Articles | Volume 21, issue 16
https://doi.org/10.5194/acp-21-12595-2021
https://doi.org/10.5194/acp-21-12595-2021
Research article
 | 
23 Aug 2021
Research article |  | 23 Aug 2021

Aerosol formation and growth rates from chamber experiments using Kalman smoothing

Matthew Ozon, Dominik Stolzenburg, Lubna Dada, Aku Seppänen, and Kari E. J. Lehtinen

Related authors

Retrieval of process rate parameters in the general dynamic equation for aerosols using Bayesian state estimation: BAYROSOL1.0
Matthew Ozon, Aku Seppänen, Jari P. Kaipio, and Kari E. J. Lehtinen
Geosci. Model Dev., 14, 3715–3739, https://doi.org/10.5194/gmd-14-3715-2021,https://doi.org/10.5194/gmd-14-3715-2021, 2021
Short summary
Identification of new particle formation events with deep learning
Jorma Joutsensaari, Matthew Ozon, Tuomo Nieminen, Santtu Mikkonen, Timo Lähivaara, Stefano Decesari, M. Cristina Facchini, Ari Laaksonen, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 18, 9597–9615, https://doi.org/10.5194/acp-18-9597-2018,https://doi.org/10.5194/acp-18-9597-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Viscosity of aqueous ammonium nitrate–organic particles: Equilibrium partitioning may be a reasonable assumption for most tropospheric conditions
Liviana K. Klein, Allan K. Bertram, Andreas Zuend, Florence Gregson, and Ulrich K. Krieger
EGUsphere, https://doi.org/10.5194/egusphere-2024-1459,https://doi.org/10.5194/egusphere-2024-1459, 2024
Short summary
Role of sea spray aerosol at the air–sea interface in transporting aromatic acids to the atmosphere
Yaru Song, Jianlong Li, Narcisse Tsona Tchinda, Kun Li, and Lin Du
Atmos. Chem. Phys., 24, 5847–5862, https://doi.org/10.5194/acp-24-5847-2024,https://doi.org/10.5194/acp-24-5847-2024, 2024
Short summary
Modeling the influence of carbon branching structure on secondary organic aerosol formation via multiphase reactions of alkanes
Azad Madhu, Myoseon Jang, and Yujin Jo
Atmos. Chem. Phys., 24, 5585–5602, https://doi.org/10.5194/acp-24-5585-2024,https://doi.org/10.5194/acp-24-5585-2024, 2024
Short summary
Technical note: Characterization of a single-beam gradient force aerosol optical tweezer for droplet trapping, phase transition monitoring, and morphology studies
Xiangyu Pei, Yikan Meng, Yueling Chen, Huichao Liu, Yao Song, Zhengning Xu, Fei Zhang, Thomas C. Preston, and Zhibin Wang
Atmos. Chem. Phys., 24, 5235–5246, https://doi.org/10.5194/acp-24-5235-2024,https://doi.org/10.5194/acp-24-5235-2024, 2024
Short summary
Soot aerosols from commercial aviation engines are poor ice-nucleating particles at cirrus cloud temperatures
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024,https://doi.org/10.5194/acp-24-4537-2024, 2024
Short summary

Cited articles

Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Appel, B. R., Tokiwa, Y., Hsu, J., Kothny, E. L., and Hahn, E.: Visibility as related to atmospheric aerosol constituents, Atmos. Environ., 19, 1525–1534, https://doi.org/10.1016/0004-6981(85)90290-2, 1985. 
Chambolle, A. and Pock, T.: A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging, J. Math. Imaging Vis., 40, 120–145, https://doi.org/10.1007/s10851-010-0251-1, 2011. 
Dada, L., Lehtipalo, K., Kontkanen, J., Nieminen, T., Baalbaki, R., Ahonen, L., Duplissy, J., Yan, C., Chu, B., Petäjä, T., Lehtinen, K., Kerminen, V.-M., Kulmala, M., and Kangasluoma, J.: Formation and growth of sub-3-nm aerosol particles in experimental chambers, Nat. Protoc., 15, 1013–1040, https://doi.org/10.1038/s41596-019-0274-z, 2020. 
Download
Short summary
Measuring the rate at which aerosol particles are formed is of importance for understanding climate change. We present an analysis method based on Kalman smoothing, which retrieves new particle formation and growth rates from size-distribution measurements. We apply it to atmospheric simulation chamber experiments and show that it agrees well with traditional methods. In addition, it provides reliable uncertainty estimates, and we suggest instrument design optimisation for signal processing.
Altmetrics
Final-revised paper
Preprint