reanalyses, mainly resembling the forced response in climate model simulations to climate change. For shorter periods circulation changes are less robust, and the representation of decadal variability appears to be a major uncertainty for modelling the circulation of the middle atmosphere.
Marius Hauck, Frauke Fritsch, Hella Garny, and Andreas Engel
Atmos. Chem. Phys., 19, 5269–5291, https://doi.org/10.5194/acp-19-5269-2019, https://doi.org/10.5194/acp-19-5269-2019, 2019
Short summary
Short summary
The paper presents a modified method to invert mixing ratios of chemically active tracers into stratospheric age spectra. It features an imposed seasonal cycle to include transport seasonality into the spectra. An idealized set of tracers from a model is used as proof of concept and results are in good agreement with the model reference, except for the lowermost stratosphere. Applicability is studied with focus on number of tracers and error tolerance, providing a starting point for future work.
Lars Hoffmann, Gebhard Günther, Dan Li, Olaf Stein, Xue Wu, Sabine Griessbach, Yi Heng, Paul Konopka, Rolf Müller, Bärbel Vogel, and Jonathon S. Wright
Atmos. Chem. Phys., 19, 3097–3124, https://doi.org/10.5194/acp-19-3097-2019, https://doi.org/10.5194/acp-19-3097-2019, 2019
Short summary
Short summary
ECMWF's new ERA5 reanalysis provides higher spatiotemporal resolution, yielding an improved representation of meso- and synoptic-scale features of the atmosphere. We assessed the impact of this challenging new data set on Lagrangian trajectory calculations for the free troposphere and stratosphere. Key findings are considerable transport deviations between the ERA5 and ERA-Interim simulations as well as significantly improved conservation of potential temperature in the stratosphere for ERA5.
Aurélien Podglajen and Felix Ploeger
Atmos. Chem. Phys., 19, 1767–1783, https://doi.org/10.5194/acp-19-1767-2019, https://doi.org/10.5194/acp-19-1767-2019, 2019
Short summary
Short summary
The age spectrum (distribution of transit times) provides a compact description of transport from the surface to a given point in the atmosphere. It also determines the surface-emitted tracer content of an air parcel. We propose a method to invert this relation in order to retrieve age spectra from tracer concentrations and demonstrate its feasibility in idealized and model setups. Applied to observations, the approach might help to better constrain atmospheric transport timescales.
Mohamadou Diallo, Paul Konopka, Michelle L. Santee, Rolf Müller, Mengchu Tao, Kaley A. Walker, Bernard Legras, Martin Riese, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 19, 425–446, https://doi.org/10.5194/acp-19-425-2019, https://doi.org/10.5194/acp-19-425-2019, 2019
Short summary
Short summary
This paper assesses the structural changes in the shallow and transition branches of the BDC induced by El Nino using the Lagrangian model simulations driven by ERAi and JRA-55 combined with MLS observations. We found a clear evidence of a weakening of the transition branch due to an upward shift in the dissipation height of the planetary and gravity waves and a strengthening of the shallow branch due to enhanced GW breaking in the tropics–subtropics and PW breaking at high latitudes.
Mohamadou Diallo, Martin Riese, Thomas Birner, Paul Konopka, Rolf Müller, Michaela I. Hegglin, Michelle L. Santee, Mark Baldwin, Bernard Legras, and Felix Ploeger
Atmos. Chem. Phys., 18, 13055–13073, https://doi.org/10.5194/acp-18-13055-2018, https://doi.org/10.5194/acp-18-13055-2018, 2018
Short summary
Short summary
The unprecedented timing of an El Niño event aligned with the disrupted QBO in 2015–2016 caused a perturbation to the stratospheric circulation, affecting trace gases. This paper resolves the puzzling response of the lower stratospheric water vapor by showing that the QBO disruption reversed the lower stratosphere moistening triggered by the alignment of the El Niño event with a westerly QBO in early boreal winter.
Aurélien Podglajen, Riwal Plougonven, Albert Hertzog, and Eric Jensen
Atmos. Chem. Phys., 18, 10799–10823, https://doi.org/10.5194/acp-18-10799-2018, https://doi.org/10.5194/acp-18-10799-2018, 2018
Short summary
Short summary
Using a simplified analytical setup, we show that the temperature and wind fluctuations due to an atmospheric gravity wave can induce a localization of ice crystals in a specific region of the wave. In that region, the air is nearly saturated and the vertical wind anomaly is positive. As a consequence, reversible gravity wave motions have an irreversible impact (mean upward motion) on the ice crystals. Our findings are consistent with observations of cirrus clouds near the tropical tropopause.
Liubov Poshyvailo, Rolf Müller, Paul Konopka, Gebhard Günther, Martin Riese, Aurélien Podglajen, and Felix Ploeger
Atmos. Chem. Phys., 18, 8505–8527, https://doi.org/10.5194/acp-18-8505-2018, https://doi.org/10.5194/acp-18-8505-2018, 2018
Short summary
Short summary
Water vapour (H2O) in the UTLS is a key player for global radiation, which is critical for predictions of future climate change. We investigate the effects of current uncertainties in tropopause temperature, horizontal transport and small-scale mixing on simulated H2O, using the Chemical Lagrangian Model of the Stratosphere. Our sensitivity studies provide new insights into the leading processes controlling stratospheric H2O, important for assessing and improving climate model projections.
Stefan Lossow, Dale F. Hurst, Karen H. Rosenlof, Gabriele P. Stiller, Thomas von Clarmann, Sabine Brinkop, Martin Dameris, Patrick Jöckel, Doug E. Kinnison, Johannes Plieninger, David A. Plummer, Felix Ploeger, William G. Read, Ellis E. Remsberg, James M. Russell, and Mengchu Tao
Atmos. Chem. Phys., 18, 8331–8351, https://doi.org/10.5194/acp-18-8331-2018, https://doi.org/10.5194/acp-18-8331-2018, 2018
Short summary
Short summary
Trend estimates of lower stratospheric H2O derived from the FPH observations at Boulder and a merged zonal mean satellite data set clearly differ for the time period from the late 1980s to 2010. We investigate if a sampling bias between Boulder and the zonal mean around the Boulder latitude can explain these trend discrepancies. Typically they are small and not sufficient to explain the trend discrepancies in the observational database.
Xiaolu Yan, Paul Konopka, Felix Ploeger, Mengchu Tao, Rolf Müller, Michelle L. Santee, Jianchun Bian, and Martin Riese
Atmos. Chem. Phys., 18, 8079–8096, https://doi.org/10.5194/acp-18-8079-2018, https://doi.org/10.5194/acp-18-8079-2018, 2018
Short summary
Short summary
Many works investigate the impact of ENSO on the troposphere. However, only a few works check the impact of ENSO at higher altitudes.
Here, we analyse the impact of ENSO on the vicinity of the tropopause using reanalysis, satellite, in situ and model data. We find that ENSO shows the strongest signal in winter, but its impact can last until early the next summer. The ENSO anomaly is insignificant in late summer. Our study can help to understand the atmosphere propagation after ENSO.
Jens Krause, Peter Hoor, Andreas Engel, Felix Plöger, Jens-Uwe Grooß, Harald Bönisch, Timo Keber, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 6057–6073, https://doi.org/10.5194/acp-18-6057-2018, https://doi.org/10.5194/acp-18-6057-2018, 2018
Short summary
Short summary
We present tracer measurements of CO and N2O measured during the POLSTRACC aircraft campaign in winter 2015–2016. We found enhanced CO values relative to N2O in the polar lower stratosphere in addition to the ageing of this region during winter. By using model simulations it was possible to link this enhancement to an increased mixing of the tropical tropopause. We thus conclude that the polar lower stratosphere in late winter is strongly influenced by quasi-isentropic mixing from the tropics.
Florian Berkes, Patrick Neis, Martin G. Schultz, Ulrich Bundke, Susanne Rohs, Herman G. J. Smit, Andreas Wahner, Paul Konopka, Damien Boulanger, Philippe Nédélec, Valerie Thouret, and Andreas Petzold
Atmos. Chem. Phys., 17, 12495–12508, https://doi.org/10.5194/acp-17-12495-2017, https://doi.org/10.5194/acp-17-12495-2017, 2017
Short summary
Short summary
This study highlights the importance of independent global measurements with high and long-term accuracy to quantify long-term changes, especially in the UTLS region, and to help identify inconsistencies between different data sets of observations and models. Here we investigated temperature trends over different regions within a climate-sensitive area of the atmosphere and demonstrated the value of the IAGOS temperature observations as an anchor point for the evaluation of reanalyses.
Gabriele P. Stiller, Federico Fierli, Felix Ploeger, Chiara Cagnazzo, Bernd Funke, Florian J. Haenel, Thomas Reddmann, Martin Riese, and Thomas von Clarmann
Atmos. Chem. Phys., 17, 11177–11192, https://doi.org/10.5194/acp-17-11177-2017, https://doi.org/10.5194/acp-17-11177-2017, 2017
Short summary
Short summary
The discrepancy between modelled and observed 25-year trends of the strength of the stratospheric Brewer–Dobson circulation (BDC) is still not resolved. With our paper we trace the observed hemispheric dipole structure of age of air trends back to natural variability in shorter-term (decadal) time frames. Beyond this we demonstrate that after correction for the decadal natural variability the remaining trend for the first decade of the 21st century is consistent with model simulations.
Simone Dietmüller, Hella Garny, Felix Plöger, Patrick Jöckel, and Duy Cai
Atmos. Chem. Phys., 17, 7703–7719, https://doi.org/10.5194/acp-17-7703-2017, https://doi.org/10.5194/acp-17-7703-2017, 2017
Felix Ploeger, Paul Konopka, Kaley Walker, and Martin Riese
Atmos. Chem. Phys., 17, 7055–7066, https://doi.org/10.5194/acp-17-7055-2017, https://doi.org/10.5194/acp-17-7055-2017, 2017
Short summary
Short summary
Pollution transport from the surface to the stratosphere within the Asian summer monsoon circulation may cause harmful effects on stratospheric chemistry and climate. We investigate air mass transport from the monsoon anticyclone into the stratosphere, combining model simulations with satellite trace gas measurements. We show evidence for two transport pathways from the monsoon: (i) into the tropical stratosphere and (ii) into the Northern Hemisphere extratropical lower stratosphere.
