Articles | Volume 20, issue 4
https://doi.org/10.5194/acp-20-2445-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-2445-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Amplification of black carbon light absorption induced by atmospheric aging: temporal variation at seasonal and diel scales in urban Guangzhou
Jia Yin Sun
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Institute of Tropical and Marine Meteorology, CMA, Guangzhou 510080,
China
Chunlei Cheng
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Mei Li
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Tao Deng
Institute of Tropical and Marine Meteorology, CMA, Guangzhou 510080,
China
Jian Zhen Yu
Department of Chemistry, Hong Kong University of Science and
Technology, Hong Kong, China
Division of Environment and Sustainability, Hong Kong University of
Science and Technology, Hong Kong, China
Atmospheric Research Center, HKUST Fok Ying Tung Research Institute,
Guangzhou 511400, China
Yong Jie Li
Faculty of Science and Technology, University of Macau, Macau, China
Qianni Zhou
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Yue Liang
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Tianlin Sun
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Lang Song
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Peng Cheng
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Wenda Yang
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Chenglei Pei
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Guangzhou Environmental Monitoring Center, Guangzhou 510030, China
Yanning Chen
Guangzhou Environmental Monitoring Center, Guangzhou 510030, China
Yanxiang Cen
Guangzhou Hexin Analytical Instrument Company Limited, Guangzhou
510530, China
Huiqing Nian
Guangzhou Hexin Analytical Instrument Company Limited, Guangzhou
510530, China
Zhen Zhou
CORRESPONDING AUTHOR
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Related authors
No articles found.
Bojiang Su, Xinhui Bi, Zhou Zhang, Yue Liang, Congbo Song, Tao Wang, Yaohao Hu, Lei Li, Zhen Zhou, Jinpei Yan, Xinming Wang, and Guohua Zhang
Atmos. Chem. Phys., 23, 10697–10711, https://doi.org/10.5194/acp-23-10697-2023, https://doi.org/10.5194/acp-23-10697-2023, 2023
Short summary
Short summary
During the R/V Xuelong cruise observation over the Ross Sea, Antarctica, the mass concentrations of water-soluble Ca2+ and the mass spectra of individual calcareous particles were measured. Our results indicated that lower temperature, lower wind speed, and the presence of sea ice may facilitate Ca2+ enrichment in sea spray aerosols and highlighted the potential contribution of organically complexed calcium to calcium enrichment, which is inaccurate based solely on water-soluble Ca2+ estimation.
Qiongqiong Wang, Shuhui Zhu, Shan Wang, Cheng Huang, Yunsen Duan, and Jian Zhen Yu
EGUsphere, https://doi.org/10.5194/egusphere-2023-1846, https://doi.org/10.5194/egusphere-2023-1846, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We investigated short-term source apportionment of PM2.5 utilizing rolling positive matrix factorization (PMF) and online PM chemical speciation data, which included source-specific organic tracers collected over a period of 37 days during the winter of 2019–2020 in suburban Shanghai, China. The findings highlight that by imposing constraints on the primary source profiles, short-term PMF analysis successfully replicated both the individual primary sources and the total secondary sources.
Nan Wang, Hongyue Wang, Xin Huang, Xi Chen, Xiaopu Lyu, Yu Zou, Tao Deng, Tingyuan Li, and Fumo Yang
EGUsphere, https://doi.org/10.5194/egusphere-2023-1636, https://doi.org/10.5194/egusphere-2023-1636, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study explores the influence of extreme weather-induced natural processes on ozone pollution, which is often overlooked. By analyzing meteorological factors, natural emissions, chemistry pathways, and atmospheric transport, we discovered that these natural processes could substantially exacerbate ozone pollution. The findings contribute to a deeper understanding of ozone pollution and offer valuable insights for controlling ozone pollution in the context of global warming.
Shuhui Zhu, Min Zhou, Liping Qiao, Dan Dan Huang, Qiongqiong Wang, Shan Wang, Yaqin Gao, Shengao Jing, Qian Wang, Hongli Wang, Changhong Chen, Cheng Huang, and Jian Zhen Yu
Atmos. Chem. Phys., 23, 7551–7568, https://doi.org/10.5194/acp-23-7551-2023, https://doi.org/10.5194/acp-23-7551-2023, 2023
Short summary
Short summary
Organic aerosol (OA) is increasingly important in urban PM2.5 pollution as inorganic ions are becoming lower. We investigated the chemical characteristics of OA during nine episodes in Shanghai. The availability of bi-hourly measured molecular markers revealed that the control of local urban sources such as vehicular and cooking emissions lessened the severity of local episodes. Regional control of precursors and biomass burning would reduce PM2.5 episodes influenced by regional transport.
Xi Cheng, Yong Jie Li, Yan Zheng, Keren Liao, Tong Zhu, Chunxiang Ye, Xinghua Qiu, Theodore K. Koenig, Yanli Ge, and Qi Chen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1215, https://doi.org/10.5194/egusphere-2023-1215, 2023
Short summary
Short summary
In this study we conducted laboratory measurements to investigate the formation of gas-phase oxygenated organic molecules (OOMs) from six aromatic volatile organic compounds (VOCs). We provide a thorough analysis on the effects of precursor structure (substituents and ring numbers) in product distribution, and highlight from a laboratory perspective that heavy (e.g., double-ring) aromatic VOCs are important in initial particle growth during secondary organic aerosol formation.
Guowen He, Cheng He, Haofan Wang, Xiao Lu, Chenglei Pei, Xiaonuan Qiu, Chenxi Liu, Yiming Wang, Nanxi Liu, Jinpu Zhang, Lei Lei, Yiming Liu, Haichao Wang, Tao Deng, Qi Fan, and Shaojia Fan
EGUsphere, https://doi.org/10.5194/egusphere-2023-1043, https://doi.org/10.5194/egusphere-2023-1043, 2023
Short summary
Short summary
We analyze nighttime ozone in the lower boundary layer (up to 500 m) from the 2017–2019 measurements at the Canton Tower and the WRF-CMAQ model. We identify strong ability of the residual layer to store daytime ozone in the convective mixing layer, investigate the chemical and meteorological factors controlling nighttime ozone in the residual layer, and quantify the contribution of nighttime ozone in the residual layer to both nighttime and the following day’s surface ozone air quality.
