Articles | Volume 21, issue 16
Atmos. Chem. Phys., 21, 12595–12611, 2021
https://doi.org/10.5194/acp-21-12595-2021
Atmos. Chem. Phys., 21, 12595–12611, 2021
https://doi.org/10.5194/acp-21-12595-2021
Research article
23 Aug 2021
Research article | 23 Aug 2021

Aerosol formation and growth rates from chamber experiments using Kalman smoothing

Matthew Ozon et al.

Related authors

Retrieval of process rate parameters in the general dynamic equation for aerosols using Bayesian state estimation: BAYROSOL1.0
Matthew Ozon, Aku Seppänen, Jari P. Kaipio, and Kari E. J. Lehtinen
Geosci. Model Dev., 14, 3715–3739, https://doi.org/10.5194/gmd-14-3715-2021,https://doi.org/10.5194/gmd-14-3715-2021, 2021
Short summary
Identification of new particle formation events with deep learning
Jorma Joutsensaari, Matthew Ozon, Tuomo Nieminen, Santtu Mikkonen, Timo Lähivaara, Stefano Decesari, M. Cristina Facchini, Ari Laaksonen, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 18, 9597–9615, https://doi.org/10.5194/acp-18-9597-2018,https://doi.org/10.5194/acp-18-9597-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Hygroscopicity and CCN potential of DMS-derived aerosol particles
Bernadette Rosati, Sini Isokääntä, Sigurd Christiansen, Mads Mørk Jensen, Shamjad P. Moosakutty, Robin Wollesen de Jonge, Andreas Massling, Marianne Glasius, Jonas Elm, Annele Virtanen, and Merete Bilde
Atmos. Chem. Phys., 22, 13449–13466, https://doi.org/10.5194/acp-22-13449-2022,https://doi.org/10.5194/acp-22-13449-2022, 2022
Short summary
Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth
Kanishk Gohil, Chun-Ning Mao, Dewansh Rastogi, Chao Peng, Mingjin Tang, and Akua Asa-Awuku
Atmos. Chem. Phys., 22, 12769–12787, https://doi.org/10.5194/acp-22-12769-2022,https://doi.org/10.5194/acp-22-12769-2022, 2022
Short summary
Experimental development of a lake spray source function and its model implementation for Great Lakes surface emissions
Charbel Harb and Hosein Foroutan
Atmos. Chem. Phys., 22, 11759–11779, https://doi.org/10.5194/acp-22-11759-2022,https://doi.org/10.5194/acp-22-11759-2022, 2022
Short summary
The effectiveness of the coagulation sink of 3–10 nm atmospheric particles
Runlong Cai, Ella Häkkinen, Chao Yan, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 22, 11529–11541, https://doi.org/10.5194/acp-22-11529-2022,https://doi.org/10.5194/acp-22-11529-2022, 2022
Short summary
What caused the interdecadal shift in the El Niño–Southern Oscillation (ENSO) impact on dust mass concentration over northwestern South Asia?
Lamei Shi, Jiahua Zhang, Da Zhang, Jingwen Wang, Xianglei Meng, Yuqin Liu, and Fengmei Yao
Atmos. Chem. Phys., 22, 11255–11274, https://doi.org/10.5194/acp-22-11255-2022,https://doi.org/10.5194/acp-22-11255-2022, 2022
Short summary

Cited articles

Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Appel, B. R., Tokiwa, Y., Hsu, J., Kothny, E. L., and Hahn, E.: Visibility as related to atmospheric aerosol constituents, Atmos. Environ., 19, 1525–1534, https://doi.org/10.1016/0004-6981(85)90290-2, 1985. 
Chambolle, A. and Pock, T.: A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging, J. Math. Imaging Vis., 40, 120–145, https://doi.org/10.1007/s10851-010-0251-1, 2011. 
Dada, L., Lehtipalo, K., Kontkanen, J., Nieminen, T., Baalbaki, R., Ahonen, L., Duplissy, J., Yan, C., Chu, B., Petäjä, T., Lehtinen, K., Kerminen, V.-M., Kulmala, M., and Kangasluoma, J.: Formation and growth of sub-3-nm aerosol particles in experimental chambers, Nat. Protoc., 15, 1013–1040, https://doi.org/10.1038/s41596-019-0274-z, 2020. 
Download
Short summary
Measuring the rate at which aerosol particles are formed is of importance for understanding climate change. We present an analysis method based on Kalman smoothing, which retrieves new particle formation and growth rates from size-distribution measurements. We apply it to atmospheric simulation chamber experiments and show that it agrees well with traditional methods. In addition, it provides reliable uncertainty estimates, and we suggest instrument design optimisation for signal processing.
Altmetrics
Final-revised paper
Preprint