Chaitri Roy, Suvarna Fadnavis, Rolf Müller, D. C. Ayantika, Felix Ploeger, and Alexandru Rap
Atmos. Chem. Phys., 17, 1297–1311, https://doi.org/10.5194/acp-17-1297-2017, https://doi.org/10.5194/acp-17-1297-2017, 2017
Short summary
Short summary
In the monsoon season, Asian NOx emissions are rapidly transported to the UTLS and can impact ozone in the UTLS. From chemistry–climate model simulations, we show that increasing Asian NOx emissions have enhanced ozone radiative forcing over Southeast Asia, which leads to significant warming over the Tibetan Plateau and increase precipitation over India. However, a further increase in NOx emissions elicited negative precipitation due to reversal of monsoon Hadley circulation.
Sergey M. Khaykin, Jean-Pierre Pommereau, Emmanuel D. Riviere, Gerhard Held, Felix Ploeger, Melanie Ghysels, Nadir Amarouche, Jean-Paul Vernier, Frank G. Wienhold, and Dmitry Ionov
Atmos. Chem. Phys., 16, 12273–12286, https://doi.org/10.5194/acp-16-12273-2016, https://doi.org/10.5194/acp-16-12273-2016, 2016
Short summary
Short summary
The study makes use of a series of field experiments conducted in Brazil and aimed at studying the processes controlling the composition of the tropical lower stratosphere. High-resolution balloon-borne measurements together with global-coverage satellite observations and weather radar acquisitions are analysed using trajectory and transport modelling in order to evaluate the contribution of different transport pathways to the stratospheric water budget.
Felix Ploeger and Thomas Birner
Atmos. Chem. Phys., 16, 10195–10213, https://doi.org/10.5194/acp-16-10195-2016, https://doi.org/10.5194/acp-16-10195-2016, 2016
Short summary
Short summary
We investigate the aging of air in the stratosphere caused by transport due to Brewer's circulation, using the Boundary Impulse Evolving Response (BIER) method. The age spectra show multiple peaks caused by the seasonal and inter-annual variations of transport. The modal age is controlled by the residual circulation in the tropics and winter hemisphere extratropics and by mixing in the summer hemisphere. Analysis of the full age spectrum is strongly recommended for model inter-comparisons.
Xiaolu Yan, Jonathon S. Wright, Xiangdong Zheng, Nathaniel J. Livesey, Holger Vömel, and Xiuji Zhou
Atmos. Meas. Tech., 9, 3547–3566, https://doi.org/10.5194/amt-9-3547-2016, https://doi.org/10.5194/amt-9-3547-2016, 2016
Short summary
Short summary
We evaluate Aura Microwave Limb Sounder retrievals of temperature, water vapour and ozone over the eastern Tibetan Plateau against measurements from balloon-borne instruments. The newest version of the retrievals (v4) represents a slight improvement over the previous version, particularly with respect to data yields and upper tropospheric ozone. We identify several biases that did not appear in evaluations conducted elsewhere, highlighting the unique challenges of remote sensing in this region.
Jörn Ungermann, Mandfred Ern, Martin Kaufmann, Rolf Müller, Reinhold Spang, Felix Ploeger, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 16, 8389–8403, https://doi.org/10.5194/acp-16-8389-2016, https://doi.org/10.5194/acp-16-8389-2016, 2016
Short summary
Short summary
This paper presents an analysis of temperature and the trace gases PAN and O3 in
the Asian Summer Monsoon (ASM) region. The positive PAN anomaly consisting of
polluted air is confined vertically within the main ASM anticyclone, whereas a
recently shed eddy exhibits enhanced PAN VMRs for 1 to 2 km above the thermal
tropopause. This implies that eddy shedding provides a very rapid horizontal
transport pathway of Asian pollution into the extratropical lowermost
stratosphere.
Charlotte Marinke Hoppe, Felix Ploeger, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 16, 6223–6239, https://doi.org/10.5194/acp-16-6223-2016, https://doi.org/10.5194/acp-16-6223-2016, 2016
Aurélien Podglajen, Riwal Plougonven, Albert Hertzog, and Bernard Legras
Atmos. Chem. Phys., 16, 3881–3902, https://doi.org/10.5194/acp-16-3881-2016, https://doi.org/10.5194/acp-16-3881-2016, 2016
Short summary
Short summary
The Weather Research and Forecast model is used to simulate a large-scale tropical tropopause layer (TTL) cirrus. Validated with satellite observations, the simulation shows that several clouds successively form due to a large-scale uplift initiated by the intrusion of air from the midlatitudes. The simulated cloud field is found as sensitive to the initial condition as it is to the choice of the microphysics parametrisation. The cloud impacts on the radiative and water budgets are estimated.
T. Dinh, A. Podglajen, A. Hertzog, B. Legras, and R. Plougonven
Atmos. Chem. Phys., 16, 35–46, https://doi.org/10.5194/acp-16-35-2016, https://doi.org/10.5194/acp-16-35-2016, 2016
F. Ploeger, C. Gottschling, S. Griessbach, J.-U. Grooß, G. Guenther, P. Konopka, R. Müller, M. Riese, F. Stroh, M. Tao, J. Ungermann, B. Vogel, and M. von Hobe
Atmos. Chem. Phys., 15, 13145–13159, https://doi.org/10.5194/acp-15-13145-2015, https://doi.org/10.5194/acp-15-13145-2015, 2015
Short summary
Short summary
The Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere. In this paper, we show that a barrier to horizontal transport in the monsoon can be determined from a local maximum in the gradient of potential vorticity.
C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Müller, H. Schlager, N. Spelten, O. Sumińska-Ebersoldt, J. Ungermann, A. Zahn, and M. Krämer
Atmos. Chem. Phys., 15, 9143–9158, https://doi.org/10.5194/acp-15-9143-2015, https://doi.org/10.5194/acp-15-9143-2015, 2015
M. Tao, P. Konopka, F. Ploeger, J.-U. Grooß, R. Müller, C. M. Volk, K. A. Walker, and M. Riese
Atmos. Chem. Phys., 15, 8695–8715, https://doi.org/10.5194/acp-15-8695-2015, https://doi.org/10.5194/acp-15-8695-2015, 2015
Short summary
Short summary
A remarkable major stratospheric sudden warming during the boreal winter 2008/09 is studied with the Chemical Lagrangian Model of the Stratosphere (CLaMS). We investigate how mixing triggered by this event correlates the wave forcing and how transport and mixing affect the composition of the whole stratosphere in the Northern Hemisphere, by using the tracer-tracer correlation technique.
R. Pommrich, R. Müller, J.-U. Grooß, P. Konopka, F. Ploeger, B. Vogel, M. Tao, C. M. Hoppe, G. Günther, N. Spelten, L. Hoffmann, H.-C. Pumphrey, S. Viciani, F. D'Amato, C. M. Volk, P. Hoor, H. Schlager, and M. Riese
Geosci. Model Dev., 7, 2895–2916, https://doi.org/10.5194/gmd-7-2895-2014, https://doi.org/10.5194/gmd-7-2895-2014, 2014
Short summary
Short summary
A version of the chemical transport model CLaMS is presented, which features a simplified (numerically inexpensive) chemistry scheme. The model results using this version of CLaMS show a good representation of anomaly fields of CO, CH4, N2O, and CFC-11 in the lower stratosphere. CO measurements of three instruments (COLD, HAGAR, and Falcon-CO) in the lower tropical stratosphere (during the campaign TROCCINOX in 2005) have been compared and show a good agreement within the error bars.
C. M. Hoppe, L. Hoffmann, P. Konopka, J.-U. Grooß, F. Ploeger, G. Günther, P. Jöckel, and R. Müller
Geosci. Model Dev., 7, 2639–2651, https://doi.org/10.5194/gmd-7-2639-2014, https://doi.org/10.5194/gmd-7-2639-2014, 2014
Q. S. He, C. C. Li, J. Z. Ma, H. Q. Wang, X. L. Yan, J. Lu, Z. R. Liang, and G. M. Qi
Atmos. Chem. Phys., 14, 11687–11696, https://doi.org/10.5194/acp-14-11687-2014, https://doi.org/10.5194/acp-14-11687-2014, 2014
A. Kunz, N. Spelten, P. Konopka, R. Müller, R. M. Forbes, and H. Wernli
Atmos. Chem. Phys., 14, 10803–10822, https://doi.org/10.5194/acp-14-10803-2014, https://doi.org/10.5194/acp-14-10803-2014, 2014
M. Riese, H. Oelhaf, P. Preusse, J. Blank, M. Ern, F. Friedl-Vallon, H. Fischer, T. Guggenmoser, M. Höpfner, P. Hoor, M. Kaufmann, J. Orphal, F. Plöger, R. Spang, O. Suminska-Ebersoldt, J. Ungermann, B. Vogel, and W. Woiwode
Atmos. Meas. Tech., 7, 1915–1928, https://doi.org/10.5194/amt-7-1915-2014, https://doi.org/10.5194/amt-7-1915-2014, 2014
M. Abalos, F. Ploeger, P. Konopka, W. J. Randel, and E. Serrano
Atmos. Chem. Phys., 13, 10787–10794, https://doi.org/10.5194/acp-13-10787-2013, https://doi.org/10.5194/acp-13-10787-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
How can Brewer–Dobson circulation trends be estimated from changes in stratospheric water vapour and methane?
The semi-annual oscillation (SAO) in the upper troposphere and lower stratosphere (UTLS)
Interactions between the stratospheric polar vortex and Atlantic circulation on seasonal to multi-decadal timescales
Impacts of three types of solar geoengineering on the Atlantic Meridional Overturning Circulation
Enhanced upward motion through the troposphere over the tropical western Pacific and its implications for the transport of trace gases from the troposphere to the stratosphere
Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020
Characterization of transport from the Asian summer monsoon anticyclone into the UTLS via shedding of low potential vorticity cutoffs
Long-range prediction and the stratosphere
Weakening of Antarctic stratospheric planetary wave activities in early austral spring since the early 2000s: a response to sea surface temperature trends
The impact of sulfur hexafluoride (SF6) sinks on age of air climatologies and trends
Specified dynamics scheme impacts on wave-mean flow dynamics, convection, and tracer transport in CESM2 (WACCM6)
Ozone-Gravity Wave Interaction in the Upper Stratosphere/Lower Mesosphere
Propagation paths and source distributions of resolved gravity waves in ECMWF-IFS analysis fields around the southern polar night jet
Observation and modeling of high-7Be concentration events at the surface in northern Europe associated with the instability of the Arctic polar vortex in early 2003
Eastward-propagating planetary waves in the polar middle atmosphere
The Brewer–Dobson circulation in CMIP6
Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments
Contributions of equatorial waves and small-scale convective gravity waves to the 2019/20 quasi-biennial oscillation (QBO) disruption
Differences in the quasi-biennial oscillation response to stratospheric aerosol modification depending on injection strategy and species
The advective Brewer–Dobson circulation in the ERA5 reanalysis: climatology, variability, and trends
Is our dynamical understanding of the circulation changes associated with the Antarctic ozone hole sensitive to the choice of reanalysis dataset?