Fei Li, Biao Luo, Miaomiao Zhai, Li Liu, Gang Zhao, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, Ye Kuang, and Jun Zhao
Atmos. Chem. Phys., 23, 6545–6558, https://doi.org/10.5194/acp-23-6545-2023, https://doi.org/10.5194/acp-23-6545-2023, 2023
Short summary
Short summary
A field campaign was conducted to study black carbon (BC) mass size distributions and mixing states connected to traffic emissions using a system that combines a differential mobility analyzer and single-particle soot photometer. Results showed that the black carbon content of traffic emissions has a considerable influence on both BC mass size distributions and mixing states, which has crucial implications for accurately representing BC from various sources in regional and climate models.
Ting Yang, Yu Xu, Qing Ye, Yi-Jia Ma, Yu-Chen Wang, Jian-Zhen Yu, Yu-Sen Duan, Chen-Xi Li, Hong-Wei Xiao, Zi-Yue Li, Yue Zhao, and Hua-Yun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2023-1292, https://doi.org/10.5194/egusphere-2023-1292, 2023
Short summary
Short summary
In this study, 130 OS species were quantified in ambient fine particulate matter (PM2.5) collected in urban and suburban Shanghai (East China) in summer 2021. The daytime OS formation was concretized based on the interactions among OSs, ultraviolet (UV), ozone (O3), and sulfate. Our finding provides field evidence for the influence of photochemical process and anthropogenic sulfate on OS formation and has important implications for the mitigation of organic particulate pollution.
Yifang Gu, Ru-Jin Huang, Jing Duan, Wei Xu, Chunshui Lin, Haobin Zhong, Ying Wang, Haiyan Ni, Quan Liu, Ruiguang Xu, Litao Wang, and Yong Jie Li
Atmos. Chem. Phys., 23, 5419–5433, https://doi.org/10.5194/acp-23-5419-2023, https://doi.org/10.5194/acp-23-5419-2023, 2023
Short summary
Short summary
Secondary organic aerosol (SOA) can be produced by various pathways, but its formation mechanisms are unclear. Observations were conducted in the North China Plain during a highly oxidizing atmosphere in summer. We found that fast photochemistry dominated SOA formation during daytime. Two types of aqueous-phase chemistry (nocturnal and daytime processing) take place at high relative humidity. The potential transformation from primary organic aerosol (POA) to SOA was also an important pathway.
Liyuan Zhou, Zhancong Liang, Beatrix Rosette Go Mabato, Rosemarie Ann Infante Cuevas, Rongzhi Tang, Mei Li, Chunlei Cheng, and Chak K. Chan
Atmos. Chem. Phys., 23, 5251–5261, https://doi.org/10.5194/acp-23-5251-2023, https://doi.org/10.5194/acp-23-5251-2023, 2023
Short summary
Short summary
This study reveals the sulfate formation in photosensitized particles from biomass burning under UV and SO2, of which the relative atmospheric importance in sulfate production was qualitatively compared to nitrate photolysis. On the basis of single-particle aerosol mass spectrometry measurements, the number percentage of sulfate-containing particles and relative peak area of sulfate in single-particle spectra exhibited a descending order of 3,4-dimethoxybenzaldehyde > vanillin > syringaldehyde.
Rui Li, Kun Zhang, Qing Li, Liumei Yang, Shunyao Wang, Zhiqiang Liu, Xiaojuan Zhang, Hui Chen, Yanan Yi, Jialiang Feng, Qiongqiong Wang, Ling Huang, Wu Wang, Yangjun Wang, Jian Zhen Yu, and Li Li
Atmos. Chem. Phys., 23, 3065–3081, https://doi.org/10.5194/acp-23-3065-2023, https://doi.org/10.5194/acp-23-3065-2023, 2023
Short summary
Short summary
Molecular markers in organic aerosol (OA) provide specific source information on PM2.5, and the contribution of cooking emissions to OA is significant, especially in urban environments. This study investigates the variation in concentrations and oxidative degradation of fatty acids and corresponding oxidation products in ambient air, which can be a guide for the refinement of aerosol source apportionment and provide scientific support for the development of emission source control policies.
Aodong Du, Jiaxing Sun, Hang Liu, Weiqi Xu, Wei Zhou, Yuting Zhang, Lei Li, Xubing Du, Yan Li, Xiaole Pan, Zifa Wang, and Yele Sun
EGUsphere, https://doi.org/10.5194/egusphere-2023-240, https://doi.org/10.5194/egusphere-2023-240, 2023
Short summary
Short summary
We characterized the impacts of emission controls on particle mixing state and density during Beijing Olympic Winter Games using a SPA-MS in tandem with a DMA and an AAC. OC and sulfate–containing particles increased while those from primary emissions decreased. The effective particle densities increased and varied largely for different particles, highlighting the impacts of aging and formation processes on the changes of particle density and mixing state.
Beatrix Rosette Go Mabato, Yong Jie Li, Dan Dan Huang, Yalin Wang, and Chak K. Chan
Atmos. Chem. Phys., 23, 2859–2875, https://doi.org/10.5194/acp-23-2859-2023, https://doi.org/10.5194/acp-23-2859-2023, 2023
Short summary
Short summary
We compared non-phenolic and phenolic methoxybenzaldehydes as photosensitizers for aqueous secondary organic aerosol (aqSOA) formation under cloud and fog conditions. We showed that the structural features of photosensitizers affect aqSOA formation. We also elucidated potential interactions between photosensitization and ammonium nitrate photolysis. Our findings are useful for evaluating the importance of photosensitized reactions on aqSOA formation, which could improve aqSOA predictive models.
Tingting Feng, Yingkun Wang, Weiwei Hu, Ming Zhu, Wei Song, Wei Chen, Yanyan Sang, Zheng Fang, Wei Deng, Hua Fang, Xu Yu, Cheng Wu, Bin Yuan, Shan Huang, Min Shao, Xiaofeng Huang, Lingyan He, Young Ro Lee, Lewis Gregory Huey, Francesco Canonaco, Andre S. H. Prevot, and Xinming Wang
Atmos. Chem. Phys., 23, 611–636, https://doi.org/10.5194/acp-23-611-2023, https://doi.org/10.5194/acp-23-611-2023, 2023
Short summary
Short summary
To investigate the impact of aging processes on organic aerosols (OA), we conducted a comprehensive field study at a continental remote site using an on-line mass spectrometer. The results show that OA in the Chinese outflows were strongly influenced by upwind anthropogenic emissions. The aging processes can significantly decrease the OA volatility and result in a varied viscosity of OA under different circumstances, signifying the complex physiochemical properties of OA in aged plumes.
