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Abstract. Bayesian state estimation in the form of Kalman
smoothing was applied to differential mobility analyser train
(DMA-train) measurements of aerosol size distribution dy-
namics. Four experiments were analysed in order to esti-
mate the aerosol size distribution, formation rate, and size-
dependent growth rate, as functions of time. The first anal-
ysed case was a synthetic one, generated by a detailed aerosol
dynamics model and the other three chamber experiments
performed at the CERN CLOUD facility. The estimated for-
mation and growth rates were compared with other methods
used earlier for the CLOUD data and with the true values
for the computer-generated synthetic experiment. The agree-
ment in the growth rates was very good for all studied cases:
estimations with an earlier method fell within the uncertainty
limits of the Kalman smoother results. The formation rates
also matched well, within roughly a factor of 2.5 in all cases,
which can be considered very good considering the fact that
they were estimated from data given by two different instru-
ments, the other being the particle size magnifier (PSM),
which is known to have large uncertainties close to its de-
tection limit. The presented fixed interval Kalman smoother
(FIKS) method has clear advantages compared with earlier
methods that have been applied to this kind of data. First,
FIKS can reconstruct the size distribution between possible
size gaps in the measurement in such a way that it is consis-
tent with aerosol size distribution dynamics theory, and sec-
ond, the method gives rise to direct and reliable estimation
of size distribution and process rate uncertainties if the un-

certainties in the kernel functions and numerical models are
known.

1 Introduction

Atmospheric new particle formation and growth are impor-
tant phenomena when considering global aerosol concen-
trations. Aerosol number concentration together with their
size distribution and chemical composition determine how
aerosols affect visibility, health, and climate (Albrecht, 1989;
Appel et al., 1985; Daellenbach et al., 2020; Pope and Dock-
ery, 2006; Twomey, 1974). These are determined by atmo-
spheric dynamics and aerosol dynamics such as new particle
formation and growth as well as removal rates. Nieminen et
al. (2018) reviewed the existing literature on the formation
and growth rates ranging from polar sites, with very small
aerosol concentrations, to polluted urban sites with extremely
high concentrations. The rates have been typically estimated
using the methodology reviewed in Kulmala et al. (2012)
and adjusted for chamber experiments by Dada et al. (2020).
Both are based on rather simple regression or balance equa-
tion approaches, and do not permit proper estimation of un-
certainties. At the same time, however, instrument develop-
ment, especially advances in particle detection efficiency and
mass spectrometry, has developed rapidly (Kangasluoma et
al., 2020). Potentially superior advanced data analysis meth-
ods have not been used, and, it is likely that there are signif-
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icant inaccuracies in the particle formation and growth rates
estimated previously (Kürten et al., 2018).

There have been some attempts to estimate aerosol forma-
tion and growth rates with different inverse methods (Henze
et al., 2004; Kuang et al., 2012; Lehtinen et al., 2004;
Sandu et al., 2005; Verheggen and Mozurkewich, 2006;
Viskari et al., 2012). We are, however, not aware of any
of the above-mentioned methodologies being used widely.
The most promising ones in our view, that also include esti-
mations of uncertainties, have been the ones by Kupiainen-
Määttä (2016) and Shcherbacheva et al. (2020), who used
Markov Chain Monte Carlo methodology to estimate evap-
oration rates as well as their uncertainties from synthetic
cluster dynamics data. In addition, the INSIDE-method by
Pichelstorfer et al. (2018), which is based on the numerical
solution of the aerosol general dynamic equation and match-
ing the solution optimally to integrated measured concentra-
tions of selected size intervals, has been successfully applied
to determine growth rates at the CLOUD (Cosmics Leaving
OUtdoor Droplets) experiments at CERN (European Organi-
zation for Nuclear Research) (Stolzenburg et al., 2020). Fur-
thermore, the results in a very recent paper by McGuffin et
al. (2021), in which nucleation, growth, and emission rates
are estimated using techniques from the field of non-linear
process control, seem promising.

In a recent paper, Ozon et al. (2021a) presented BAY-
ROSOL, a Julia software package that combines a finite dif-
ference solution to the general dynamic equation for aerosols
(GDE; Seinfeld and Pandis, 2016) with Bayesian state esti-
mation in order to estimate unknown size-dependent process
rates (nucleation, condensation, losses) from the known time
evolution of the aerosol size distribution. Bayesian state esti-
mation is a general framework for estimating time-dependent
variables (state variables) based on (direct or indirect) noisy
observations that are collected sequentially during the tem-
poral evolution of the state variables (Gelb, 1974). The state
estimation is based on the so-called state-space representa-
tion, which consists of the state evolution model and obser-
vation model. In this work, the state variables consist of the
particle size distribution – the temporal evolution of which is
modelled with GDE – and the nucleation, growth, and depo-
sition rates that are parameters of the GDE. The observation
model is the mapping from the size distribution to DMA-
train measurements. In Bayesian formulation, both the state
variable and the observations are modelled as stochastic pro-
cesses; their randomness reflects their uncertainty, which de-
creases when measurement data is accounted for in the state
estimation – formally speaking, this is done by conditioning
the state variables with respect to measurement data (realised
observations) sequentially. The result of Bayesian state esti-
mation is the posterior probability density that reflects the un-
certainty of the state variables after accounting for the mea-
surement data.

A large variety of state estimation schemes exits, and the
choice between them depends on (1) the type of the state-

space model (linearity, Gaussianity, etc); (2) the type of data
available when computing an estimate at time t (if data is
available up to time k<t , the problem is of prediction type,
while cases where k = t and k>t are referred to as filtering
and smoothing, respectively), and (3) the approximations that
are sometimes needed to lower the computational demand
of state estimation. In the case of linear and Gaussian state-
space models, a Bayesian filtering problem can be solved
recursively by the well-known Kalman filter algorithm. In
non-linear and non-Gaussian cases, the rigorous choice is to
use so-called particle filters and smoothers (Särkkä, 2013).
However, because these MCMC-based estimators are highly
time consuming in large-dimensional cases, approximative
methods are often used – such as the extended Kalman filter
and smoother adopted in this paper. These recursive algo-
rithms use sequential linearisation to approximate the non-
linear models and non-Gaussian probability distributions.

In previous work, Ozon et al. (2021a) showed that the
fixed interval Kalman smoother (FIKS; Kaipio and Somer-
salo, 2005) performed very well in estimating the process
rates of the GDE in two distinct cases: first, in a case in which
continuous nucleation, growth, and losses lead to a nearly
steady state size distribution and second, in a case in which
there is a growing nucleation mode after a nucleation burst.
In the method, the unknowns (such as the discretised particle
size distribution) are modelled as random variables, and their
prior probability distributions are incorporated in the solu-
tion of the inverse problem. One important key feature of the
Kalman smoother method is that it also estimates the error
covariance matrices of the process rates that are their uncer-
tainties, if the uncertainties of the measurement device are
known.