The impact of increasing stratospheric radiative damping on the quasi-biennial oscillation period
Analysis of recent lower-stratospheric ozone trends in chemistry climate models
Effects of prescribed CMIP6 ozone on simulating the Southern Hemisphere atmospheric circulation response to ozone depletion
Reanalysis intercomparison of potential vorticity and potential-vorticity-based diagnostics
Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6 models
Reappraising the appropriate calculation of a common meteorological quantity: potential temperature
Impact of Lagrangian transport on lower-stratospheric transport timescales in a climate model
Role of equatorial waves and convective gravity waves in the 2015/16 quasi-biennial oscillation disruption
Sensitivity of the Southern Hemisphere circumpolar jet response to Antarctic ozone depletion: prescribed versus interactive chemistry
Characterizing quasi-biweekly variability of the Asian monsoon anticyclone using potential vorticity and large-scale geopotential height field
Climatological impact of the Brewer–Dobson circulation on the N2O budget in WACCM, a chemical reanalysis and a CTM driven by four dynamical reanalyses
Polar stratospheric clouds initiated by mountain waves in a global chemistry–climate model: a missing piece in fully modelling polar stratospheric ozone depletion
Using the climate feedback response analysis method to quantify climate feedbacks in the middle atmosphere
Deep-convective influence on the upper troposphere–lower stratosphere composition in the Asian monsoon anticyclone region: 2017 StratoClim campaign results
The effect of interactive ozone chemistry on weak and strong stratospheric polar vortex events
Lagrangian gravity wave spectra in the lower stratosphere of current (re)analyses
Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses
A convolution of observational and model data to estimate age of air spectra in the northern hemispheric lower stratosphere
Sensitivity of age of air trends to the derivation method for non-linear increasing inert SF6
Adding value to extended-range forecasts in northern Europe by statistical post-processing using stratospheric observations
Propagation of gravity waves and its effects on pseudomomentum flux in a sudden stratospheric warming event
Future trends in stratosphere-to-troposphere transport in CCMI models
Simulating age of air and the distribution of SF6 in the stratosphere with the SILAM model
A tropospheric pathway of the stratospheric quasi-biennial oscillation (QBO) impact on the boreal winter polar vortex
Temperature and tropopause characteristics from reanalyses data in the tropical tropopause layer
The efficiency of transport into the stratosphere via the Asian and North American summer monsoon circulations
Evidence of small-scale quasi-isentropic mixing in ridges of extratropical baroclinic waves
The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models
On the representation of major stratospheric warmings in reanalyses
Liubov Poshyvailo-Strube, Rolf Müller, Stephan Fueglistaler, Michaela I. Hegglin, Johannes C. Laube, C. Michael Volk, and Felix Ploeger
Atmos. Chem. Phys., 22, 9895–9914, https://doi.org/10.5194/acp-22-9895-2022, https://doi.org/10.5194/acp-22-9895-2022, 2022
Short summary
Short summary
Brewer–Dobson circulation (BDC) controls the composition of the stratosphere, which in turn affects radiation and climate. As the BDC cannot be measured directly, it is necessary to infer its strength and trends indirectly. In this study, we test in the
model worlddifferent methods for estimating the mean age of air trends based on a combination of stratospheric water vapour and methane data. We also provide simple practical advice of a more reliable estimation of the mean age of air trends.
Ming Shangguan and Wuke Wang
Atmos. Chem. Phys., 22, 9499–9511, https://doi.org/10.5194/acp-22-9499-2022, https://doi.org/10.5194/acp-22-9499-2022, 2022
Short summary
Short summary
Skilful predictions of weather and climate on subseasonal to seasonal scales are valuable for decision makers. Here we show the global spatiotemporal variation of the temperature SAO in the UTLS with GNSS RO and reanalysis data. The formation of the SAO is explained by an energy budget analysis. The results show that the SAO in the UTLS is partly modified by the SSTs according to model simulations. The results may provide an important source for seasonal predictions of the surface weather.
Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha
Atmos. Chem. Phys., 22, 4867–4893, https://doi.org/10.5194/acp-22-4867-2022, https://doi.org/10.5194/acp-22-4867-2022, 2022
Short summary
Short summary
This study examines interactions between variations in the strength of polar stratospheric winds and circulation in the North Atlantic in a climate model simulation. It finds that the Atlantic Meridional Overturning Circulation (AMOC) responds with oscillations to sets of consecutive Northern Hemisphere winters, which show all strong or all weak polar vortex conditions. The study also shows that a set of strong vortex winters in the 1990s contributed to the recent slowdown in the observed AMOC.
Mengdie Xie, John C. Moore, Liyun Zhao, Michael Wolovick, and Helene Muri
Atmos. Chem. Phys., 22, 4581–4597, https://doi.org/10.5194/acp-22-4581-2022, https://doi.org/10.5194/acp-22-4581-2022, 2022
Short summary
Short summary
We use data from six Earth system models to estimate Atlantic meridional overturning circulation (AMOC) changes and its drivers under four different solar geoengineering methods. Solar dimming seems relatively more effective than marine cloud brightening or stratospheric aerosol injection at reversing greenhouse-gas-driven declines in AMOC. Geoengineering-induced AMOC amelioration is due to better maintenance of air–sea temperature differences and reduced loss of Arctic summer sea ice.
Kai Qie, Wuke Wang, Wenshou Tian, Rui Huang, Mian Xu, Tao Wang, and Yifeng Peng
Atmos. Chem. Phys., 22, 4393–4411, https://doi.org/10.5194/acp-22-4393-2022, https://doi.org/10.5194/acp-22-4393-2022, 2022
Short summary
Short summary
We identify a significantly intensified upward motion over the tropical western Pacific (TWP) and an enhanced tropical upwelling in boreal winter during 1958–2017 due to the warming of global sea surface temperatures (SSTs). Our results suggest that more tropospheric trace gases over the TWP could be elevated to the lower stratosphere, which implies that the emission from the maritime continent plays a more important role in the stratospheric processes and the global climate.
Audrey Lecouffe, Sophie Godin-Beekmann, Andrea Pazmiño, and Alain Hauchecorne
Atmos. Chem. Phys., 22, 4187–4200, https://doi.org/10.5194/acp-22-4187-2022, https://doi.org/10.5194/acp-22-4187-2022, 2022
Short summary
Short summary
This study uses a model developped at LATMOS (France) to analyze the behavior of the Antarctic polar vortex from 1979 to 2020 at 675 K, 550 K, and 475 K isentropic levels. We found that the vortex edge intensity is stronger during the September–October–November period, while its edge position is less extended during this period. The polar vortex is stronger and lasts longer during solar minimum years. Breakup dates of the polar vortex are linked to the ozone hole and maximum wind speed.
Jan Clemens, Felix Ploeger, Paul Konopka, Raphael Portmann, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 22, 3841–3860, https://doi.org/10.5194/acp-22-3841-2022, https://doi.org/10.5194/acp-22-3841-2022, 2022
Short summary
Short summary
Highly polluted air flows from the surface to higher levels of the atmosphere during the Asian summer monsoon. At high levels, the air is trapped within eddies. Here, we study how air masses can leave the eddy within its cutoff, how they distribute, and how their chemical composition changes. We found evidence for transport from the eddy to higher latitudes over the North Pacific and even Alaska. During transport, trace gas concentrations within cutoffs changed gradually, showing steady mixing.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Yihang Hu, Wenshou Tian, Jiankai Zhang, Tao Wang, and Mian Xu
Atmos. Chem. Phys., 22, 1575–1600, https://doi.org/10.5194/acp-22-1575-2022, https://doi.org/10.5194/acp-22-1575-2022, 2022
Short summary
Short summary
Antarctic stratospheric wave activities in September have been weakening significantly since the 2000s. Further analysis supports the finding that sea surface temperature (SST) trends over 20° N–70° S lead to the weakening of stratospheric wave activities, while the response of stratospheric wave activities to ozone recovery is weak. Thus, the SST trend should be taken into consideration when exploring the mechanism for the climate transition in the southern hemispheric stratosphere around 2000.
Sheena Loeffel, Roland Eichinger, Hella Garny, Thomas Reddmann, Frauke Fritsch, Stefan Versick, Gabriele Stiller, and Florian Haenel
Atmos. Chem. Phys., 22, 1175–1193, https://doi.org/10.5194/acp-22-1175-2022, https://doi.org/10.5194/acp-22-1175-2022, 2022
Short summary
Short summary
SF6-derived trends of stratospheric AoA from observations and model simulations disagree in sign. SF6 experiences chemical degradation, which we explicitly integrate in a global climate model. In our simulations, the AoA trend changes sign when SF6 sinks are considered; thus, the process has the potential to reconcile simulated with observed AoA trends. We show that the positive AoA trend is due to the SF6 sinks themselves and provide a first approach for a correction to account for SF6 loss.
Nicholas A. Davis, Patrick Callaghan, Isla R. Simpson, and Simone Tilmes
Atmos. Chem. Phys., 22, 197–214, https://doi.org/10.5194/acp-22-197-2022, https://doi.org/10.5194/acp-22-197-2022, 2022
Short summary
Short summary
Specified dynamics schemes attempt to constrain the atmospheric circulation in a climate model to isolate the role of transport in chemical variability, evaluate model physics, and interpret field campaign observations. We show that the specified dynamics scheme in CESM2 erroneously suppresses convection and induces circulation errors that project onto errors in tracers, even using the most optimal settings. Development of a more sophisticated scheme is necessary for future progress.