Zhancong Liang, Liyuan Zhou, Xinyue Li, Rosemarie Ann Infante Cuevas, Rongzhi Tang, Mei Li, Chunlei Cheng, Yangxi Chu, and Chak Keung Chan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-838, https://doi.org/10.5194/acp-2022-838, 2022
Preprint withdrawn
Short summary
Short summary
Incense burning is a common religious ritual, especially in Asian and African communities, with massive particles emitted. While previous research mainly focused on the chemical compositions and potential health impacts of fresh incense particles, our work reveals that nitrate, accompanied by SOA, can rapidly form in incense-burning particles upon photochemical oxidation in the atmosphere. This finding could deepen our understanding of air pollution caused by religious activities.
Xubing Du, Qinhui Xie, Qing Huang, Xuan Li, Junlin Yang, Zhihui Hou, Jingjing Wang, Xue Li, Zhen Zhou, Zhengxu Huang, Wei Gao, and Lei Li
EGUsphere, https://doi.org/10.5194/egusphere-2022-872, https://doi.org/10.5194/egusphere-2022-872, 2022
Short summary
Short summary
Currently, the limitations of Single-particle mass spectrometry detection capabilities render it not yet well suited for analyzing complex aerosol components in low concentration environments. In this study, a new high-performance single-particle aerosol mass spectrometer (HP-SPAMS) is developed to enhance instrument performance regarding the number of detected particles, transmission efficiency, resolution, and sensitivity, which will help in aerosol science.
Wing Sze Chow, Kezheng Liao, X. H. Hilda Huang, Ka Fung Leung, Alexis K. H. Lau, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 11557–11577, https://doi.org/10.5194/acp-22-11557-2022, https://doi.org/10.5194/acp-22-11557-2022, 2022
Short summary
Short summary
Long-term monitoring data of PM2.5 chemical composition provide essential information for evaluation and planning of control measures. Here we present a 10-year (2008–2017) time series of PM2.5, its major components, and select source markers in an urban site in Hong Kong. The dataset verified the success of local vehicular emission control measures as well as reduction of sulfate and regional sources such as industrial and coal combustion and crop residue burning emissions over the decade.
Qiongqiong Wang, Shan Wang, Yuk Ying Cheng, Hanzhe Chen, Zijing Zhang, Jinjian Li, Dasa Gu, Zhe Wang, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 11239–11253, https://doi.org/10.5194/acp-22-11239-2022, https://doi.org/10.5194/acp-22-11239-2022, 2022
Short summary
Short summary
Secondary organic aerosol (SOA) is often enhanced during fine-particulate-matter (PM2.5) episodes. We examined bi-hourly measurements of SOA molecular tracers in suburban Hong Kong during 11 city-wide PM2.5 episodes. The tracers showed regional characteristics for both anthropogenic and biogenic SOA as well as biomass-burning-derived SOA. Multiple tracers of the same precursor revealed the dominance of low-NOx formation pathways for isoprene SOA and less-aged monoterpene SOA during winter.
Shanshan Ouyang, Tao Deng, Run Liu, Jingyang Chen, Guowen He, Jeremy Cheuk-Hin Leung, Nan Wang, and Shaw Chen Liu
Atmos. Chem. Phys., 22, 10751–10767, https://doi.org/10.5194/acp-22-10751-2022, https://doi.org/10.5194/acp-22-10751-2022, 2022
Short summary
Short summary
A record-breaking severe O3 pollution episode occurred under the influence of a Pacific subtropical high followed by Typhoon Mitag in the Pearl River Delta (PRD) in early Autumn 2019. Through WRF-CMAQ model simulations, we propose that the enhanced photochemical production of O3 during the episode is a major cause of the most severe O3 pollution year since the official O3 observation started in the PRD in 2006.
Xiao-Bing Li, Bin Yuan, Sihang Wang, Chunlin Wang, Jing Lan, Zhijie Liu, Yongxin Song, Xianjun He, Yibo Huangfu, Chenglei Pei, Peng Cheng, Suxia Yang, Jipeng Qi, Caihong Wu, Shan Huang, Yingchang You, Ming Chang, Huadan Zheng, Wenda Yang, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 22, 10567–10587, https://doi.org/10.5194/acp-22-10567-2022, https://doi.org/10.5194/acp-22-10567-2022, 2022
Short summary
Short summary
High-time-resolution measurements of volatile organic compounds (VOCs) were made using an online mass spectrometer at a 600 m tall tower in urban region. Compositions, temporal variations, and sources of VOCs were quantitatively investigated in this study. We find that VOC measurements in urban regions aloft could better characterize source characteristics of anthropogenic emissions. Our results could provide important implications in making future strategies for control of VOCs.
Guohua Zhang, Xiaodong Hu, Wei Sun, Yuxiang Yang, Ziyong Guo, Yuzhen Fu, Haichao Wang, Shengzhen Zhou, Lei Li, Mingjin Tang, Zongbo Shi, Duohong Chen, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 22, 9571–9582, https://doi.org/10.5194/acp-22-9571-2022, https://doi.org/10.5194/acp-22-9571-2022, 2022
Short summary
Short summary
We show a significant enhancement of nitrate mass fraction in cloud water and relative intensity of nitrate in the cloud residual particles and highlight that hydrolysis of N2O5 serves as the critical route for the in-cloud formation of nitrate, even during the daytime. Given that N2O5 hydrolysis acts as a major sink of NOx in the atmosphere, further model updates may improve our understanding about the processes contributing to nitrate production in cloud and the cycling of odd nitrogen.
Xuan Li, Lei Li, Zeming Zhuo, Guohua Zhang, Xubing Du, Xue Li, Zhengxu Huang, Zhen Zhou, and Zhi Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2022-598, https://doi.org/10.5194/egusphere-2022-598, 2022
Preprint archived
Short summary
Short summary
The particle size and chemical composition of bioaerosol were analyzed based on single particle aerosol mass spectrometer. Fungal aerosol of 10 μm was measured for the first time and the characteristic spectrum of bioaerosol was updated. The ion peak ratio method can distinguish bioaerosols from interferers by 97 %. The factors influencing the differentiation of bioaerosols are also discussed. Single particle mass spectrometry can be a new method for real-time identification of bioaerosols.