In this article, we show the results of applying BAY-
ROSOL to real experimental data for the first time. We
use experiments performed with the differential mobility
analyser-train (DMA-train; Stolzenburg et al., 2017) measur-
ing new particle formation and growth at the CERN CLOUD
chamber (Duplissy et al., 2016; Kirkby et al., 2011). In addi-
tion to testing the method with synthetic DMA-train data (in
which the ‘correct’ results are known), we estimate formation
and growth rates from three different formation and growth
experiments: sulphuric-ammonia (Stolzenburg et al., 2020),
alpha-pinene ozonolysis (Heinritzi et al., 2020) and iodic
acid (He et al., 2021; Sipilä et al., 2016). We compare the for-
mation rates with results obtained by using the methodology
by Dada et al. (2020) based on particle size magnifier (PSM)
measurements and the growth rates with the results obtained
by the INSIDE method (Pichelstorfer et al., 2018). We chose
the DMA-train measurements for three main reasons: first,
the high time resolution makes it an ideal instrument for nu-
cleation studies due to a more accurate estimate of dN/dt.
Second, the collection efficiencies of the channels have been
carefully characterised (Stolzenburg et al., 2017; Wlasits et
al., 2020) and yield higher sensitivities to low particle num-
ber concentrations (Kangasluoma et al., 2020), which are of-
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ten faced in atmospherically relevant nucleation studies, and
third, the DMA train is, at the same time, an interesting and
challenging instrument for detailed data analysis because of
the gaps in the measured size spectrum.

2 Bayesian framework for parameter estimation

2.1 Aerosol measurement and evolution models

Typical quantities of interest in chamber experiments study-
ing new particle formation are the particle number size dis-
tribution, the formation rate at the critical cluster size and
the growth rate of the freshly formed particles. The avail-
able measurements to infer these quantities usually size clas-
sify the aerosol and measure the size-classified number con-
centrations. While the retrieval of the particle number size
distribution from such measurements is a classical inverse
problem (Chambolle and Pock, 2011; Fiebig et al., 2005;
Kandlikar and Ramachandran, 1999; Wolfenbarger and Se-
infeld, 1990), the estimation of the process parameters (for-
mation and growth rate) is often done by analysis of the time
evolution of the retrieved particle size distribution (Dada et
al., 2020). Here, we focus on the formulation of the prob-
lem within a statistical Bayesian framework, where the state
parameters described by a measurement model and an evolu-
tion model are treated as multivariate random processes and
are estimated from measurements using a FIKS (Ozon et al.,
2021a).

A measurement can be described by a vector yk repre-
senting m indirect observations (channels of the instrument)
of the particle size distribution n(dp, tk). The observations
are linked to the size distribution by the so-called instrument
transfer (or kernel) functions H such that

yk =

∫
H
(
dp
)
n
(
dp, tk

)
ddp. (1)

The transfer functionsH can be inferred from calibration ex-
periments and instrument design considerations. Direct in-
version of Eq. (1) for every time instant tk is typically an
underdetermined and ill-posed inverse problem and requires
some additional assumptions in order to avoid oscillatory and
unstable solutions (Kandlikar and Ramachandran, 1999). At
the same time, the time evolution of the particle size distribu-
tion n

(
dp, t

)
can be described by the aerosol general dynamic

equation (GDE):

∂n

∂t

(
dp, t

)
=−

∂g
(
dp, t

)
n
(
dp, t

)
∂dp

− λ
(
dp, t

)
n
(
dp, t

)
−CoagSink

(
β,dp, t

)
+CoagSrc

(
β,dp, t

)
. (2)

Here, g
(
dp, t

)
is the condensation growth/evaporation rate,

λ
(
dp, t

)
is the particle loss by deposition or dilution and “Co-

agSink” and “CoagSrc” are the sink and source rates due
to particle coagulation within the size distribution with the

coagulation coefficients β. An exact expression of all terms
can be found in Ozon et al. (2021a) and Seinfeld and Pan-
dis (2016). The boundary conditions of Eq. (2) are given by
the apparent formation rate Jdmin (t)= g(dmin, t)n(dmin, t) of
newly formed particles at the minimum detectable size dmin
and a zero numerical flux condition g (d∞, t)n(d∞, t)=

0 at very large sizes. Altogether, the process parameters
g
(
dp, t

)
,J (t) ,λ

(
dp, t

)
andβ(di,dj ) as well as the initial

and boundary conditions completely determine the evolu-
tion of the size distribution, but especially g

(
dp, t

)
and J (t)

are usually not known. The coagulation coefficients β(di,dj )
can often be obtained from theory (and coagulation above
dmin can be even neglected in many applications with low
particle concentrations) and the loss parameters λ

(
dp, t

)
are

well quantified for controlled aerosol chamber experiments.
A single measurement of the size distribution yk does not

depend explicitly on the process parameters, but as g
(
dp, t

)
and J (t) determine the temporal evolution of n(dp, tk) the
estimation of the process parameters is feasible from a se-
quence of l measurements yk at several time instances.

2.2 State estimation with Kalman smoothing

Following Ozon et al. (2021a), we formulate the problem as
a Bayesian state estimation problem. After discretisation of
the problem in size space, i.e. particle diameter (i = 1, . . .,q)
and time (k = 1, . . .l), we can define the state variable Xk =[
Nk gk λk J k

]T for each time step k with the
particle concentrations Nk

i per size discretisation bin i, the
condensation and loss terms gki and λki , respectively, for each
size discretisation bin i, and the nucleation rate J k . Here, we
have denoted Nk

=

[
Nk

1 , . . ., N
k
q

]
, Nk
=

[
gk1, . . ., g

k
q

]
and

λk =
[
λk1, . . ., λ

k
q

]
. The problem can then be formulated as

Xk+1
= F

(
Xk
)
+wk (3)

yk =HXk + vk. (4)

Equation (3) represents the discretised non-linear evolution
model, which is based on the general dynamic equation for
Nk , on second-order processes for gk and J k , and a ran-
dom walk evolution for λk (see Sect. 2.3, Eqs. 5–6). Equa-
tion (4) represents the discretised linear observation model.
The terms wk and vk are the error terms, which are ap-
proximated as normally distributed N (0,0kw) and N (0,0ke)
with the covariance matrices 0kw, 0

k
v , which not only include

stochastic noise, but also errors due to discretisation, model,
and parameter uncertainties.