Axel Gabriel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1066, https://doi.org/10.5194/acp-2021-1066, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Recent measurements found that the amplitudes of atmospheric gravity waves (horizontal wavelengths of 100 to 2000 km), which propagate from the troposphere (0–10 km) to the strato- and mesosphere (10–100 km), increase much stronger during daylight than nighttime (factor of about 4 to 8), which is not understood up to now. This study shows that stratospheric ozone-temperature coupling can principally produce such an amplification. The results will help to improve atmospheric circulation models.
Cornelia Strube, Peter Preusse, Manfred Ern, and Martin Riese
Atmos. Chem. Phys., 21, 18641–18668, https://doi.org/10.5194/acp-21-18641-2021, https://doi.org/10.5194/acp-21-18641-2021, 2021
Short summary
Short summary
High gravity wave (GW) momentum fluxes in the lower stratospheric southern polar vortex around 60° S are still poorly understood. Few GW sources are found at these latitudes. We present a ray tracing case study on waves resolved in high-resolution global model temperatures southeast of New Zealand. We show that lateral propagation of more than 1000 km takes place below 20 km altitude, and a variety of orographic and non-orographic sources located north of 50° S generate the wave field.
Erika Brattich, Hongyu Liu, Bo Zhang, Miguel Ángel Hernández-Ceballos, Jussi Paatero, Darko Sarvan, Vladimir Djurdjevic, Laura Tositti, and Jelena Ajtić
Atmos. Chem. Phys., 21, 17927–17951, https://doi.org/10.5194/acp-21-17927-2021, https://doi.org/10.5194/acp-21-17927-2021, 2021
Short summary
Short summary
In this study we analyse the output of a chemistry and transport model together with observations of different meteorological and compositional variables to demonstrate the link between sudden stratospheric warming and transport of stratospheric air to the surface in the subpolar regions of Europe during the cold season. Our findings have particular implications for atmospheric composition since climate projections indicate more frequent sudden stratospheric warming under a warmer climate.
Liang Tang, Sheng-Yang Gu, and Xian-Kang Dou
Atmos. Chem. Phys., 21, 17495–17512, https://doi.org/10.5194/acp-21-17495-2021, https://doi.org/10.5194/acp-21-17495-2021, 2021
Short summary
Short summary
Our study explores the variation in the occurrence date, peak amplitude and wave period for eastward waves and the role of instability, background wind structure and the critical layer in eastward wave propagation and amplification.
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
Zhihong Zhuo, Ingo Kirchner, Stephan Pfahl, and Ulrich Cubasch
Atmos. Chem. Phys., 21, 13425–13442, https://doi.org/10.5194/acp-21-13425-2021, https://doi.org/10.5194/acp-21-13425-2021, 2021
Short summary
Short summary
The impact of volcanic eruptions varies with eruption season and latitude. This study simulated eruptions at different latitudes and in different seasons with a fully coupled climate model. The climate impacts of northern and southern hemispheric eruptions are reversed but are insensitive to eruption season. Results suggest that the regional climate impacts are due to the dynamical response of the climate system to radiative effects of volcanic aerosols and the subsequent regional feedbacks.
Min-Jee Kang and Hye-Yeong Chun
Atmos. Chem. Phys., 21, 9839–9857, https://doi.org/10.5194/acp-21-9839-2021, https://doi.org/10.5194/acp-21-9839-2021, 2021
Short summary
Short summary
In winter 2019/20, the westerly quasi-biennial oscillation (QBO) phase was disrupted again by easterly winds. It is found that strong Rossby waves from the Southern Hemisphere weaken the jet core in early stages, and strong mixed Rossby–gravity waves reverse the wind in later stages. Inertia–gravity waves and small-scale convective gravity waves also provide negative forcing. These strong waves are attributed to an anomalous wind profile, barotropic instability, and slightly strong convection.
Henning Franke, Ulrike Niemeier, and Daniele Visioni
Atmos. Chem. Phys., 21, 8615–8635, https://doi.org/10.5194/acp-21-8615-2021, https://doi.org/10.5194/acp-21-8615-2021, 2021
Short summary
Short summary
Stratospheric aerosol modification (SAM) can alter the quasi-biennial oscillation (QBO). Our simulations with two different models show that the characteristics of the QBO response are primarily determined by the meridional structure of the aerosol-induced heating. Therefore, the QBO response to SAM depends primarily on the location of injection, while injection type and rate act to scale the specific response. Our results have important implications for evaluating adverse side effects of SAM.
Mohamadou Diallo, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 21, 7515–7544, https://doi.org/10.5194/acp-21-7515-2021, https://doi.org/10.5194/acp-21-7515-2021, 2021
Short summary
Short summary
Despite good agreement in the spatial structure, there are substantial differences in the strength of the Brewer–Dobson circulation (BDC) and its modulations in the UTLS and upper stratosphere. The tropical upwelling is generally weaker in ERA5 than in ERAI due to weaker planetary and gravity wave breaking in the UTLS. Analysis of the BDC trend shows an acceleration of the BDC of about 1.5 % decade-1 due to the long-term intensification in wave breaking, consistent with climate predictions.
Andrew Orr, Hua Lu, Patrick Martineau, Edwin P. Gerber, Gareth J. Marshall, and Thomas J. Bracegirdle
Atmos. Chem. Phys., 21, 7451–7472, https://doi.org/10.5194/acp-21-7451-2021, https://doi.org/10.5194/acp-21-7451-2021, 2021
Short summary
Short summary
Reanalysis datasets combine observations and weather forecast simulations to create our best estimate of the state of the atmosphere and are important for climate monitoring. Differences in the technical details of these products mean that they may give different results. This study therefore examined how changes associated with the so-called Antarctic ozone hole are represented, which is one of the most important climate changes in recent decades, and showed that they were broadly consistent.
Tiehan Zhou, Kevin DallaSanta, Larissa Nazarenko, Gavin A. Schmidt, and Zhonghai Jin
Atmos. Chem. Phys., 21, 7395–7407, https://doi.org/10.5194/acp-21-7395-2021, https://doi.org/10.5194/acp-21-7395-2021, 2021
Short summary
Short summary
Stratospheric radiative damping increases with rising CO2. Sensitivity experiments using the one-dimensional mechanistic models of the quasi-biennial oscillation (QBO) indicate a shortening of the simulated QBO period due to the enhancing of the radiative damping. This result suggests that increasing radiative damping may play a role in determining the QBO period in a warming climate along with wave momentum flux entering the stratosphere and tropical vertical residual velocity.
Simone Dietmüller, Hella Garny, Roland Eichinger, and William T. Ball
Atmos. Chem. Phys., 21, 6811–6837, https://doi.org/10.5194/acp-21-6811-2021, https://doi.org/10.5194/acp-21-6811-2021, 2021
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806, https://doi.org/10.5194/acp-21-5777-2021, https://doi.org/10.5194/acp-21-5777-2021, 2021
Short summary
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
Luis F. Millán, Gloria L. Manney, and Zachary D. Lawrence
Atmos. Chem. Phys., 21, 5355–5376, https://doi.org/10.5194/acp-21-5355-2021, https://doi.org/10.5194/acp-21-5355-2021, 2021
Short summary
Short summary
We assess how consistently reanalyses represent potential vorticity (PV) among each other. PV helps describe dynamical processes in the stratosphere because it acts approximately as a tracer of the movement of air parcels; it is extensively used to identify the location of the tropopause and to identify and characterize the stratospheric polar vortex. Overall, PV from all reanalyses agrees well with the reanalysis ensemble mean.
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
Manuel Baumgartner, Ralf Weigel, Allan H. Harvey, Felix Plöger, Ulrich Achatz, and Peter Spichtinger
Atmos. Chem. Phys., 20, 15585–15616, https://doi.org/10.5194/acp-20-15585-2020, https://doi.org/10.5194/acp-20-15585-2020, 2020
Short summary
Short summary
The potential temperature is routinely used in atmospheric science. We review its derivation and suggest a new potential temperature, based on a temperature-dependent parameterization of the dry air's specific heat capacity. Moreover, we compare the new potential temperature to the common one and discuss the differences which become more important at higher altitudes. Finally, we indicate some consequences of using the new potential temperature in typical applications.
Edward J. Charlesworth, Ann-Kristin Dugstad, Frauke Fritsch, Patrick Jöckel, and Felix Plöger
Atmos. Chem. Phys., 20, 15227–15245, https://doi.org/10.5194/acp-20-15227-2020, https://doi.org/10.5194/acp-20-15227-2020, 2020
Short summary
Short summary
Modeling the stratosphere requires models with good representations of chemical transport. To do this, nearly all models divide the atmosphere into boxes. This creates some unwanted problems. However, the only other option is to divide the atmosphere into balloons, and this method is very complicated. Here, we use a model which uses this balloon-like method to estimate the impacts of this method on chemical transport. We find significant differences in sensitive regions of the stratosphere.
Min-Jee Kang, Hye-Yeong Chun, and Rolando R. Garcia
Atmos. Chem. Phys., 20, 14669–14693, https://doi.org/10.5194/acp-20-14669-2020, https://doi.org/10.5194/acp-20-14669-2020, 2020
Short summary
Short summary
In winter 2015/16, the descent of the westerly quasi-biennial oscillation (QBO) jet was interrupted by easterly winds. We find that Rossby–gravity and inertia–gravity waves weaken the jet core in early stages, and small-scale convective gravity waves, as well as horizontal and vertical components of Rossby waves, reverse the wind sign in later stages. The strong negative wave forcing in the tropics results from the enhanced convection, an anomalous wind profile, and barotropic instability.
Sabine Haase, Jaika Fricke, Tim Kruschke, Sebastian Wahl, and Katja Matthes
Atmos. Chem. Phys., 20, 14043–14061, https://doi.org/10.5194/acp-20-14043-2020, https://doi.org/10.5194/acp-20-14043-2020, 2020
Short summary
Short summary
Ozone depletion over Antarctica was shown to influence the tropospheric jet in the Southern Hemisphere. We investigate the atmospheric response to ozone depletion comparing climate model ensembles with interactive and prescribed ozone fields. We show that allowing feedbacks between ozone chemistry and model physics as well as including asymmetries in ozone leads to a strengthened ozone depletion signature in the stratosphere but does not significantly affect the tropospheric jet position.