Yihang Yu, Peng Cheng, Huirong Li, Wenda Yang, Baobin Han, Wei Song, Weiwei Hu, Xinming Wang, Bin Yuan, Min Shao, Zhijiong Huang, Zhen Li, Junyu Zheng, Haichao Wang, and Xiaofang Yu
Atmos. Chem. Phys., 22, 8951–8971, https://doi.org/10.5194/acp-22-8951-2022, https://doi.org/10.5194/acp-22-8951-2022, 2022
Short summary
Short summary
We have investigated the budget of HONO at an urban site in Guangzhou. Budget and comprehensive uncertainty analysis suggest that at such locations as ours, HONO direct emissions and NO + OH can become comparable or even surpass other HONO sources that typically receive greater attention and interest, such as the NO2 heterogeneous source and the unknown daytime photolytic source. Our findings emphasize the need to reduce the uncertainties of both conventional and novel HONO sources and sinks.
Mingfu Cai, Shan Huang, Baoling Liang, Qibin Sun, Li Liu, Bin Yuan, Min Shao, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Zelong Wang, Duohong Chen, Haobo Tan, Hanbin Xu, Fei Li, Xuejiao Deng, Tao Deng, Jiaren Sun, and Jun Zhao
Atmos. Chem. Phys., 22, 8117–8136, https://doi.org/10.5194/acp-22-8117-2022, https://doi.org/10.5194/acp-22-8117-2022, 2022
Short summary
Short summary
This study investigated the size dependence and diurnal variation in organic aerosol hygroscopicity, volatility, and cloud condensation nuclei (CCN) activity. We found that the physical properties of OA could vary in a large range at different particle sizes and affected the number concentration of CCN (NCCN) at all supersaturations. Our results highlight the importance of evaluating the atmospheric evolution processes of OA at different size ranges and their impact on climate effects.
Li Liu, Ye Kuang, Miaomiao Zhai, Biao Xue, Yao He, Jun Tao, Biao Luo, Wanyun Xu, Jiangchuan Tao, Changqin Yin, Fei Li, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, and Min Shao
Atmos. Chem. Phys., 22, 7713–7726, https://doi.org/10.5194/acp-22-7713-2022, https://doi.org/10.5194/acp-22-7713-2022, 2022
Short summary
Short summary
Using simultaneous measurements of a humidified nephelometer system and an aerosol chemical speciation monitor in winter in Guangzhou, the strongest scattering ability of more oxidized oxygenated organic aerosol (MOOA) among aerosol components considering their dry-state scattering ability and water uptake ability was revealed, leading to large impacts of MOOA on visibility degradation. This has important implications for visibility improvement in China and aerosol radiative effect simulation.
Jiaxing Sun, Yele Sun, Conghui Xie, Weiqi Xu, Chun Chen, Zhe Wang, Lei Li, Xubing Du, Fugui Huang, Yan Li, Zhijie Li, Xiaole Pan, Nan Ma, Wanyun Xu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 7619–7630, https://doi.org/10.5194/acp-22-7619-2022, https://doi.org/10.5194/acp-22-7619-2022, 2022
Short summary
Short summary
We analyzed the chemical composition and mixing state of BC-containing particles at urban and rural sites in winter in the North China Plain and evaluated their impact on light absorption enhancement. BC was dominantly mixed with organic carbon, nitrate, and sulfate, and the mixing state evolved significantly as a function of relative humidity (RH) at both sites. The absorption enhancement depended strongly on coated secondary inorganic aerosol and was up to ~1.3–1.4 during aging processes.
Rongshuang Xu, Sze In Madeleine Ng, Wing Sze Chow, Yee Ka Wong, Yuchen Wang, Donger Lai, Zhongping Yao, Pui-Kin So, Jian Zhen Yu, and Man Nin Chan
Atmos. Chem. Phys., 22, 5685–5700, https://doi.org/10.5194/acp-22-5685-2022, https://doi.org/10.5194/acp-22-5685-2022, 2022
Short summary
Short summary
To date, while over a hundred organosulfates (OSs) have been detected in atmospheric aerosols, many of them are still unidentified, with unknown precursors and formation processes. We found the heterogeneous OH oxidation of an α-pinene-derived organosulfate (C10H17O5SNa, αpOS-249, αpOS-249) can proceed at an efficient rate and transform into more oxygenated OSs, which have been commonly detected in atmospheric aerosols and α-pinene-derived SOA in chamber studies.
Yee Ka Wong, Kin Man Liu, Claisen Yeung, Kenneth K. M. Leung, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 5017–5031, https://doi.org/10.5194/acp-22-5017-2022, https://doi.org/10.5194/acp-22-5017-2022, 2022
Short summary
Short summary
Coarse particulate matter (PM) has been shown to cause adverse health impacts, but compared to PM2.5, the source of coarse PM is less studied through field measurements. We collected chemical composition data for coarse PM in Hong Kong for a 1-year period. Using statistical models, we found that regional transport of fugitive dust is responsible for the elevated coarse PM. This work sets an example of how field measurements can be effectively utilized for evidence-based policymaking.
Suxia Yang, Bin Yuan, Yuwen Peng, Shan Huang, Wei Chen, Weiwei Hu, Chenglei Pei, Jun Zhou, David D. Parrish, Wenjie Wang, Xianjun He, Chunlei Cheng, Xiao-Bing Li, Xiaoyun Yang, Yu Song, Haichao Wang, Jipeng Qi, Baolin Wang, Chen Wang, Chaomin Wang, Zelong Wang, Tiange Li, E Zheng, Sihang Wang, Caihong Wu, Mingfu Cai, Chenshuo Ye, Wei Song, Peng Cheng, Duohong Chen, Xinming Wang, Zhanyi Zhang, Xuemei Wang, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4539–4556, https://doi.org/10.5194/acp-22-4539-2022, https://doi.org/10.5194/acp-22-4539-2022, 2022
Short summary
Short summary
We use a model constrained using observations to study the formation of nitrate aerosol in and downwind of a representative megacity. We found different contributions of various chemical reactions to ground-level nitrate concentrations between urban and suburban regions. We also show that controlling VOC emissions are effective for decreasing nitrate formation in both urban and regional environments, although VOCs are not direct precursors of nitrate aerosol.
Wenjie Wang, Bin Yuan, Yuwen Peng, Hang Su, Yafang Cheng, Suxia Yang, Caihong Wu, Jipeng Qi, Fengxia Bao, Yibo Huangfu, Chaomin Wang, Chenshuo Ye, Zelong Wang, Baolin Wang, Xinming Wang, Wei Song, Weiwei Hu, Peng Cheng, Manni Zhu, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4117–4128, https://doi.org/10.5194/acp-22-4117-2022, https://doi.org/10.5194/acp-22-4117-2022, 2022
Short summary
Short summary
From thorough measurements of numerous oxygenated volatile organic compounds, we show that their photodissociation can be important for radical production and ozone formation in the atmosphere. This effect was underestimated in previous studies, as measurements of them were lacking.