We note that the above description of the state-space
model Eqs. (3)–(4) is slightly simplified for the sake of no-
tational convenience. Namely, two additional features – both
described in detail by Ozon et al. (2021a) – are included in
the model: first, we assume that the process rates are posi-
tive quantities and incorporate this positivity constraint into
the evolution model by reparametrising these quantities in

https://doi.org/10.5194/acp-21-12595-2021 Atmos. Chem. Phys., 21, 12595–12611, 2021



12598 M. Ozon et al.: Aerosol formation and growth rates

the model. For example, for the nucleation rate J k , we write
J k = 1

α
ln
(

1+ eαξ
k
J

)
, where ξ kJ is an unconstrained random

variable and α is a scaling constant. Respective parametri-
sations are written for gki and λki . Secondly, as noted above,
second-order models are written for rates J k and gk . More
specifically, we consider the respective state parameters ξ kJ ,
ξ kg as second-order Markov processes; for example ξ kJ =
ψ1ξ

k−1
J +ψ2ξ

k−2
J +η, where ψ1 and ψ2 are model parame-

ters and η is Gaussian state noise. The second-order models
are written, because they promote temporal smoothness in
the processes. When the positivity constraint and the second-
order models are included in the model, the state variable
Xk in the state-space model Eqs. (3)–(4) is rewritten in the

form Xk =
[
Nk ξ kg ξ

k−1
g λk ξ kJ ξ

k−1
J

]T
, and at

each time step the above logarithmic functions are used for
mapping the unconstrained variables ξ kJ , ξ kg and ξ kλ to respec-
tive quantities J k , gki and λki . For the details on the above
modifications as well as discretisation of the GDE model, we
refer to Ozon et al. (2021a).

The GDE, i.e. the non-linear evolution model for Nk

(Eq. 2), is similar to an advection equation. Therefore, its nu-
merical discretisation schemes are often unstable and must
be treated carefully to avoid oscillation and divergence or
to minimise numerical diffusion (Shen et al., 2007; Smo-
larkiewicz, 1984). Thus, we show detailed considerations on
the magnitude of the different error terms in the Supplement.

Considering this structure of the problem, a non-linear ex-
tension to the Kalman Filter (Extended Kalman Filter; EKF)
is a well-suited algorithm for solving the unknown size distri-
bution and process parameters (Gelb, 1974; Kaipio and Som-
ersalo, 2005). It is a two-stage recursive procedure, where in
the first stage the future state and propagation of error is pre-
dicted based on the state evolution model (Eq. 3). In the sec-
ond stage, the state variable and its covariance are estimated
by updating the predicted state variable and covariance. This
so-called measurement update accounts for the discrepancy
between the realised measurements at time tk and modelled
measurements corresponding to the predicted state variable.
This procedure is repeated until the final measurement k = l.
After finishing the EKF recursions, we utilise a fixed inter-
val Kalman smoother (FIKS), which consists of a backward
recursion from a backward gain matrix and smooths the re-
sults by backwards recursion from l to 1. The workflow of
the EKF and FIKS are illustrated in Table 1 and more details
on this algorithm can also be found in Ozon et al. (2021a).

2.3 Adaption to chamber experiments

The state-space model has been adjusted to best represent the
evolution of an aerosol system during new particle forma-
tion experiments in an atmospheric simulation chamber like
CLOUD. For the time evolution of the process parameters,
we assume a rather smooth evolution for the nucleation and
growth rates, approximated by a second-order process (Ozon

et al., 2021a):

J k+1
= (r1+ r2)J

k
− r1r2J

k−1
+wkJ (5)

gk+1
= (r1+ r2)g

k
− r1r2g

k−1
+wkg. (6)

The constants r1, r2 depend on the characteristic time of
change, discretisation time, and a dampening factor, and their
definition can be taken from Ozon et al. (2021a). The corre-
sponding values for our experiments are listed in Table S1 in
the Supplement.

In contrast to the growth and formation rates, the loss
rates in a chamber experiment do not depend on time, but
can be described by time-independent wall and dilution
losses λ(dp)= λdil+λwall(dp). These loss rates are well char-
acterised by dedicated wall loss experiments (Stolzenburg
et al., 2020) and the dilution rate of the chamber λdil =

Qtot/Vchamber, whereQtot is the total flow rate to the chamber
to maintain constant pressure, and Vchamber is the chamber
volume. The time evolution is described by a random walk
with a small stochastic noise term wkλ, and the expectation of
the initial state (see Table S1 in the Supplement) is set to the
experimentally determined value with a standard deviation of
± 10 %:

λk+1
= λk +wkλ. (7)

For fully defining the problem (Eqs. 3–4), an estimate of the
covariance matrices corresponding to the error terms vk and
wk is needed. The definition of the covariance matrices cor-
responding to the state noise wk on the size-distribution evo-
lution wkN , the growth rate wkg , the formation rate wkJ , and
the wall loss rate wkλ follow the consideration of Ozon et
al. (2021a). The covariances of the wall losses, the growth
rate, and the size distribution are dominantly diagonal with
some additional off-diagonal terms in order to account for
a correlation in size. The formulation given by Ozon et
al. (2021a) was slightly altered to give a stronger correlation
between the closest size bins due to the sparser size resolu-
tion of the DMA-train compared to the simulated SMPS sys-
tem (values for the different experiments are given in Table
S1 in the Supplement):

0kN/g/λ (i,j)= σi,N/λ/gσj,N/λ/g exp
(
−

(
i− j

δN/λ/g

)aN/λ/g)
. (8)

For the size-distribution evolution, we find that σ 2
i,N =

(δk)2Var(W k
i ), with δk as the discretisation time-step andW k

i

as the error of the discretisation of the size-distribution evolu-
tion. A detailed derivation ofW k

i is given in the Supplement.
The modelling error of the observation model and the

measurement noise both contributing to vk are assumed to
be mutually independent. For this reason, the covariance of
the error term 0kv in the measurement model is written as a
sum of the covariances of these two random variables, i.e.
0kv = 0

k
mod+0

k
y . For a detailed derivation we refer to the
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Supplement, where we also show that the discretisation error
is negligible compared to model and measurement error if a
fine enough size discretisation is chosen. We approximate 0kv
with uncorrelated processes, and hence the covariance matri-
ces are of the diagonal form. For the measurement error, the
variance is given by Poisson counting statistics in the case of
a single-particle counting detector such as a condensational
particle counter (CPC):

0ky (i, i)= y
k(i). (9)

For the model uncertainty, we assume the variance of the ker-
nel Var(1Hi,j ) is composed of an uncertainty proportional to
Hi,j (for example due to an offset in the absolute calibration
of the instrument) and a shifting size information error (for
example discrepancy between set and actual classified size
in a mobility spectrometer). It can then be formulated as (de-
tailed values for the experiments under investigation can be
found in Table S1 in the Supplement)

0kmod (i, i)=
∑q

j=1

(
n
(
dj
)
1j
)2Var

(
1Hi,j

)
. (10)

3 Experimental methods

We use experimental data from the CERN CLOUD experi-
ment (Duplissy et al., 2016; Kirkby et al., 2011) where we
measured particle size distributions in the sub-10 nm range
with a DMA-train (Stolzenburg et al., 2017). The raw data
obtained from the DMA-train is used as input for the anal-
ysis of three different sets of experiments performed in the
atmospheric simulation chamber. The DMA-train instrument
kernels are also used for modelling an instrument response to
simulated size-distribution data in order to verify the general
performance of the FIKS on DMA-train-like data.