Arata Amemiya and Kaoru Sato
Atmos. Chem. Phys., 20, 13857–13876, https://doi.org/10.5194/acp-20-13857-2020, https://doi.org/10.5194/acp-20-13857-2020, 2020
Short summary
Short summary
The spatial pattern of subseasonal variability of the Asian monsoon anticyclone (AMA) is analyzed using long-term reanalysis data, integrating two different views using potential vorticity and the geopotential height anomaly. This study provides a link between two existing description of the Asian monsoon anticyclone, which is important for the understanding of the whole life cycle of its characteristic subseasonal variability pattern.
Daniele Minganti, Simon Chabrillat, Yves Christophe, Quentin Errera, Marta Abalos, Maxime Prignon, Douglas E. Kinnison, and Emmanuel Mahieu
Atmos. Chem. Phys., 20, 12609–12631, https://doi.org/10.5194/acp-20-12609-2020, https://doi.org/10.5194/acp-20-12609-2020, 2020
Short summary
Short summary
The climatology of the N2O transport budget in the stratosphere is studied in the transformed Eulerian mean framework across a variety of datasets: a chemistry climate model, a chemistry transport model driven by four reanalyses and a chemical reanalysis. The impact of vertical advection on N2O agrees well in the datasets, but horizontal mixing presents large differences above the Antarctic and in the whole Northern Hemisphere.
Andrew Orr, J. Scott Hosking, Aymeric Delon, Lars Hoffmann, Reinhold Spang, Tracy Moffat-Griffin, James Keeble, Nathan Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 20, 12483–12497, https://doi.org/10.5194/acp-20-12483-2020, https://doi.org/10.5194/acp-20-12483-2020, 2020
Short summary
Short summary
Polar stratospheric clouds (PSCs) are clouds found in the Antarctic winter stratosphere and are implicated in the formation of the ozone hole. These clouds can sometimes be formed or enhanced by mountain waves, formed as air passes over hills or mountains. However, this important mechanism is missing in coarse-resolution climate models, limiting our ability to simulate ozone. This study examines an attempt to include the effects of mountain waves and their impact on PSCs and ozone.
Maartje Sanne Kuilman, Qiong Zhang, Ming Cai, and Qin Wen
Atmos. Chem. Phys., 20, 12409–12430, https://doi.org/10.5194/acp-20-12409-2020, https://doi.org/10.5194/acp-20-12409-2020, 2020
Short summary
Short summary
In this study, we quantify the temperature changes in the middle atmosphere due to different feedback processes using the climate feedback response analysis method. We have found that the change due to the increase in CO2 alone cools the middle atmosphere. The combined effect of the different feedbacks causes the atmosphere to cool less. The ozone feedback is the most important feedback process, while the cloud, water vapour and albedo feedback play only a minor role.
Silvia Bucci, Bernard Legras, Pasquale Sellitto, Francesco D'Amato, Silvia Viciani, Alessio Montori, Antonio Chiarugi, Fabrizio Ravegnani, Alexey Ulanovsky, Francesco Cairo, and Fred Stroh
Atmos. Chem. Phys., 20, 12193–12210, https://doi.org/10.5194/acp-20-12193-2020, https://doi.org/10.5194/acp-20-12193-2020, 2020
Short summary
Short summary
The paper presents and evaluates a transport analysis method to study the convective injection of air in the upper troposphere–lower stratosphere of the Asian monsoon anticyclone region. The approach is thereby used to analyse the trace gas data collected during the StratoClim aircraft campaign. The results showed that fresh convective air can be injected fast at a high level of the atmosphere (above 17 km), with potential impacts on the stratospheric chemistry of the Northern Hemisphere.
Jessica Oehrlein, Gabriel Chiodo, and Lorenzo M. Polvani
Atmos. Chem. Phys., 20, 10531–10544, https://doi.org/10.5194/acp-20-10531-2020, https://doi.org/10.5194/acp-20-10531-2020, 2020
Short summary
Short summary
Winter winds in the stratosphere 10–50 km above the surface impact climate at the surface. Prior studies suggest that this interaction between the stratosphere and the surface is affected by ozone. We compare two ways of including ozone in computer simulations of climate. One method is more realistic but more expensive. We find that the method of including ozone in simulations affects the surface climate when the stratospheric winds are unusually weak but not when they are unusually strong.
Aurélien Podglajen, Albert Hertzog, Riwal Plougonven, and Bernard Legras
Atmos. Chem. Phys., 20, 9331–9350, https://doi.org/10.5194/acp-20-9331-2020, https://doi.org/10.5194/acp-20-9331-2020, 2020
Short summary
Short summary
Thanks to the increase in resolution, numerical weather prediction models resolve a growing fraction of the gravity wave (GW) spectrum. Here, we assess the representation of Lagrangian GW fluctuations by comparing trajectories in the models to long-duration balloon observations. Most characteristics of the observed GW spectrum, such as near-inertial oscillations, are qualitatively present. However, the variability remains underestimated, emphasizing the continuous need for GW parameterizations.
Yoshio Kawatani, Toshihiko Hirooka, Kevin Hamilton, Anne K. Smith, and Masatomo Fujiwara
Atmos. Chem. Phys., 20, 9115–9133, https://doi.org/10.5194/acp-20-9115-2020, https://doi.org/10.5194/acp-20-9115-2020, 2020
Short summary
Short summary
This paper reports on a project to compare the representation of the semiannual oscillation (SAO) among six major global atmospheric reanalyses and with recent satellite observations. The differences among the zonal mean zonal wind as represented by the various reanalyses display a prominent equatorial maximum that increases with height. It is shown that assimilation of satellite temperature measurements is crucial for the realistic representation of the tropical upper stratospheric circulation.
Marius Hauck, Harald Bönisch, Peter Hoor, Timo Keber, Felix Ploeger, Tanja J. Schuck, and Andreas Engel
Atmos. Chem. Phys., 20, 8763–8785, https://doi.org/10.5194/acp-20-8763-2020, https://doi.org/10.5194/acp-20-8763-2020, 2020
Short summary
Short summary
This study features an extended inversion method that includes transport across the extratropical tropopause to derive age spectra in the lowermost stratosphere from in situ trace gas measurements. The refined method is validated in a model setup and applied to data gained with the HALO research aircraft. Results are congruent with the findings of previous studies so that the method provides a promising toolset for the analysis of stratospheric dynamics based on observations in the future.
Frauke Fritsch, Hella Garny, Andreas Engel, Harald Bönisch, and Roland Eichinger
Atmos. Chem. Phys., 20, 8709–8725, https://doi.org/10.5194/acp-20-8709-2020, https://doi.org/10.5194/acp-20-8709-2020, 2020
Short summary
Short summary
We test two methods to derive age of air as a diagnostic of the Brewer–Dobson circulation from non-linear increasing trace gases such as SF6 using a chemistry-climate model and observations. Both the model and the observations show systematic variation of the age of air trend dependent on the chosen assumptions that are required when deriving age of air from measurements. This provides insight into the differences in age of air trends of observations and models.
Natalia Korhonen, Otto Hyvärinen, Matti Kämäräinen, David S. Richardson, Heikki Järvinen, and Hilppa Gregow
Atmos. Chem. Phys., 20, 8441–8451, https://doi.org/10.5194/acp-20-8441-2020, https://doi.org/10.5194/acp-20-8441-2020, 2020
Short summary
Short summary
Reanalysis data of the strength of the polar vortex is applied in the post-processing of the European Centre for Medium-Range Weather Forecasts (ECMWF) winter surface temperature forecasts for weeks 3–4 and 5–6 over northern Europe. In this way, the skill scores of these forecasts are slightly improved. It is also found that, in cases where the polar vortex was weak at the start of the forecast, the mean skill scores of these forecasts were higher than average.
In-Sun Song, Changsup Lee, Hye-Yeong Chun, Jeong-Han Kim, Geonhwa Jee, Byeong-Gwon Song, and Julio T. Bacmeister
Atmos. Chem. Phys., 20, 7617–7644, https://doi.org/10.5194/acp-20-7617-2020, https://doi.org/10.5194/acp-20-7617-2020, 2020
Short summary
Short summary
A modeling study on the effects of propagation of atmospheric gravity waves is carried out for the 2009 sudden stratospheric warming (SSW) event. It is found that gravity-wave-induced momentum fluxes are significantly affected by horizontal refraction and the Earth's curvature effects. Gravity wave convergence and effects of ray geometry also have some impact. In the evolution of the SSW, significantly enhanced momentum fluxes are likely to change nonlocally nearby large-scale vortex structures.
Marta Abalos, Clara Orbe, Douglas E. Kinnison, David Plummer, Luke D. Oman, Patrick Jöckel, Olaf Morgenstern, Rolando R. Garcia, Guang Zeng, Kane A. Stone, and Martin Dameris
Atmos. Chem. Phys., 20, 6883–6901, https://doi.org/10.5194/acp-20-6883-2020, https://doi.org/10.5194/acp-20-6883-2020, 2020
Short summary
Short summary
A set of state-of-the art chemistry–climate models is used to examine future changes in downward transport from the stratosphere, a key contributor to tropospheric ozone. The acceleration of the stratospheric circulation results in increased stratosphere-to-troposphere transport. In the subtropics, downward advection into the troposphere is enhanced due to climate change. At higher latitudes, the ozone reservoir above the tropopause is enlarged due to the stronger circulation and ozone recovery.
Rostislav Kouznetsov, Mikhail Sofiev, Julius Vira, and Gabriele Stiller
Atmos. Chem. Phys., 20, 5837–5859, https://doi.org/10.5194/acp-20-5837-2020, https://doi.org/10.5194/acp-20-5837-2020, 2020
Short summary
Short summary
Estimates of the age of stratospheric air (AoA), its distribution, and trends, obtained by different experimental methods, differ among each other. AoA derived form MIPAS satellite observations, the richest observational dataset on sulfur hexafluoride (SF6) in the stratosphere, are a clear outlier. With multi-decade simulations of AoA and SF6 in the stratosphere, we show that the origin of the discrepancy is in a methodology of deriving AoA from observations rather than in observational data.
Koji Yamazaki, Tetsu Nakamura, Jinro Ukita, and Kazuhira Hoshi
Atmos. Chem. Phys., 20, 5111–5127, https://doi.org/10.5194/acp-20-5111-2020, https://doi.org/10.5194/acp-20-5111-2020, 2020
Short summary
Short summary
It has been well known that the stratospheric quasi-biennial oscillation (QBO) affects the winter Arctic polar vortex. This relation has been explained through stratospheric processes. We show that a tropospheric process also plays a role, especially in early winter, based on data analysis and numerical simulations. The QBO modifies tropical convection, which affects planetary waves in the midlatitude troposphere, then modulating vertical propagation and the polar vortex.