Jiaxing Sun, Zhe Wang, Wei Zhou, Conghui Xie, Cheng Wu, Chun Chen, Tingting Han, Qingqing Wang, Zhijie Li, Jie Li, Pingqing Fu, Zifa Wang, and Yele Sun
Atmos. Chem. Phys., 22, 561–575, https://doi.org/10.5194/acp-22-561-2022, https://doi.org/10.5194/acp-22-561-2022, 2022
Short summary
Short summary
We analyzed 9-year measurements of BC and aerosol optical properties from 2012 to 2020 in Beijing, China. Our results showed large reductions in BC and light extinction coefficient due to the Clean Air Action Plan. As a response, both SSA and mass extinction efficiency (MEE) showed considerable increases, demonstrating a future challenge in visibility improvement. The primary and secondary BrC was also separated and quantified, and the changes in radiative forcing of BC and BrC were estimated.
Beatrix Rosette Go Mabato, Yan Lyu, Yan Ji, Yong Jie Li, Dan Dan Huang, Xue Li, Theodora Nah, Chun Ho Lam, and Chak K. Chan
Atmos. Chem. Phys., 22, 273–293, https://doi.org/10.5194/acp-22-273-2022, https://doi.org/10.5194/acp-22-273-2022, 2022
Short summary
Short summary
Biomass burning (BB) is a global phenomenon that releases large quantities of pollutants such as phenols and aromatic carbonyls into the atmosphere. These compounds can form secondary organic aerosols (SOAs) which play an important role in the Earth’s energy budget. In this work, we demonstrated that the direct irradiation of vanillin (VL) could generate aqueous SOA (aqSOA) such as oligomers. In the presence of nitrate, VL photo-oxidation can also form nitrated compounds.
Qi En Zhong, Chunlei Cheng, Zaihua Wang, Lei Li, Mei Li, Dafeng Ge, Lei Wang, Yuanyuan Li, Wei Nie, Xuguang Chi, Aijun Ding, Suxia Yang, Duohong Chen, and Zhen Zhou
Atmos. Chem. Phys., 21, 17953–17967, https://doi.org/10.5194/acp-21-17953-2021, https://doi.org/10.5194/acp-21-17953-2021, 2021
Short summary
Short summary
Particulate amines play important roles in new particle formation, aerosol acidity, and hygroscopicity. Most of the field observations did not distinguish the different behavior of each type amine under the same ambient influencing factors. In this study, two amine-containing single particles exhibited different mixing states and disparate enrichment of secondary organics, which provide insight into the discriminated fates of organics during the formation and evolution processes.
Xi Cheng, Qi Chen, Yong Jie Li, Yan Zheng, Keren Liao, and Guancong Huang
Atmos. Chem. Phys., 21, 12005–12019, https://doi.org/10.5194/acp-21-12005-2021, https://doi.org/10.5194/acp-21-12005-2021, 2021
Short summary
Short summary
In this study, we conducted laboratory studies to investigate the formation of gas-phase highly oxygenated organic molecules (HOMs). We provide a thorough analysis on the importance of multistep auto-oxidation and multigeneration OH reactions. We also give an intensive investigation on the roles of high-NO2 conditions that represent a wide range of anthropogenically influenced environments.
Yingnan Zhang, Likun Xue, William P. L. Carter, Chenglei Pei, Tianshu Chen, Jiangshan Mu, Yujun Wang, Qingzhu Zhang, and Wenxing Wang
Atmos. Chem. Phys., 21, 11053–11068, https://doi.org/10.5194/acp-21-11053-2021, https://doi.org/10.5194/acp-21-11053-2021, 2021
Short summary
Short summary
We developed the localized incremental reactivity (IR) for VOCs in a Chinese megacity and elucidated their applications in calculating the ozone formation potential (OFP). The IR scales showed a strong dependence on chemical mechanisms. Both emission- and observation-based inputs are suitable for the MIR calculation but not the case under mixed-limited or NOx-limited O3 formation regimes. We provide suggestions for the application of IR and OFP scales to aid in VOC control in China.
Hua Fang, Xiaoqing Huang, Yanli Zhang, Chenglei Pei, Zuzhao Huang, Yujun Wang, Yanning Chen, Jianhong Yan, Jianqiang Zeng, Shaoxuan Xiao, Shilu Luo, Sheng Li, Jun Wang, Ming Zhu, Xuewei Fu, Zhenfeng Wu, Runqi Zhang, Wei Song, Guohua Zhang, Weiwei Hu, Mingjin Tang, Xiang Ding, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 21, 10005–10013, https://doi.org/10.5194/acp-21-10005-2021, https://doi.org/10.5194/acp-21-10005-2021, 2021
Short summary
Short summary
A tunnel test was initiated to measure the vehicular IVOC emissions under real-world driving conditions. Higher SOA formation estimated from vehicular IVOCs compared to those from traditional VOCs emphasized the greater importance of IVOCs in modulating urban SOA. The results also revealed that non-road diesel-fueled engines greatly contributed to IVOCs in China.
Johannes Passig, Julian Schade, Robert Irsig, Lei Li, Xue Li, Zhen Zhou, Thomas Adam, and Ralf Zimmermann
Atmos. Meas. Tech., 14, 4171–4185, https://doi.org/10.5194/amt-14-4171-2021, https://doi.org/10.5194/amt-14-4171-2021, 2021
Short summary
Short summary
Ships are major sources of air pollution; however, monitoring of ship emissions outside harbours is a challenging task. We optimized single-particle mass spectrometry (SPMS) for the detection of bunker fuel emissions and demonstrate the detection of individual ship plumes from more than 10 km in distance. The approach works independently of background air pollution and also when ships use exhaust-cleaning scrubbers. We discuss the potential and limits of SPMS-based monitoring of ship plumes.
Long Peng, Lei Li, Guohua Zhang, Xubing Du, Xinming Wang, Ping'an Peng, Guoying Sheng, and Xinhui Bi
Atmos. Chem. Phys., 21, 5605–5613, https://doi.org/10.5194/acp-21-5605-2021, https://doi.org/10.5194/acp-21-5605-2021, 2021
Short summary
Short summary
We build a novel system that utilizes an aerodynamic aerosol classifier (AAC) combined with a single-particle aerosol mass spectrometry (SPAMS) to simultaneously characterize the volume equivalent diameter (Dve), chemical compositions, and effective density (ρe) of individual particles in real time. A test of the AAC-SPAMS with both spherical and aspherical particles shows that the deviations between the measured and theoretical values are less than 6 %.