3.1 DMA-train

The DMA-train is an electrical mobility spectrometer specif-
ically designed to measure sub-10 nm size distributions
(Stolzenburg et al., 2017). Six identical DMAs are applied
in parallel, i.e. they sample through the same inlet. They
are set to six distinct but fixed voltages and hence classified
sizes. The charging state of the aerosol is pre-conditioned in
two TSI Inc. Advanced Aerosol Neutralizers (Model 3088),
each supplying three DMAs at 5.5 L min−1 total flow. We
use the Wiedensohler approximation (Wiedensohler, 1988)
to describe the steady-state charge distribution at the DMA
inlets. Kallinger and Szymanski (2015) showed that for the
used neutralizers the steady-state charge distribution is still
achieved for flow rates up to 5 L min−1 and we assume that
this holds true for 5.5 L min−1 flow too. After size classifica-
tion, the aerosol is detected in condensation particle counters.
Four channels are equipped with TSI Inc. Model 3776 ultra-
fine CPCs for detection of aerosols down to 2.5 nm. They

were operated at reduced temperature settings in order to
increase the detection efficiency of the smallest particles,
achieving a 50 % detection efficiency for particles as small as
2 nm (Wlasits et al., 2020). Two channels of the DMA-train
were operated with particle counters specifically designed for
sub-2 nm particle detection using diethylene glycol (DEG),
an Airmodus Ltd. particle size magnifier (Model A10, PSM)
and a TSI Inc. nano enhancer (Model 3777). Each is used as a
booster stage to activate the particles, which are subsequently
detected by either an Airmodus Ltd. CPC (Model A20, for
the PSM) or a TSI Inc. CPC (Model 3772, for the nano
enhancer). Both channels have a higher aerosol flow rate
of 2.5 L min−1 resulting in a broader transfer function and
higher transmission at the DMA compared to the 1.5 L min−1

sample flow in the other four channels. The sheath flow at the
DMAs is kept constant at 15 L min−1 for all six channels.

The constant sampling at fixed sizes allows for either a
higher time resolution at large aerosol number concentra-
tions or a higher sensitivity towards low number concentra-
tions due to longer signal averaging times compared to a
scanning or stepping differential mobility spectrometer. To
increase the number of measured particle sizes, one DMA
is still operated in an alternating mode, switching between
6.2 and 8 nm every ten seconds. The other DMAs are set to
classify particles of 4.3, 3.2, 2.55, 2.2, and 1.8 nm. The in-
strument kernels are obtained from calibration experiments,
where we use the DMA transfer function and sampling loss
characterisation from Stolzenburg et al. (2017), the CPC ac-
tivation efficiencies from Wlasits et al. (2020), and the charg-
ing efficiency was tested to follow the Wiedensohler approx-
imation in Tauber et al. (2020). The kernel functions for all
seven classified sizes are shown in Fig. 1 for an instrument
averaging time of 120 s, sulphuric acid-like test particles (us-
ing the Ammonium Sulfate detection efficiencies from Wl-
asits et al., 2020) and including the detector flow rates of
each condensation particle counter. Therefore, the kernels
can be used to convert raw particle counts at the detecting
CPCs into a particle size distribution (within an inverse prob-
lem) and vice versa. Note that for different chemical com-
position of the input particles, the CPC response might be
different. Therefore, the kernels used for analysing experi-
ments where particles were formed from oxidised organics
(Kirkby et al., 2016) or from iodic acid (He et al., 2021) are
different and approximated by the calibration curves for ox-
idised beta-caryophyllene and sodium chloride from Wlasits
et al. (2020).

3.2 CLOUD

We use experimental data from the DMA-train measur-
ing new particle formation in nucleation experiments at the
CERN CLOUD chamber. The 26.1 m3 stainless-steel cham-
ber provides a high-purity, temperature-controlled environ-
ment in order to perform experiments under atmospherically
relevant conditions, where trace gases can be added precisely
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Table 1. Extended Kalman filter and fixed interval Kalman smoother algorithms for estimation of the state variables and their variances Xk

and 0k .

Algorithm 1 Extended Kalman filter (EKF) Algorithm 2 Fixed interval Kalman smoother (FIKS)

Initial state: Expectation X0|0 and covariance 00|0 Initialization: Run Algorithm 1, store all variables
for k = 1, . . ., l for k = l− 1, . . .,1
Prediction: expectation and covariance Backward gain matrix

Xk|k−1
= F

(
Xk−1|k−1

)
Ak = 0k|k(∂F k+1)T

(
0k+1|k

)−1

0k|k−1
= ∂F k−10k−1|k−1

(
∂F k−1

)T
+0k−1

w Smoother expectation and covariance

Kalman gain matrix: Xk|K =Xk|k +Ak
(
Xk+1|K

−Xk+1|k
)

Kk = 0k|k−1
(

Hk
)T (

Hk0k|k−1
(

Hk
)T
+0kv

)−1
0k|K = 0k|k +Ak

(
0k+1|K

−0k+1|k
)(

Ak
)T

Measurement update: filter expectation and covariance

Xk|k =Xk|k−1
+Kk

(
Y k −HkXk|k−1

)
0k|k =

(
I−KkHk

)
0k|k−1

at pptv (parts per trillion by volume) level and sunlight can be
simulated by UV-illumination of the chamber. We use three
different sets of experiments of varying chemical composi-
tion, in order to demonstrate the performance of the FIKS in
reconstructing formation and growth rates. See also Kirkby
et al. (2011) and Duplissy et al. (2016).

First, a nucleation experiment using sulphuric acid and
ammonia was performed at 5◦ by adding SO2 and O3 to the
chamber and through the photo-dissociation of ozone, the
formation of OH radicals and sulphuric acid was induced,
which resulted in strong new particle formation (Stolzenburg
et al., 2020). Second, we performed nucleation and growth
experiments at 5◦ using oxidised organics from dark (i.e. no
UV-illumination) ozonolysis of alpha-pinene (Kirkby et al.,
2016; Stolzenburg et al., 2018). Both experiments resulted in
moderate new particle formation rate and thus, in the Kalman
smoother, we used DMA-train data that was averaged over
120 s time intervals. Third, we studied nucleation from io-
dine oxides at 10◦ (He et al., 2021), which resulted in high
particle formation rates and fast growth. For the third exper-
iment, we reduced the DMA-train averaging time down to
20 s, while keeping high counting statistics over the averag-
ing interval.