Susann Tegtmeier, James Anstey, Sean Davis, Rossana Dragani, Yayoi Harada, Ioana Ivanciu, Robin Pilch Kedzierski, Kirstin Krüger, Bernard Legras, Craig Long, James S. Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 20, 753–770, https://doi.org/10.5194/acp-20-753-2020, https://doi.org/10.5194/acp-20-753-2020, 2020
Short summary
Short summary
The tropical tropopause layer is an important atmospheric region right in between the troposphere and the stratosphere. We evaluate the representation of this layer in reanalyses data sets, which create a complete picture of the state of Earth's atmosphere using atmospheric modeling and available observations. The recent reanalyses show realistic temperatures in the tropical tropopause layer. However, where the temperature is lowest, the so-called cold point, the reanalyses are too cold.
Xiaolu Yan, Paul Konopka, Felix Ploeger, Aurélien Podglajen, Jonathon S. Wright, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 15629–15649, https://doi.org/10.5194/acp-19-15629-2019, https://doi.org/10.5194/acp-19-15629-2019, 2019
Short summary
Short summary
The Asian and North American summer monsoons (ASM and NASM) have considerable influence on stratospheric chemistry and physics. More air mass is transported from the monsoon regions to the tropical stratosphere when the tracers are released clearly below the tropopause than when they are released close to the tropopause. Results for different altitudes of air origin reveal two transport pathways (monsoon and tropical) from the upper troposphere over the monsoon regions to the tropical pipe.
Daniel Kunkel, Peter Hoor, Thorsten Kaluza, Jörn Ungermann, Björn Kluschat, Andreas Giez, Hans-Christoph Lachnitt, Martin Kaufmann, and Martin Riese
Atmos. Chem. Phys., 19, 12607–12630, https://doi.org/10.5194/acp-19-12607-2019, https://doi.org/10.5194/acp-19-12607-2019, 2019
Short summary
Short summary
In this study we present a mixing process around the tropopause in extratropical baroclinic waves. We analyze airborne data from a flight during the WISE campaign in autumn 2017 over the North Atlantic. We use idealized experiments to study the mixing process. Although the process occurs on a small geographical scale, it might be of importance due to its relation to a frequent feature of the extratropical UTLS. The process is relevant for STE but is not fully included in climatologies.
Andreas Chrysanthou, Amanda C. Maycock, Martyn P. Chipperfield, Sandip Dhomse, Hella Garny, Douglas Kinnison, Hideharu Akiyoshi, Makoto Deushi, Rolando R. Garcia, Patrick Jöckel, Oliver Kirner, Giovanni Pitari, David A. Plummer, Laura Revell, Eugene Rozanov, Andrea Stenke, Taichu Y. Tanaka, Daniele Visioni, and Yousuke Yamashita
Atmos. Chem. Phys., 19, 11559–11586, https://doi.org/10.5194/acp-19-11559-2019, https://doi.org/10.5194/acp-19-11559-2019, 2019
Short summary
Short summary
We perform the first multi-model comparison of the impact of nudged meteorology on the stratospheric residual circulation (RC) in chemistry–climate models. Nudging meteorology does not constrain the mean strength of RC compared to free-running simulations, and despite the lack of agreement in the mean circulation, nudging tightly constrains the inter-annual variability in the tropical upward mass flux in the lower stratosphere. In summary, nudging strongly affects the representation of RC.
Blanca Ayarzagüena, Froila M. Palmeiro, David Barriopedro, Natalia Calvo, Ulrike Langematz, and Kiyotaka Shibata
Atmos. Chem. Phys., 19, 9469–9484, https://doi.org/10.5194/acp-19-9469-2019, https://doi.org/10.5194/acp-19-9469-2019, 2019
Short summary
Short summary
Sudden stratospheric warmings (SSWs) are abrupt rises in the wintertime polar stratosphere that also affect the troposphere. Their study is hampered by the limited observations in the stratosphere and mostly relies on reanalyses, i.e., models that include observations. Here we compare the representation of SSWs by the most used reanalyses. SSW results are consistent across reanalyses but some differences are found, in particular before the satellite era.
Cited articles
Bönisch, H., Engel, A., Curtius, J., Birner, Th., and Hoor, P.: Quantifying transport into the lowermost stratosphere using simultaneous in-situ measurements of SF6 and CO2, Atmos. Chem. Phys., 9, 5905–5919, https://doi.org/10.5194/acp-9-5905-2009, 2009. a, b
Bowman, K. P.:
Transport of carbon monoxide from the tropics to the extratropics,
J. Geophys. Res.-Atmos.,
111, D02107, https://doi.org/10.1029/2005JD006137, 2006. a
Bowman, K. P. and Carrie, G. D.:
The Mean-Meridional Transport Circulation of the Troposphere in an Idealized GCM,
J. Atmos. Sci.,
59, 1502–1514, https://doi.org/10.1175/1520-0469(2002)059<1502:TMMTCO>2.0.CO;2, 2002. a
Bowman, K. P. and Cohen, P. J.:
Interhemispheric Exchange by Seasonal Modulation of the Hadley Circulation,
J. Atmos. Sci.,
54, 2045–2059, https://doi.org/10.1175/1520-0469(1997)054<2045:IEBSMO>2.0.CO;2, 1997. a
Butchart, N.:
The Brewer–Dobson circulation,
Rev. Geophys.,
52, 157–184, https://doi.org/10.1002/2013RG000448, 2014. a
Czeplak, G. and Junge, C.:
Studies of Interhemispheric Exchange in the Troposphere by a Diffusion Model,
in: International Union of Theoretical and Applied Mechanics and International Union of Geodesy and Geophysics, vol. 18 of Advances in Geophysics,
edited by: Frenkiel, F. and Munn, R.,
Elsevier, 57–72, https://doi.org/10.1016/S0065-2687(08)60571-3, 1975. a, b
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Koehler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart, F.:
The ERA-Interim reanalysis: configuration and performance of the data assimilation system,
Q. J. Roy. Meteorol. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Denning, A. S., Holzer, M., Gurney, K. R., Heimann, M., Law, R. M., Rayner, P. J., Fung, I. Y., Fan, S.-M., Taguchi, S., Friedlingstein, P., Balkanski, Y., Taylor, J., Maiss, M., and Levin, I.:
Three-dimensional transport and concentration of SF6 A model intercomparison study (TransCom 2),
Tellus B,
51, 266–297, https://doi.org/10.3402/tellusb.v51i2.16286, 1999. a, b, c, d
Dlugokencky, E. J., Bruhwiler, L., White, J. W. C., Emmons, L. K., Novelli, P. C., Montzka, S. A., Masarie, K. A., Lang, P. M., Crotwell, A. M., Miller, J. B., and Gatti, L. V.:
Observational constraints on recent increases in the atmospheric CH4 burden,
Geophys. Res. Lett.,
36, L18803, https://doi.org/10.1029/2009GL039780, 2009. a
Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T., Sugawara, S., Moore, F., Hurst, D., Elkins, J., Schauffler, S., Andrews, A., and Boering, K.:
Age of stratospheric air unchanged within uncertainties over the past 30 years,
Nat. Geosci.,
2, 28–31, https://doi.org/10.1038/ngeo388, 2009. a
Engel, A., Bönisch, H., Ullrich, M., Sitals, R., Membrive, O., Danis, F., and Crevoisier, C.: Mean age of stratospheric air derived from AirCore observations, Atmos. Chem. Phys., 17, 6825–6838, https://doi.org/10.5194/acp-17-6825-2017, 2017. a
Erukhimova, T. and Bowman, K. P.:
Role of convection in global-scale transport in the troposphere,
J. Geophys. Res.-Atmos.,
111, D03105, https://doi.org/10.1029/2005JD006006, 2006. a, b
Francey, R. J. and Frederiksen, J. S.: The 2009–2010 step in atmospheric CO2 interhemispheric difference, Biogeosciences, 13, 873–885, https://doi.org/10.5194/bg-13-873-2016, 2016. a, b, c
Fritsch, F., Garny, H., Engel, A., Bönisch, H., and Eichinger, R.: Sensitivity of age of air trends to the derivation method for non-linear increasing inert SF6, Atmos. Chem. Phys., 20, 8709–8725, https://doi.org/10.5194/acp-20-8709-2020, 2020. a
Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and Mote, P. W.:
Tropical tropopause layer,
Rev. Geophys.,
47, RG1004, https://doi.org/10.1029/2008RG000267, 2009. a
Fueglistaler, S., Haynes, P. H., and Forster, P. M.: The annual cycle in lower stratospheric temperatures revisited, Atmos. Chem. Phys., 11, 3701–3711, https://doi.org/10.5194/acp-11-3701-2011, 2011. a
Garny, H., Birner, T., Bönisch, H., and Bunzel, F.:
The effects of mixing on Age of Air,
J. Geophys. Res.,
119, 7015–7034, https://doi.org/10.1002/2013JD021417, 2014. a
Gloor, M., Dlugokencky, E., Brenninkmeijer, C., Horowitz, L., Hurst, D. F., Dutton, G., Crevoisier, C., Machida, T., and Tans, P.:
Three-dimensional SF6 data and tropospheric transport simulations: Signals, modeling accuracy, and implications for inverse modeling,
J. Geophys. Res.-Atmos.,
112, D15112, https://doi.org/10.1029/2006JD007973, 2007. a
Haine, T. W. N., Zhang, H., Waugh, D. W., and Holzer, M.:
On transit time distributions in unsteady circulation models,