Yao Wang, Yue Zhao, Yuchen Wang, Jian-Zhen Yu, Jingyuan Shao, Ping Liu, Wenfei Zhu, Zhen Cheng, Ziyue Li, Naiqiang Yan, and Huayun Xiao
Atmos. Chem. Phys., 21, 2959–2980, https://doi.org/10.5194/acp-21-2959-2021, https://doi.org/10.5194/acp-21-2959-2021, 2021
Short summary
Short summary
Organosulfates (OSs) are important constituents and tracers of secondary organic aerosols (SOAs) in the atmosphere. Here we characterized the OS species in ambient aerosols in Shanghai, China. We find that the contributions of OSs and SOAs to organic aerosols have increased in recent years and that OS production was largely controlled by the oxidant level (Ox), particularly in summer. We infer that mitigation of Ox pollution can effectively reduce the production of OSs and SOAs in eastern China.
Yuzhen Fu, Qinhao Lin, Guohua Zhang, Yuxiang Yang, Yiping Yang, Xiufeng Lian, Long Peng, Feng Jiang, Xinhui Bi, Lei Li, Yuanyuan Wang, Duohong Chen, Jie Ou, Xinming Wang, Ping'an Peng, Jianxi Zhu, and Guoying Sheng
Atmos. Chem. Phys., 20, 14063–14075, https://doi.org/10.5194/acp-20-14063-2020, https://doi.org/10.5194/acp-20-14063-2020, 2020
Short summary
Short summary
Based on the analysis of the morphology and mixing structure of the activated and unactivated particles, our results emphasize the role of in-cloud processes in the chemistry and microphysical properties of individual activated particles. Given that organic coatings may determine the particle hygroscopicity and heterogeneous chemical reactivity, the increase of OM-shelled particles upon in-cloud processes should have considerable implications for their evolution and climate impact.
Rui Li, Qiongqiong Wang, Xiao He, Shuhui Zhu, Kun Zhang, Yusen Duan, Qingyan Fu, Liping Qiao, Yangjun Wang, Ling Huang, Li Li, and Jian Zhen Yu
Atmos. Chem. Phys., 20, 12047–12061, https://doi.org/10.5194/acp-20-12047-2020, https://doi.org/10.5194/acp-20-12047-2020, 2020
Yee Ka Wong, X. H. Hilda Huang, Peter K. K. Louie, Alfred L. C. Yu, Damgy H. L. Chan, and Jian Zhen Yu
Atmos. Chem. Phys., 20, 9871–9882, https://doi.org/10.5194/acp-20-9871-2020, https://doi.org/10.5194/acp-20-9871-2020, 2020
Short summary
Short summary
We present an approach to track separate contributions to PM2.5 by gasoline and diesel vehicles through a positive matrix factorization analysis of online monitoring data measurable by relatively inexpensive analytical instruments. They are PM2.5 organic and elemental carbon, C2–C9 volatile organic compounds, and nitrogen oxide concentrations. The method was demonstrated to be effective by applying monitoring data spanning 6 years (2011–2017) from a roadside environment in Hong Kong.
Yibei Wan, Xiangpeng Huang, Bin Jiang, Binyu Kuang, Manfei Lin, Deming Xia, Yuhong Liao, Jingwen Chen, Jian Zhen Yu, and Huan Yu
Atmos. Chem. Phys., 20, 9821–9835, https://doi.org/10.5194/acp-20-9821-2020, https://doi.org/10.5194/acp-20-9821-2020, 2020
Short summary
Short summary
Biogenic iodine emission from macroalgae and microalgae could initiate atmospheric new particle formation (NPF). But it is unknown if other species are needed to drive the growth of new iodine particles in the marine boundary layer. Unlike the deeper understanding of organic compounds driving continental NPF, little is known about the organics involved in coastal or open-ocean NPF. This article reveals a new group of important organic compounds involved in this process.
Shengqiang Zhu, Lei Li, Shurong Wang, Mei Li, Yaxi Liu, Xiaohui Lu, Hong Chen, Lin Wang, Jianmin Chen, Zhen Zhou, Xin Yang, and Xiaofei Wang
Atmos. Meas. Tech., 13, 4111–4121, https://doi.org/10.5194/amt-13-4111-2020, https://doi.org/10.5194/amt-13-4111-2020, 2020
Short summary
Short summary
Single-particle aerosol mass spectrometry (SPAMS) is widely used to detect chemical compositions and sizes of individual aerosol particles. However, it has a major issue: the mass accuracy of high-resolution SPAMS is relatively low. Here we developed an automatic linear calibration method to greatly improve the mass accuracy of SPAMS spectra so that the elemental compositions of organic peaks, such as Cx, CxHy, CxHyOz and CxHyNO peaks, can be directly identified just based on their m / z values.
Ru-Jin Huang, Yao He, Jing Duan, Yongjie Li, Qi Chen, Yan Zheng, Yang Chen, Weiwei Hu, Chunshui Lin, Haiyan Ni, Wenting Dai, Junji Cao, Yunfei Wu, Renjian Zhang, Wei Xu, Jurgita Ovadnevaite, Darius Ceburnis, Thorsten Hoffmann, and Colin D. O'Dowd
Atmos. Chem. Phys., 20, 9101–9114, https://doi.org/10.5194/acp-20-9101-2020, https://doi.org/10.5194/acp-20-9101-2020, 2020
Short summary
Short summary
We systematically compared the submicron particle (PM1) processes in haze days with low and high relative humidity (RH) in wintertime Beijing. Nitrate had similar daytime growth rates in low-RH and high-RH pollution. OOA had a higher growth rate in low-RH pollution than in high-RH pollution. Sulfate had a decreasing trend in low-RH pollution, while it increased significantly in high-RH pollution. This distinction may be explained by the different processes affected by meteorological conditions.
Johannes Passig, Julian Schade, Ellen Iva Rosewig, Robert Irsig, Thomas Kröger-Badge, Hendryk Czech, Martin Sklorz, Thorsten Streibel, Lei Li, Xue Li, Zhen Zhou, Henrik Fallgren, Jana Moldanova, and Ralf Zimmermann
Atmos. Chem. Phys., 20, 7139–7152, https://doi.org/10.5194/acp-20-7139-2020, https://doi.org/10.5194/acp-20-7139-2020, 2020
Short summary
Short summary
Particle-bound metals in both natural dusts and polluted air can induce severe health effects. They are also transported by the wind into the oceans; provide micronutrients; and thus modulate biodiversity, fisheries, and climate. We show a way to more efficiently detect metals in individual particles while preserving source information. Our detection scheme is less dependent on the particle type and atmospheric changes and is thus valuable to the study of biogechemical cycles and air pollution.