3.3 PSM-derived formation rates

Particle formation rates (Jdp) are calculated from the time
derivative of the total particle number concentration larger
than 1.7 nm following the method introduced in Dada et
al. (2020). The particle number size distribution is measured
with the particle size magnifier (PSM) coupled with a con-
densation particle counter (1.5–2.5 nm), a TSI nano-SMPS
(3–65 nm) and home-built long-SMPS (10–800 nm). The for-
mation rates are corrected for the size dependent wall and
coagulation losses. Additionally, since the chamber is op-

erated in continuous flow mode, the particle concentrations
are corrected for dilution losses. For more information on
the PSM-derived formation rates, see Dada et al. (2020). The
uncertainty on J1.7 was assumed to be 30 % for the CLOUD
chamber derived from the repetition of the same experiment.
A procedure as described in Dada et al. (2020) using prop-
agation of error in the concentration measurement, dilution,
coagulation, and wall losses as well as the error on the time
derivative of the total particle concentration within a Monte-
Carlo simulation could be used if such repetition experiments
were not available. It needs to be noted, that for compar-
ison of the formation rate value at the arbitrary minimum
detectable size dmin = 1.7 nm with a system inherent nucle-
ation rate at the critical cluster size, additional sophisticated
approaches might be necessary (Kürten et al., 2015).

3.4 Growth rates using INSIDE

In order to compare the particle growth rates derived by
Kalman smoothing, we use the size- and time-dependent
growth rate analysis tool INSIDE (Pichelstorfer et al., 2018).
It uses input particle size distributions at time t1 in or-
der to simulate the known aerosol dynamics (coagulation,
wall losses, and dilution) until a time t2 (typically sepa-
rated by one measurement cycle of an instrument, i.e. the
120 s averaging time mentioned above). At t2, the simulated
aerosol size distribution is compared to the measured size
distribution and by evaluating the general dynamics equa-
tion above a certain diameter deval the growth term ddp

dt

∣∣∣
deval
=

dN∞
dt

∣∣∣∞
deval
−

dNsim∞
dt

∣∣∣∣∞
deval

n(dp,t)|deval
can be computed. Evaluating this equa-

tion for several evaluation diameters deval and at all measure-
ment times ti , this results in time- and size-resolved growth
rates from a size-distribution measurement. This is distinct
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Figure 1. Kernel functions of the DMA-train when classifying sul-
phuric acid particles at a signal averaging time of 120 s. (a) shows
the continuous form of the transfer function (color code) of the
seven DMA-train channels (y-axis), inferred from instrument cal-
ibrations (Stolzenburg et al., 2017). (b) shows the discretisation
into 32 size bins from 1.7 to 10 nm used in the Kalman smoother
(c) shows the comparison between continuous form and used dis-
cretisation for channel 2 with centroid diameter at 2.2 nm, together
with the model uncertainty, which is used for the error estimate (see
Table S1 in the Supplement).

from most other integrative growth rate analysis approaches,
which can only derive one growth rate value for a specified
size interval in a single run (Dada et al., 2020; Kulmala et al.,
2012; Lehtipalo et al., 2014; Paasonen et al., 2018). Lastly,
it should be noted that for INSIDE, compared to the Kalman
smoothing, each time step is analysed individually, and the
growth rate analysis framework relies on already-inverted
size distributions. For this inversion, only a simple point-by-
point inversion procedure is used for the DMA-train data of
this work, assuming narrow DMA transfer functions and lit-

tle variation of the size distribution across it (Stolzenburg and
McMurry, 2008). Moreover, the INSIDE method does not
provide an uncertainty estimate on the growth rate calcula-
tion and hence the Kalman smoothing will provide valuable
insights on the uncertainty related to growth rate measure-
ments.

4 Results: simulation and experimental

4.1 Numerical simulation test

First, we simulated a data set representing a typical nucle-
ation experiment performed in an atmospheric simulation
chamber like CLOUD and modelled the DMA-train response
according to the above Kernel functions and then applied the
FIKS to this synthetic data set. We used the same framework
as in Ozon et al. (2021a) to simulate a nucleation experi-
ment with formation rate at 1 nm J1.0 = 5.25 cm−3 s−1, and
size-independent growth rate GR= 2.5 nm h−1 and the loss
rates equal to the CERN CLOUD experiment (Stolzenburg
et al., 2020). The evolution of the simulated size distribution
is shown in Fig. 2a. The measurement data yk are then sim-
ulated using the kernel functions from Fig. 1a and altered
with a Poisson-distributed random counting error. The FIKS
is then applied to the measurement data with the input pa-
rameters given in Table S1 in the Supplement. We use a res-
olution of 32 bins from 1.7 to 10 nm for the FIKS to keep
the computational effort low. We also tested 16 to 64 size
discretisation bins, but higher resolution required additional
adjustments in the size correlation of the covariance given
in Eq. (7), which would result in significant differences com-
pared to the original work of Ozon et al. (2021a) without pro-
viding significantly more accuracy. Figure 2 also shows the
Kalman smoother estimates for the size distribution, growth
rate, and formation rate at 1.7 nm. The reconstructed size
distribution (Fig. 2b) is very similar to the true size distri-
bution (Fig. 2a), especially taking into account the sparser
discretisation of the former. Also the estimated growth and
nucleation rates agree well with true values of the respective
process rates specified in the simulation. Moreover, the un-
certainty estimates are feasible: for both quantities, the true
values are within the uncertainty limits given by FIKS. The
reconstructed size distribution and especially, growth rate
(Fig. 2b and c, respectively) show some temporal oscilla-
tions, which are related to periods in which the particle pop-
ulation grows from the size range visible for one DMA-train
channel to the next one. That is, the oscillation is a result of
an insufficient coverage of the size range by the DMA-train
kernels. The problem could be approached by application of
a regularisation scheme in the measurement model (Vouti-
lainen and Kaipio, 2001) or by adjusting the kernels improv-
ing the overlap, which will be discussed in more detail in
Sect. 4.5. Nevertheless, the overall good retrieval of the sim-
ulated size distribution and process rates demonstrates that
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the Kalman smoothing approach is well suited for analysing
DMA-train data from chamber nucleation experiments.

4.2 Sulphuric acid-ammonia experiment

We applied the FIKS to experimental data from a sulphuric
acid-ammonia nucleation and growth experiment performed
at 5◦ at the CERN CLOUD chamber. The raw data measured
with the DMA-train were averaged in 120 s time intervals
in order to increase the counting statistics per channel and
then used as input for BAYROSOL. The details of parameter
choices in FIKS are given again in Table S1 in the Supple-
ment. The results of applying the Kalman smoothing to this
experimental data are shown in Fig. 3.