Ocean Model.,
21, 35–45, 2008. a
Hall, T. M. and Plumb, R. A.:
Age as a diagnostic of stratospheric transport,
J. Geophys. Res.,
99, 1059–1070, 1994. a
Hartley, D. E. and Black, R. X.:
Mechanistic analysis of interhemispheric transport,
Geophys. Res. Lett.,
22, 2945–2948, https://doi.org/10.1029/95GL02823, 1995. a
Hauck, M., Fritsch, F., Garny, H., and Engel, A.: Deriving stratospheric age of air spectra using an idealized set of chemically active trace gases, Atmos. Chem. Phys., 19, 5269–5291, https://doi.org/10.5194/acp-19-5269-2019, 2019. a
Hauck, M., Bönisch, H., Hoor, P., Keber, T., Ploeger, F., Schuck, T. J., and Engel, A.: A convolution of observational and model data to estimate age of air spectra in the northern hemispheric lower stratosphere, Atmos. Chem. Phys., 20, 8763–8785, https://doi.org/10.5194/acp-20-8763-2020, 2020. a, b, c
Hegglin, M. I. and Shepherd, T. G.:
O3−N2O correlations from the Atmospheric Chemistry Experiment: Revisiting a diagnostic of transport and chemistry in the stratosphere,
J. Geophys. Res., 112, D19301, https://doi.org/10.1029/2006JD008281, 2007. a
Holton, J. R., Haynes, P., McIntyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L.:
Stratosphere-troposphere exchange,
Rev. Geophys.,
33, 403–439, 1995. a
Holzer, M.:
The Path Density of Interhemispheric Surface-to-Surface Transport. Part II: Transport through the Troposphere and Stratosphere Diagnosed from NCEP Data,
J. Atmos. Sci.,
66, 2172–2189, https://doi.org/10.1175/2009JAS2895.1, 2009. a, b, c
Holzer, M., McKendry, I. G., and Jaffe, D. A.:
Springtime trans-Pacific atmospheric transport from east Asia: A transit-time probability density function approach,
J. Geophys. Res.-Atmos.,
108, 4708, https://doi.org/10.1029/2003JD003558, 2003. a
Hoor, P., Fischer, H., and Lelieveld, J.:
Tropical and extratropical tropospheric air in the lowermost stratosphere over Europe: A CO-based budget,
Geophys. Res. Lett.,
32, L07802, https://doi.org/10.1029/2004GL022018, 2005. a
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W.:
On the use and significance of isentropic potential vorticity maps,
Q. J. Roy. Meteor. Soc.,
111, 877–946, 1985. a
Jacob, D. J., Prather, M. J., Wofsy, S. C., and McElroy, M. B.:
Atmospheric distribution of 85Kr simulated with a general circulation model,
J. Geophys. Res.-Atmos.,
92, 6614–6626, https://doi.org/10.1029/JD092iD06p06614, 1987. a
Kloss, C., Berthet, G., Sellitto, P., Ploeger, F., Bucci, S., Khaykin, S., Jégou, F., Taha, G., Thomason, L. W., Barret, B., Le Flochmoen, E., von Hobe, M., Bossolasco, A., Bègue, N., and Legras, B.: Transport of the 2017 Canadian wildfire plume to the tropics via the Asian monsoon circulation, Atmos. Chem. Phys., 19, 13547–13567, https://doi.org/10.5194/acp-19-13547-2019, 2019. a
Konopka, P. and Pan, L. L.:
On the mixing-driven formation of the Extratropical Transition Layer (ExTL),
J. Geophys. Res.,
117, D18301, https://doi.org/10.1029/2012JD017876, 2012. a
Konopka, P., Steinhorst, H.-M., Grooß, J.-U., Günther, G., Müller, R., Elkins, J. W., Jost, H.-J., Richard, E., Schmidt, U., Toon, G., and McKenna, D. S.:
Mixing and Ozone Loss in the 1999–2000 Arctic Vortex: Simulations with the 3-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS),
J. Geophys. Res.,
109, D02315, https://doi.org/10.1029/2003JD003792, 2004. a
Konopka, P., Ploeger, F., Tao, M., Birner, T., and Riese, M.:
Hemispheric asymmetries and seasonality of mean age of air in the lower stratosphere: Deep versus shallow branch of the Brewer-Dobson circulation,
J. Geophys. Res.,
120, 2053–2066, https://doi.org/10.1002/2014JD022429, 2015. a, b, c
Konopka, P., Ploeger, F., Tao, M., and Riese, M.:
Regionally Resolved Diagnostic of Transport: A Simplified Forward Model for CO2,
J. Atmos. Sci.,
74, 2689–2700, https://doi.org/10.1175/JAS-D-16-0367.1, 2017. a, b, c
Kovács, T., Feng, W., Totterdill, A., Plane, J. M. C., Dhomse, S., Gómez-Martín, J. C., Stiller, G. P., Haenel, F. J., Smith, C., Forster, P. M., García, R. R., Marsh, D. R., and Chipperfield, M. P.: Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model, Atmos. Chem. Phys., 17, 883–898, https://doi.org/10.5194/acp-17-883-2017, 2017. a
Krol, M., de Bruine, M., Killaars, L., Ouwersloot, H., Pozzer, A., Yin, Y., Chevallier, F., Bousquet, P., Patra, P., Belikov, D., Maksyutov, S., Dhomse, S., Feng, W., and Chipperfield, M. P.: Age of air as a diagnostic for transport timescales in global models, Geosci. Model Dev., 11, 3109–3130, https://doi.org/10.5194/gmd-11-3109-2018, 2018. a, b, c, d, e, f, g, h
Kunz, A., Konopka, P., Müller, R., and Pan, L. L.:
Dynamical tropopause based on isentropic potential vorticity gradients,
J. Geophys. Res.,
116, D01110, https://doi.org/10.1029/2010JD014343, 2011. a
Levine, J. G., Braesicke, P., Harris, N. R. P., Savage, N. S., and Pyle, J. A.:
Pathways and timescales for troposphere-to-stratosphere transport via the tropical layer and their relevance for very short-lived substances,
J. Geophys. Res.,
112, D04308, https://doi.org/10.1029/2005JD006940, 2007. a
Li, F., Waugh, D. W., Douglass, A. R., Newman, P. A., Pawson, S., Stolarski, R. S., Strahan, S. E., and Nielsen, J. E.:
Seasonal variations in stratospheric age spectra in GEOSCCM,
J. Geophys. Res.,
117, D05134, https://doi.org/10.1029/2011JD016877, 2012. a
Liang, Q., Newman, P. A., Daniel, J. S., Reimann, S., Hall, B. D., Dutton, G., and Kuijpers, L. J. M.:
Constraining the carbon tetrachloride (CCl4) budget using its global trend and inter-hemispheric gradient,
Geophys. Res. Lett.,
41, 5307–5315, https://doi.org/10.1002/2014GL060754, 2014. a, b
Lintner, B. R.:
Mechanisms of passive tracer interhemispheric transport: An analysis of model-derived and observational interhemispheric transport climatology and interannual variations,
PhD thesis,
University of California, Berkeley, 2003. a
Lintner, B. R., Gilliland, A. B., and Fung, I. Y.:
Mechanisms of convection-induced modulation of passive tracer interhemispheric transport interannual variability,
J. Geophys. Res.-Atmos.,
109, D13102, https://doi.org/10.1029/2003JD004306, 2004. a, b
Maiss, M., Steele, L., Francey, R. J., Fraser, P. J., Langenfelds, R. L., Trivett, N. B., and Levin, I.:
Sulfur hexafluoride–A powerful new atmospheric tracer,
Atmos. Environ.,
30, 1621–1629, https://doi.org/10.1016/1352-2310(95)00425-4, Special Issue: Joint 8th CAGCP and 2nd IGAC Conference on Global Atmospheric Chemistry, 1996. a, b
McKenna, D. S., Konopka, P., Grooß, J.-U., Günther, G., Müller, R., Spang, R., Offermann, D., and Orsolini, Y.:
A new Chemical Lagrangian Model of the Stratosphere (CLaMS): 1. Formulation of advection and mixing,
J. Geophys. Res.,
107, 4309, https://doi.org/10.1029/2000JD000114, 2002. a
Müller, J.-F. and Brasseur, G.:
IMAGES: A three-dimensional chemical transport model of the global troposphere,
J. Geophys. Res.-Atmos.,
100, 16445–16490, https://doi.org/10.1029/94JD03254, 1995. a
Naus, S., Montzka, S. A., Pandey, S., Basu, S., Dlugokencky, E. J., and Krol, M.: Constraints and biases in a tropospheric two-box model of OH, Atmos. Chem. Phys., 19, 407–424, https://doi.org/10.5194/acp-19-407-2019, 2019. a
Orbe, C., Holzer, M., Polvani, L. M., and Waugh, D.:
Air-mass origin as a diagnostic of tropospheric transport,
J. Geophys. Res.,
118, 1459–1470, https://doi.org/10.1002/jgrd.50133, 2013. a
Orbe, C., Waugh, D. W., and Newman, P. A.:
Air-mass origin in the tropical lower stratosphere: The influence of Asian boundary layer air,
Geophys. Res. Lett.,
42, 4240–4248, https://doi.org/10.1002/2015GL063937 2015. a, b, c, d
Orbe, C., Yang, H., Waugh, D. W., Zeng, G., Morgenstern , O., Kinnison, D. E., Lamarque, J.-F., Tilmes, S., Plummer, D. A., Scinocca, J. F., Josse, B., Marecal, V., Jöckel, P., Oman, L. D., Strahan, S. E., Deushi, M., Tanaka, T. Y., Yoshida, K., Akiyoshi, H., Yamashita, Y., Stenke, A., Revell, L., Sukhodolov, T., Rozanov, E., Pitari, G., Visioni, D., Stone, K. A., Schofield, R., and Banerjee, A.: Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations, Atmos. Chem. Phys., 18, 7217–7235, https://doi.org/10.5194/acp-18-7217-2018, 2018. a
Pandey, S., Houweling, S., Krol, M., Aben, I., Monteil, G., Nechita-Banda, N., Dlugokencky, E., Detmers, R., Hasekamp, O., Xu, X., Riley, W., Poulter, B., Zhang, Z., McDonald, K., White, J., Bousquet, P., and Röckmann, T.:
Enhanced methane emissions from tropical wetlands during the 2011 la Niña,
Sci. Rep.-UK,
7, 45759, https://doi.org/10.1038/srep45759, 2017. a