Bojiang Su, Zeming Zhuo, Yuzhen Fu, Wei Sun, Ying Chen, Xubing Du, Yuxiang Yang, Si Wu, Fugui Huang, Duohong Chen, Lei Li, Guohua Zhang, Xinhui Bi, and Zhen Zhou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-443, https://doi.org/10.5194/acp-2020-443, 2020
Revised manuscript not accepted
Short summary
Short summary
In this study, chemical composition, mixing state and aging degree of individual sea spray aerosol (SSA) were measured by single particle aerosol mass spectrometer (SPAMS) during summer monsoon in southern China. Our results show that organic acids has significant contribution to chloride depletion of SSA. A class of biological SSA underwent relative weak chloride depletion compare to other SSA types, which may attribute to organic species (i.e. organic nitrogen and biological phosphate).
Ying Chen, Viacheslav Kozlovskiy, Xubing Du, Jinnuo Lv, Sergei Nikiforov, Jiajun Yu, Alexander Kolosov, Wei Gao, Zhen Zhou, Zhengxu Huang, and Lei Li
Atmos. Meas. Tech., 13, 941–949, https://doi.org/10.5194/amt-13-941-2020, https://doi.org/10.5194/amt-13-941-2020, 2020
Short summary
Short summary
Ion delayed extraction technique in single particle mass spectrometry has been found to improve the mass resolution of instruments. Through further research, it was found that it can improve the aerosol particle detection efficiency because it can eliminate the influence of the electrical field on the charged aerosol trajectory so that more effective data can be obtained in a short time in laboratory or field atmospheric aerosol research, especially in low-concentration aerosol sample analysis.
Guohua Zhang, Xiufeng Lian, Yuzhen Fu, Qinhao Lin, Lei Li, Wei Song, Zhanyong Wang, Mingjin Tang, Duohong Chen, Xinhui Bi, Xinming Wang, and Guoying Sheng
Atmos. Chem. Phys., 20, 1469–1481, https://doi.org/10.5194/acp-20-1469-2020, https://doi.org/10.5194/acp-20-1469-2020, 2020
Short summary
Short summary
Seasonal atmospheric processing of NOCs was investigated using single-particle mass spectrometry in urban Guangzhou. The abundance of NOCs was found to be strongly enhanced by internal mixing with photochemically produced secondary oxidized organics. A multiple linear regression analysis and a positive matrix factorization analysis were performed to predict the relative abundance of NOCs. More than 70 % of observed NOCs could be well explained by oxidized organics and ammonium.
Ye Kuang, Yao He, Wanyun Xu, Pusheng Zhao, Yafang Cheng, Gang Zhao, Jiangchuan Tao, Nan Ma, Hang Su, Yanyan Zhang, Jiayin Sun, Peng Cheng, Wenda Yang, Shaobin Zhang, Cheng Wu, Yele Sun, and Chunsheng Zhao
Atmos. Chem. Phys., 20, 865–880, https://doi.org/10.5194/acp-20-865-2020, https://doi.org/10.5194/acp-20-865-2020, 2020
Short summary
Short summary
A new method was developed to calculate hygroscopicity parameter κ of organic aerosols (κOA) based on aerosol light-scattering measurements and bulk aerosol chemical-composition measurements. Derived high-time-resolution κOA varied in a wide range (near 0 to 0.25), and the organic aerosol oxidation degree significantly impacts variations in κOA. Distinct diurnal variation in κOA is found, and its relationship with oxygenated organic aerosol is discussed.
Danhui Xu, Baozhu Ge, Xueshun Chen, Yele Sun, Nianliang Cheng, Mei Li, Xiaole Pan, Zhiqiang Ma, Yuepeng Pan, and Zifa Wang
Atmos. Chem. Phys., 19, 15569–15581, https://doi.org/10.5194/acp-19-15569-2019, https://doi.org/10.5194/acp-19-15569-2019, 2019
Short summary
Short summary
Wet deposition is one of the most important and efficient removal mechanisms in the evolution of the air pollution. Due to the lack of a localized parameterization scheme and some mechanisms being neglected in theoretical estimations and modeling calculations, below-cloud wet scavenging coefficients (BWSC) have large uncertainties. We compare the BWSCs under the same conditions to perform a multi-method evaluation in order to describe their characteristics.
Qinhao Lin, Yuxiang Yang, Yuzhen Fu, Guohua Zhang, Feng Jiang, Long Peng, Xiufeng Lian, Fengxian Liu, Xinhui Bi, Lei Li, Duohong Chen, Mei Li, Jie Ou, Mingjin Tang, Xinming Wang, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 19, 10469–10479, https://doi.org/10.5194/acp-19-10469-2019, https://doi.org/10.5194/acp-19-10469-2019, 2019
Short summary
Short summary
The effects of the chemical composition and size of sea-salt-containing particles on their cloud condensation nuclei activity are incompletely understood. Our results showed that submicron sea-salt-containing particles can enrich in small cloud droplets, likely due to change in the chemical composition, while supermicron sea-salt-containing particles tended in the large cloud droplets less affected by chemical composition. This difference might further influence their atmospheric residence time.
Jun Tao, Zhisheng Zhang, Yunfei Wu, Leiming Zhang, Zhijun Wu, Peng Cheng, Mei Li, Laiguo Chen, Renjian Zhang, and Junji Cao
Atmos. Chem. Phys., 19, 8471–8490, https://doi.org/10.5194/acp-19-8471-2019, https://doi.org/10.5194/acp-19-8471-2019, 2019
Short summary
Short summary
Mass-scattering efficiencies (MSE) of dominant chemical species in atmospheric aerosols are important parameters for building the relationships between chemical species and the particle-scattering coefficient. Particle MSE mainly depends on the mass fractions of (NH4)2SO4, NH4NO3, and organic matter and their MSEs in the droplet mode. MSEs of (NH4)2SO4, NH4NO3 and organic matter were determined by their size distributions in the droplet mode.