The size and time dependence of the FIKS estimate for
the true size distribution (Fig. 3a) is very smooth, and it is
also able to bridge the information gaps between the largest
size-distribution channels. This is a significant improvement
from the traditional point-by-point inversion, where the data
of each DMA-train channel is inverted independently: here
the reconstructed total number concentration is significantly
more noisy. The smoother FIKS reconstructed size distribu-
tion and total number concentration (Fig. 3d) still show some
small temporal fluctuations. The fluctuations are even more
clearly visible in the reconstructed evolution of the forma-
tion rate (Fig. 3b). In contrast to the oscillations found in the
growth rate for the simulated case, the fluctuations do not
only occur when the size distribution reaches a new DMA-
train size channel. Furthermore, the same fluctuations are
also recovered when the formation rate is inferred from the
PSM and nano-SMPS, i.e. an entirely different set of instru-
mentation and different type of data analysis. This result sug-
gests that the fluctuation of the particle formation truly oc-
curs physically in the experiment and is not a reconstruction
error caused by instrument noise or a bias caused by the in-
version method. The absolute values of the two independent
formation rate estimates agree upon a factor of 1.5. Further-
more, large portions of the uncertainty intervals of these two
estimates overlap with each other, which is another indica-
tor of the feasibility of FIKS for analysing DMA-train data.
In addition, the inferred growth rates also agree within the
systematic uncertainties for both approaches (Fig. 3c for one
time instant). It is worth noting, however, that both growth
rate estimates rely on data from the same instrument and are
hence more interdependent than the formation rate estimates.
Nevertheless, the good agreement between them corrobo-
rates the feasibility of Kalman smoothing for reconstructing
nanoparticle growth rates from experimental data.

4.3 Alpha-pinene ozonolysis experiment

Third, we applied the FIKS to experimental data obtained by
the DMA-train from an alpha-pinene ozonolysis experiment.
Besides the different chemical composition of the growing
particles (resulting in different assumptions for the DMA-
train transfer functions) in comparison to the experimental
results used in Sect. 4.2, this experiment is characterised by
a different size dependency of the growth rate, due to the in-
creased condensation of low- and semi-volatile organics with
increasing particle size (Simon et al., 2020; Stolzenburg et
al., 2018; Tröstl et al., 2016). The formation rate, however,
remains rather similar to the sulphuric acid-ammonia exper-
iment under these specific experimental conditions, but the
slower initial growth rates result in generally lower produced
particle concentrations. The results of applying FIKS to the
data from this experiment are shown in Fig. 4. Again, the
size distribution given by FIKS is much smoother than that
obtained with a standard inversion procedure; see Heinritzi
et al. (2020) and Fig. 4d for the total number concentration
evolution retrieved from the standard inversion and the FIKS.

Because in the alpha-pinene ozonolysis experiment the nu-
cleation and growth rates were known to be similar to those
in the sulphuric acid-ammonia experiment, the parameters
of their evolution models were selected as in Sect. 4.2 (Ta-
ble S1 in the Supplement). The formation rate is lower by
a factor of 2.5 than the one obtained from the PSM. Also
the formation rate retrieved with the method from Dada
et al. (2020) but using the DMA-train data is significantly
higher, but in between the two estimates. The possible devi-
ation has hence two plausible reasons: the instrumental dif-
ferences can be caused by different calibration procedures
for the DMA-train and PSM (Dada et al., 2020; direct cross-
calibration using NAIS versus Wlasits et al., 2020 using beta-
caryophyllene ozonolysis surrogates). The methodological
differences could also arise from the very low counting statis-
tics in the DMA-train during this experiment compared to the
other two, which will cause the inherent Gaussian assump-
tion of the FIKS to fail. As the deviation in the reconstructed
total number concentration of the DMA-train data using two
inversion procedures is only a factor of ∼ 1.3 (Fig. 4d), the
formation rate discrepancies could be largely due to the more
difficult and uncertain calibration procedures. Considering
the fact that inter-instrument deviations in sub-10 nm size-
distribution measurements can be as large as one order of
magnitude (Kangasluoma et al., 2020), the achieved agree-
ment is remarkable, especially as some fluctuations within
the chamber can again be reconstructed in both approaches.
The retrieved growth rates from the FIKS estimate and the
INSIDE method agree remarkably well and both show the
increasing growth rates with increasing particle size up to
4.3 nm, an indication for a strong Kelvin effect in organic
condensation (Stolzenburg et al., 2018; Tröstl et al., 2016).
The decreasing Kalman smoother estimate above 4.3 nm is
related to the fact that the FIKS searches for a smooth esti-
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Figure 2. Results of the simulated chamber nucleation experiment: (a) The simulated, temporally-evolving size distribution of aerosols.
(b) The FIKS estimate for the size distribution. This estimate was computed based on the numerically simulated DMA-train data correspond-
ing to the synthetic size distribution shown in (a). (c) The FIKS estimate for the growth rate of particles. (d) The growth rate corresponding
to a single instant of time (2 h 56 min); here, the FIKS estimate and the associated uncertainty limits are plotted together with the true growth
rate. (e) The FIKS estimate for the formation rate at 1.7 nm and its uncertainty, and the true formation rate. (f) FIKS estimate, its uncertainty,
and the true value of the particle size distribution corresponding to a single instant of time (2 h 56 min). In (d)–(f), the orange lines repre-
sent the FIKS estimates (posterior expectations) and the orange shaded areas illustrate the uncertainties of the associated variables (more
specifically, their approximate posterior standard deviation limits). The true values of the quantities are plotted in green.

mate of the growth rate (Eq. 6), but at that point (2 h 30 min
after experiment start), practically no information from the
size distribution above 4.3 nm is available, resulting in a slow
decrease towards zero. This is due to the strong smoothness
used a priori in the FIKS algorithm (Table S1 in the Sup-
plement). The INSIDE method does not report growth rates
from regions with no information (Pichelstorfer et al., 2018)
from the size distribution, and hence the estimate stops at
4.3 nm.