Patra, P. K., Takigawa, M., Dutton, G. S., Uhse, K., Ishijima, K., Lintner, B. R., Miyazaki, K., and Elkins, J. W.: Transport mechanisms for synoptic, seasonal and interannual SF6 variations and “age” of air in troposphere, Atmos. Chem. Phys., 9, 1209–1225, https://doi.org/10.5194/acp-9-1209-2009, 2009. a, b, c
Patra, P. K., Houweling, S., Krol, M., Bousquet, P., Belikov, D., Bergmann, D., Bian, H., Cameron-Smith, P., Chipperfield, M. P., Corbin, K., Fortems-Cheiney, A., Fraser, A., Gloor, E., Hess, P., Ito, A., Kawa, S. R., Law, R. M., Loh, Z., Maksyutov, S., Meng, L., Palmer, P. I., Prinn, R. G., Rigby, M., Saito, R., and Wilson, C.: TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere, Atmos. Chem. Phys., 11, 12813–12837, https://doi.org/10.5194/acp-11-12813-2011, 2011. a, b, c
Patra, P. K., Krol, M. C., Montzka, S. A., Arnold, T., Atlas, E. L., Lintner, B. R., Stephens, B. B., Xiang, B., Elkins, J. W., Fraser, P. J., Ghosh, A., Hintsa, E. J., Hurst, D. F., Ishijima, K., Krummel, P. B., Miller, B. R., Miyazaki, K., Moore, F. L., Mühle, J., O'Doherty, S., Prinn, R. G., Steele, L. P., Takigawa, M., Wang, H. J., Weiss, R. F., Wofsy, S. C., and Young, D.:
Observational evidence for interhemispheric hydroxyl-radical parity,
Nature,
513, 219–223, https://doi.org/10.1038/nature13721, 2014. a
Peters, W., Krol, M. C., Dlugokencky, E. J., Dentener, F. J., Bergamaschi, P., Dutton, G., Velthoven, P. v., Miller, J. B., Bruhwiler, L., and Tans, P. P.:
Toward regional-scale modeling using the two-way nested global model TM5: Characterization of transport using SF6,
J. Geophys. Res.-Atmos.,
109, D19314, https://doi.org/10.1029/2004JD005020, 2004. a
Ploeger, F. and Birner, T.: Seasonal and inter-annual variability of lower stratospheric age of air spectra, Atmos. Chem. Phys., 16, 10195–10213, https://doi.org/10.5194/acp-16-10195-2016, 2016. a, b, c
Ploeger, F., Konopka, P., Walker, K., and Riese, M.: Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere, Atmos. Chem. Phys., 17, 7055–7066, https://doi.org/10.5194/acp-17-7055-2017, 2017. a
Ploeger, F., Legras, B., Charlesworth, E., Yan, X., Diallo, M., Konopka, P., Birner, T., Tao, M., Engel, A., and Riese, M.: How robust are stratospheric age of air trends from different reanalyses?, Atmos. Chem. Phys., 19, 6085–6105, https://doi.org/10.5194/acp-19-6085-2019, 2019. a, b, c, d
Podglajen, A. and Ploeger, F.: Retrieving the age of air spectrum from tracers: principle and method, Atmos. Chem. Phys., 19, 1767–1783, https://doi.org/10.5194/acp-19-1767-2019, 2019. a
Pommrich, R., Müller, R., Grooß, J.-U., Konopka, P., Ploeger, F., Vogel, B., Tao, M., Hoppe, C. M., Günther, G., Spelten, N., Hoffmann, L., Pumphrey, H.-C., Viciani, S., D'Amato, F., Volk, C. M., Hoor, P., Schlager, H., and Riese, M.: Tropical troposphere to stratosphere transport of carbon monoxide and long-lived trace species in the Chemical Lagrangian Model of the Stratosphere (CLaMS), Geosci. Model Dev., 7, 2895–2916, https://doi.org/10.5194/gmd-7-2895-2014, 2014. a
Popovic, J. M. and Plumb, R. A.:
Eddy Shedding from the Upper-Tropospheric Asian Monsoon Anticyclone,
J. Atmos. Sci.,
58, 93–104, https://doi.org/10.1175/1520-0469(2001)058<0093:ESFTUT>2.0.CO;2, 2001. a
Prather, M., McElroy, M., Wofsy, S., Russell, G., and Rind, D.:
Chemistry of the global troposphere: Fluorocarbons as tracers of air motion,
J. Geophys. Res.,
92, 6579–6613, 1987. a
Randel, W. J., Moyer, E., Park, M., Jensen, E., Bernath, P., Walker, K., and Boone, C.:
Global variations of HDO and ratios in the upper troposphere and lower stratosphere derived from ACE–FTS satellite measurements,
J. Geophys. Res.,
117, D06303, https://doi.org/10.1029/2011JD016632, 2012. a
Ratnam, J. V., Behera, S. K., and Yamagata, T.:
Role of Cross-Equatorial Waves in Maintaining Long Periods of Low Convective Activity over Southern Africa,
J. Atmos. Sci.,
72, 682–692, https://doi.org/10.1175/JAS-D-14-0063.1, 2015. a
Ravishankara, A. R., Solomon, S., Turnipseed, A. A., and Warren, R. F.:
Atmospheric Lifetimes of Long-Lived Halogenated Species,
Science,
259, 194–199, https://doi.org/10.1126/science.259.5092.194, 1993. a
Ray, E. A., Moore, F. L., Rosenlof, K. H., Davis, S. M., Sweeney, C., Tans, P., Wang, T., Elkins, J. W., Boenisch, H., Engel, A., Sugawara, S., Nakazawa, T., and Aoki, S.:
Improving stratospheric transport trend analysis based on SF6 and CO2 measurements,
J. Geophys. Res.,
119, 14110–14128, 2014. a
Rosenlof, K. H.:
Seasonal cycle of the residual mean meridional circulation in the stratosphere,
J. Geophys. Res.,
100, 5173–5191, 1995. a
Schoeberl, M. R., Douglass, A. R., Polansky, B., Boone, C., Walker, K. A., and Barnath, P.:
Estimation of stratospheric age spectrum from chemical tracers,
J. Geophys. Res.,
110, D21303, https://doi.org/10.1029/2005JD006125, 2005. a
Staudt, A. C., Jacob, D. J., Logan, J. A., Bachiochi, D., Krishnamurti, T. N., and Sachse, G. W.:
Continental sources, transoceanic transport, and interhemispheric exchange of carbon monoxide over the Pacific,
J. Geophys. Res.-Atmos.,
106, 32571–32589, https://doi.org/10.1029/2001JD900078, 2001. a, b, c, d
Stiller, G. P., von Clarmann, T., Haenel, F., Funke, B., Glatthor, N., Grabowski, U., Kellmann, S., Kiefer, M., Linden, A., Lossow, S., and López-Puertas, M.: Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period, Atmos. Chem. Phys., 12, 3311–3331, https://doi.org/10.5194/acp-12-3311-2012, 2012. a
Tomas, R. A. and Webster, P. J.:
Horizontal and Vertical Structure of Cross-Equatorial Wave Propagation,
J. Atmos. Sci.,
51, 1417–1430, https://doi.org/10.1175/1520-0469(1994)051<1417:HAVSOC>2.0.CO;2, 1994.
a, b, c, d
Volk, C. M., Elkins, J. W., Fahey, D. W., Dutton, G. S., Gilligan, J. M., Loewenstein, M., Podolske, J. R., and Chan, K. R.:
On the evaluation of source gas lifetimes from stratospheric observations,
J. Geophys. Res.,
102, 25543–25564, 1997. a
Wang, K. Y. and Shallcross, D. E.:
A modelling study of tropospheric distributions of the trace gases CFCl3 and CH3CCl3 in the 1980s,
Ann. Geophys.,
18, 972–986, https://doi.org/10.1007/s00585-000-0972-3, 2000. a, b, c
Waugh, D. W. and Hall, T. M.:
Age of stratospheric air: Theory, observations, and models,
Rev. Geophys.,
40, 1–27, 2002. a
Waugh, D. W., Crotwell, A. M., Dlugokencky, E. J., Dutton, G. S., Elkins, J. W., Hall, B. D., Hintsa, E. J., Hurst, D. F., Montzka, S. A., Mondeel, D. J., Moore, F. L., Nance, J. D., Ray, E. A., Steenrod, S. D., Strahan, S. E., and Sweeney, C.:
Tropospheric SF6: Age of air from the Northern Hemisphere midlatitude surface,
J. Geophys. Res.,
118, 11429–11441, 2013. a, b
Webster, P. J. and Holton, J. R.:
Cross-Equatorial Response to Middle-Latitude Forcing in a Zonally Varying Basic State,
J. Atmos. Sci.,
39, 722–733, https://doi.org/10.1175/1520-0469(1982)039<0722:CERTML>2.0.CO;2, 1982. a, b
WMO:
Scientific assessment of ozone depletion: 2018,
Global Ozone Research and Monitoring Project–Report No. 58,
Geneva, Switzerland, 2018. a
Wu, X., Griessbach, S., and Hoffmann, L.: Equatorward dispersion of a high-latitude volcanic plume and its relation to the Asian summer monsoon: a case study of the Sarychev eruption in 2009, Atmos. Chem. Phys., 17, 13439–13455, https://doi.org/10.5194/acp-17-13439-2017, 2017. a
Wu, X., Yang, H., Waugh, D. W., Orbe, C., Tilmes, S., and Lamarque, J.-F.: Spatial and temporal variability of interhemispheric transport times, Atmos. Chem. Phys., 18, 7439–7452, https://doi.org/10.5194/acp-18-7439-2018, 2018. a
Yan, X., Konopka, P., Ploeger, F., Podglajen, A., Wright, J. S., Müller, R., and Riese, M.: The efficiency of transport into the stratosphere via the Asian and North American summer monsoon circulations, Atmos. Chem. Phys., 19, 15629–15649, https://doi.org/10.5194/acp-19-15629-2019, 2019. a
Yang, H., Waugh, D. W., Orbe, C., Patra, P. K., Jöckel, P., Lamarque, J.-F., Tilmes, S., Kinnison, D., Elkins, J. W., and Dlugokencky, E. J.:
Evaluating Simulations of Interhemispheric Transport: Interhemispheric Exchange Time Versus SF6 Age,
Geophys. Res. Lett.,
46, 1113–1120, https://doi.org/10.1029/2018GL080960, 2019. a
Short summary
Inter-hemispheric transport is important for understanding atmospheric tracers because of the asymmetry in emissions between the Southern Hemisphere (SH) and Northern Hemisphere (NH). This study finds that the air masses from the NH extratropics to the atmosphere are about 5 times larger than those from the SH extratropics. The interplay between the Asian summer monsoon and westerly ducts triggers the cross-Equator transport from the NH to the SH in boreal summer and fall.
Inter-hemispheric transport is important for understanding atmospheric tracers because of the...
Altmetrics
Final-revised paper
Preprint