4.4 Iodic acid experiment

Finally, we analysed a more dynamic experiment of nucle-
ation and growth from iodic acid (He et al., 2020, 2021).
The experiment is characterised by extremely high nucle-
ation rates, which are two orders of magnitude higher than in
the sulphuric acid-ammonia and alpha-pinene ozonolysis ex-
periments. However, the growth rate is only half an order of
magnitude higher compared to the other two example cases.
Figure 5 shows that, in spite of the highly dynamic exper-
iment, the formation rate recovered by Kalman smoothing
agrees with the estimate obtained from the PSM (Fig. 5b).
The usage of the DMA-train data with a time resolution of
20 s allows for the precise recovery of the spike in forma-
tion rate in the beginning of the experiment. This causes the
build-up of a high condensation sink and vapour/cluster de-

pletion almost shutting off any further nucleation during the
continuation of the experiment. The four-minute time reso-
lution of the data for the calculation of the nucleation rate
from the PSM is limited in that respect. The reconstructed
growth rates (Fig. 5c) again show agreement between the
FIKS estimate and the INSIDE method, indicating a clear
decreasing trend with size, which is expected for condensa-
tion at the kinetic limit if the vapour molecular size is taken
into account (He et al., 2021; Lehtinen and Kulmala, 2003;
Nieminen et al., 2010; Stolzenburg et al., 2020). The lower
values towards 1.8 nm could be caused by a biased estimate
of the PSM detection efficiency, because neither a calibra-
tion for iodic acid clusters nor for sodium chloride particles
(which was used for the other detectors in the DMA-train)
was available. The instabilities in the size distribution at the
smallest sizes and fluctuations of the formation rate are ex-
pected, considering the highly dynamic process of this exper-
iment. Overall, the good agreement for the inferred process
parameters of the aerosol general dynamics equation, i.e. the
formation and growth rates, is still remarkable. However, the
reconstructed size distribution from the FIKS estimate shows
some discontinuities, especially during growth above 3 nm.
This is because the available instrument information from the
DMA-train starts to get very sparse in that size range given
the dynamic processes involved in the iodic acid nucleation
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Figure 3. Results of an experiment performed at the CERN CLOUD chamber: the DMA-train data was acquired during sulphuric acid-
ammonia nucleation and growth processes. Experimental conditions: 5◦, 60 % RH, 5 ppb SO2, 120 ppb O3, and 40 ppt NH3. (a) The FIKS
estimate for the size distribution. (b) The evolution of the formation rate during the experiment. The orange line and shaded area represent the
FIKS estimate and its uncertainty, respectively, while the solid blue line and blue area show the nucleation rate estimate and the associated
30 % uncertainty based on a different set of instruments (particle size magnifier, PSM) and the standard approach for inferring nucleation
rates at 1.7 nm (Dada et al., 2020). The pink line and shaded area show the standard approach using the data from the DMA-train only.
(c) The growth rate corresponding to time 2 h 20 min after the start of the experiment. The FIKS estimate and the associated uncertainty
are marked with the orange line and shaded area, respectively. The green line represents the growth rate estimate, which is obtained from
DMA-train data by traditional inversion (INSIDE method). (d) The total number concentration reconstructed from the standard inversion
approach (green line) and FIKS (orange line and shaded area for the uncertainty range).

and growth. This also causes the overshooting in the total
number concentration using the standard inversion compared
to the FIKS result (Fig. 5d), as the larger size channels cover
a very broad range at too-high resolution for the linear inter-
polation of the standard inversion used to obtain Ntot. More
available size channels (hence more DMAs in the case of the
DMA-train) would help to resolve such discontinuities. We
will therefore provide an instrument design recommendation
based on simulated data in the next section.

4.5 Instrument design recommendation from a signal
processing point of view

The size range covered by the seven DMA-train channels was
chosen semi-arbitrarily based on some external constraints:
the lowest measured centroid diameter was supposed to be as
close as possible to 1.7 nm where the formation rate is typ-
ically measured for experiments performed at the CLOUD
chamber. In order to cover the sub-10 nm range, the largest
channels were set to 8 nm. The other channel diameters were
chosen to yield sufficient coverage of the sub-3 nm range.

The width of the transfer functions was fixed by the detector
sample flow rates and the 15 L min−1 critical orifices pro-
vided by Grimm Aerosol for the DMA sheath air supply
(also the standard flow rate used by the manufacturer for this
type of DMA). However, the chosen centroid diameters (and
hence fixed voltages at the DMAs) and selected sheath flow
rates could easily be altered.

In order to numerically study the effect of choice for the
DMA-train channels, we constructed a model correspond-
ing to a channel choice different from that in the previous
sections: the kernel for the DMA-train with seven channels
having centroid diameters of 1.8, 2.2, 2.8, 3.6, 4.6, 6.1, and
8.0 nm is illustrated in Fig. 6a. Moreover, channels 3 to 7
have been altered to use a 2.5 L min−1 sample flow rate
(could be achieved by a make-up flow at each CPC) and
a reduced sheath flow rate of 10 L min−1, only providing a
theoretical non-diffusive resolution of ∼ 4, which is signifi-
cantly lower. However, this permits covering the entire size
range between 1.8 and 8 nm by overlapping channels. We
revisited the numerical simulation described in Sect. 4.1 us-
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Figure 4. Results of an experiment performed at the CERN CLOUD chamber: the DMA-train data was acquired during an alpha-pinene
ozonolysis. Experimental conditions: 5◦, 40 % RH, 300 ppt alpha-pinene, 40 ppb O3. (a) The FIKS estimate for the size distribution. (b)
The evolution of the formation rate during the experiment. The orange line and shaded area represent the FIKS estimate and its uncertainty,
respectively, while the solid blue line and blue area show the nucleation rate estimate and the associated 30 % uncertainty based on a different
set of instruments (particle size magnifier, PSM) and the standard approach for inferring nucleation rates at 1.7 nm (Dada et al., 2020). The
pink line and shaded area show the standard approach using the data from the DMA-train only. (c) The growth rate corresponding to time 2 h
30 min after the start of the experiment. The FIKS estimate and the associated uncertainty are designated by the orange line and shaded area,
respectively. The green line represents the growth rate estimate, which is obtained from DMA-train data by traditional inversion (INSIDE
method). (d) The total number concentration reconstructed from the standard inversion approach (green line) and FIKS (orange line and
shaded area for the uncertainty range).

ing the DMA-train model corresponding to this configura-
tion. The resulting size distribution given by FIKS is shown
in Fig. 6b. Comparison between the two reconstructions in
Figs. 2b and 6b reveals that the new choice of DMA-channels
stabilises the size-distribution estimate, which is supported
by the comparison of the estimated total number concentra-
tions (Fig. 6d). While with the original design the size dis-
tribution evolves in step-wise manner when the growing par-
ticle mode reaches larger size-channels, the size distribution
retrieved with the adjusted kernels is smoother, also tempo-
rally, which is especially visible in the evolution of the total
number concentration. The improvement is also significant
for the retrieval of the growth rate, where the estimate no
longer overshoots as illustrated by the snapshot size depen-
dence of the growth rate for a single instant in time, shown
in Fig. 6c. It should be noted that regularisation schemes in
the measurement model as proposed by Voutilainen and Kai-
pio (2001) could also provide smoother estimates, but this
would need a significant adjustment of the algorithm pro-

vided by Ozon et al. (2021a) and is hence not implemented
here.

The result of this additional numerical study thus demon-
strates that in the chosen conditions of the simulation, the
reconstruction quality improves when the resolution of indi-
vidual channels is lowered. This seemingly counterintuitive
effect stems from the fact that FIKS estimates do not rely
only on the measurements, but are also advised by the GDE
model, which makes the problem of optimising the measure-
ment design a somewhat cumbersome task. A rigorous in-
vestigation of the optimal experimental design is out of the
scope of this paper, but the above observation is worth notic-
ing – especially because a lot of recent experimental effort
in the sub-10 nm range has been devoted to improving the
instrument resolution (Kangasluoma et al., 2020). While on
the individual channel level this might reduce systematic un-
certainties, as discussed in Kangasluoma et al. (2020), signal
processing requires more a broad coverage of the size dis-
tribution than high resolution. However, the ideal instrument
would combine both: full coverage of the size distribution but

https://doi.org/10.5194/acp-21-12595-2021 Atmos. Chem. Phys., 21, 12595–12611, 2021



12606 M. Ozon et al.: Aerosol formation and growth rates

Figure 5. Results of an experiment performed at the CERN CLOUD chamber: the DMA-train data was acquired during iodic acid nucleation
and growth processes. Experimental conditions: 10◦, 80 % RH, 100 ppt I2, 40 ppb O3. (a) The FIKS estimate for the size distribution. (b)
The evolution of the formation rate during the experiment. The orange line and shaded area represent the FIKS estimate and its uncertainty,
respectively, while the solid blue line and blue area show the nucleation rate estimate and the associated 30 % uncertainty based on a different
set of instruments (particle size magnifier, PSM) and the standard approach for inferring nucleation rates at 1.7 nm (Dada et al., 2020). The
pink line and shaded area show the standard approach using the data from the DMA-train only. (c) The growth rate corresponding to time 0 h
16 min after the start of the experiment. The FIKS estimate and the associated uncertainty are marked with the orange line and shaded area,
respectively. The green line represents the growth rate estimate, which is obtained from DMA-train data by traditional inversion (INSIDE
method). (d) The total number concentration reconstructed from the standard inversion approach (green line) and FIKS (orange line and
shaded area for the uncertainty range).

achieved with more high-resolution channels. For the DMA-
train principle, this would require new ideas in instrument
design in order to incorporate more DMAs without the in-
strument becoming impractically bulky. Extending the mea-
surement size range above 10 nm would require even more
DMAs, but this range is usually well-covered by commer-
cially available instruments, which could easily be added to
the FIKS measurement model, facilitating the measurement
of experiments where particles grow well beyond 10 nm.

5 Conclusions

A recently developed methodology (BAYROSOL), apply-
ing the fixed interval Kalman smoother (FIKS) to a finite
difference solution to the aerosol GDE was used to anal-
yse DMA-train measurements of aerosol dynamics at the
CLOUD chamber facility at CERN. The overall aim of this
methodology is to estimate unknown aerosol microphysi-
cal process rates as well as their uncertainties from size-
distribution evolution measurements. In a previous paper, the

methodology was shown to be able to predict new particle
formation, growth, and loss rates from synthetic computer-
generated aerosol size distribution evolution data, while here
the method has been applied to real experimental data for the
first time. Four experimental cases with particle formation
and growth were tested: (1) a computer-generated synthetic
case, (2) sulphuric acid-ammonia, (3) alpha-pinene ozonoly-
sis, and (4) iodic acid.

The DMA-train was selected for two main reasons: first,
the instrument kernel functions are well characterised, giv-
ing rise to reliable estimation of the instrument uncertainties
and second, new particle formation rates have not been es-
timated directly from DMA-train measurements before. In
addition, as the current version of the DMA-train is designed
in such a way that the individual DMAs have a rather narrow
collection of kernels for the channels, with significant gaps
between some of the channels, the FIKS can reconstruct the
size distributions from the measured signals in such a way
that the distributions are rather smooth and consistent with
the GDE.
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Figure 6. Adjusted DMA-train kernel for better signal processing (a), which could be achieved by choosing suitable centroid voltages and
altering the resolution of the DMAs through sheath-flow and sample-flow adjustments. (b) shows the reconstructed simulated size distribution
of Fig. 2 using the adjusted kernel. (c) The growth rate corresponding to time 1 h 20 min after the start of simulation. The orange line and
shaded area are the FIKS estimate using the original design of the DMA-train, while the blue line and shaded area indicate the FIKS result
from the proposed new design. The green line shows the true value used to create the input size distribution. (d) shows the evolution of the
total particle number concentration for the input size distribution (green), the original kernel (orange line and shaded area for the uncertainty),
and the proposed design (blue line and shaded area).

We compared the growth rates, which with BAYROSOL
can be estimated as functions of both size and time, with
those obtained by INSIDE, a method applied earlier to
CLOUD data, and the agreement was remarkably good for
all studied cases. INSIDE is also based on matching the
GDE solution to measured size distribution dynamics, how-
ever without the capability of estimating uncertainties of the
estimations. The FIKS-based estimates for the particle for-
mation rates were compared with those estimated from data
obtained by a separate instrument, the particle size magni-
fier (PSM), based on the rate of change of the total num-
ber concentration measured by the instrument corrected by
coagulation and wall losses. Again, the agreement was very
good, especially considering the fact that instrument uncer-
tainties are large at the very lowest end of the measured size
spectrum. For the iodic-acid case, the FIKS estimate of the
formation rate was even able to capture rapidly changing dy-

namics of the experiment. It was remarkable for all cases that
some fluctuations in the formation rates were recovered by
both methods independently, indicating that these are physi-
cal variations during the experiment.

Finally, we utilised the FIKS from an instrument develop-
ment point of view. Typically, an as-high-as-possible resolu-
tion for the different measurement channels has been the aim
when measuring nanometer-sized particles. This aim, how-
ever, gives rise to gaps in the measured size range, as is the
case in the DMA-train studied. Thus we studied whether a
better coverage of the size spectrum, but lower resolution of
the individual channels would be advantageous for size dis-
tribution estimation.

Summarising, we believe that Bayesian state estimation
methods such as FIKS can be very useful in the field of
aerosol science in many aspects. As mentioned above, they
can be used to fill gaps in measurements in such a way
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that not only the obtained size distributions but also un-
known process rates are consistent with theory describing
aerosol size-distribution dynamics. In addition, the method-
ology provides estimations of uncertainties both for size dis-
tributions as well as process rates based on uncertainty esti-
mations in the measurements and the used models, which is
unfortunately not common when reporting results of aerosol
measurements. Finally, it is conceivable that the methodol-
ogy presented here will be superior to several previous ap-
proaches when combining measurement data obtained with
several different instruments that operate at different size
ranges. This will be a topic of our forthcoming studies.

Data availability. The version of the implementa-
tion of the estimation method (BAYROSOL1.1)
(https://doi.org/10.5281/zenodo.4450492, Ozon et al., 2021b)
is available under the MIT Expat License; it is the version used
to generate the results discussed in this paper. The package also
contains the code used to obtain the results discussed in Ozon et
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in Sect. 4.1. The experimental data (DMA-train kernels) and raw
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