Yujue Wang, Min Hu, Yuchen Wang, Jing Zheng, Dongjie Shang, Yudong Yang, Ying Liu, Xiao Li, Rongzhi Tang, Wenfei Zhu, Zhuofei Du, Yusheng Wu, Song Guo, Zhijun Wu, Shengrong Lou, Mattias Hallquist, and Jian Zhen Yu
Atmos. Chem. Phys., 19, 7649–7665, https://doi.org/10.5194/acp-19-7649-2019, https://doi.org/10.5194/acp-19-7649-2019, 2019
Short summary
Short summary
Nitro-aromatic compounds (NACs), an important fraction in brown carbon, were comprehensively characterized in Beijing. The oxidation of anthropogenic VOCs represented more dominant sources of NACs than biomass burning. A transition of NO2 from low- to high-NOx regimes was observed. The contribution of aqueous-phase pathways to NAC formation increased at elevated RH. This work highlights secondary formation of NACs and influence factors in high NOx–anthropogenic VOC-dominated urban atmospheres.
Xinning Wang, Yin Shen, Yanfen Lin, Jun Pan, Yan Zhang, Peter K. K. Louie, Mei Li, and Qingyan Fu
Atmos. Chem. Phys., 19, 6315–6330, https://doi.org/10.5194/acp-19-6315-2019, https://doi.org/10.5194/acp-19-6315-2019, 2019
Short summary
Short summary
Shipping emissions were measured online at Shanghai Port, and their impacts on local air quality at the port and in the surrounding area were quantitatively assessed. Ship emission plumes were readily detectable before they dissipated. We captured ship emission plumes using synchronized peaks of SO2 and vanadium particles. By measuring the pollutant concentrations during plumes and their occurrence frequency, we made quantitative estimations of ship emission impacts on port air quality.
Guochun Lv, Xiaomin Sun, Chenxi Zhang, and Mei Li
Atmos. Chem. Phys., 19, 2833–2844, https://doi.org/10.5194/acp-19-2833-2019, https://doi.org/10.5194/acp-19-2833-2019, 2019
Short summary
Short summary
The hydration of SO3 to produce H2SO4 is an important process in the atmosphere. Using quantum chemical calculations, we investigated the catalytic role of oxalic acid in the SO3 hydration reaction. The results show that oxalic acid is effective in facilitating the hydration of SO3 to form H2SO4. The kinetic analysis result indicates that the oxalic-acid-catalyzed SO3 hydration can play an important role in the upper troposphere.
Shaojie Song, Meng Gao, Weiqi Xu, Yele Sun, Douglas R. Worsnop, John T. Jayne, Yuzhong Zhang, Lei Zhu, Mei Li, Zhen Zhou, Chunlei Cheng, Yibing Lv, Ying Wang, Wei Peng, Xiaobin Xu, Nan Lin, Yuxuan Wang, Shuxiao Wang, J. William Munger, Daniel J. Jacob, and Michael B. McElroy
Atmos. Chem. Phys., 19, 1357–1371, https://doi.org/10.5194/acp-19-1357-2019, https://doi.org/10.5194/acp-19-1357-2019, 2019
Short summary
Short summary
Chemistry responsible for sulfate production in northern China winter haze remains mysterious. We propose a potentially key pathway through the reaction of formaldehyde and sulfur dioxide that has not been accounted for in previous studies. The special atmospheric conditions favor the formation and existence of their complex, hydroxymethanesulfonate (HMS).
Qinhao Lin, Xinhui Bi, Guohua Zhang, Yuxiang Yang, Long Peng, Xiufeng Lian, Yuzhen Fu, Mei Li, Duohong Chen, Mark Miller, Ji Ou, Mingjin Tang, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 19, 1195–1206, https://doi.org/10.5194/acp-19-1195-2019, https://doi.org/10.5194/acp-19-1195-2019, 2019
Yi Ming Qin, Hao Bo Tan, Yong Jie Li, Zhu Jie Li, Misha I. Schurman, Li Liu, Cheng Wu, and Chak K. Chan
Atmos. Chem. Phys., 18, 16409–16418, https://doi.org/10.5194/acp-18-16409-2018, https://doi.org/10.5194/acp-18-16409-2018, 2018
Short summary
Short summary
We developed the relationship between the chemical and optical characteristics of BrC in Guangzhou, China. We determined wavelength-dependent mass absorption coefficients of organic aerosol with different sources. The BrC absorption coefficient was associated with N-containing ion fragments and depended on their degrees of unsaturation/cyclization and oxygenation.
Yujue Wang, Min Hu, Song Guo, Yuchen Wang, Jing Zheng, Yudong Yang, Wenfei Zhu, Rongzhi Tang, Xiao Li, Ying Liu, Michael Le Breton, Zhuofei Du, Dongjie Shang, Yusheng Wu, Zhijun Wu, Yu Song, Shengrong Lou, Mattias Hallquist, and Jianzhen Yu
Atmos. Chem. Phys., 18, 10693–10713, https://doi.org/10.5194/acp-18-10693-2018, https://doi.org/10.5194/acp-18-10693-2018, 2018
Short summary
Short summary
The overall characteristics and concentrations of organosulfates (OSs) and nitrooxy-OSs (NOSs) were determined in summer in Beijing. This study provided direct observational evidence that OSs form via acid-catalyzed aqueous-phase reactions in the presence of acidic sulfate aerosols, and monoterpene NOSs form via nighttime NO3 oxidation. Using OSs and NOSs as examples, this work highlights the formation pathways of SOA via anthropogenic–biogenic interactions and organic–inorganic reactions.
Michael Le Breton, Yujue Wang, Åsa M. Hallquist, Ravi Kant Pathak, Jing Zheng, Yudong Yang, Dongjie Shang, Marianne Glasius, Thomas J. Bannan, Qianyun Liu, Chak K. Chan, Carl J. Percival, Wenfei Zhu, Shengrong Lou, David Topping, Yuchen Wang, Jianzhen Yu, Keding Lu, Song Guo, Min Hu, and Mattias Hallquist
Atmos. Chem. Phys., 18, 10355–10371, https://doi.org/10.5194/acp-18-10355-2018, https://doi.org/10.5194/acp-18-10355-2018, 2018
Short summary
Short summary
This paper utilizes a chemical ionisation mass spectrometer measuring gas and particle-phase organosulfates (OS) simultaneously during a field campaign in Beijing, China, and highlights how high time frequency online measurements enable a detailed analysis of dominant production mechanisms. We find that high aerosol acidity, organic precursor concentration and relative humidity promote the production of OS. The thermogram desorption reveals the potential for semi-volatile gas-phase OS.
Qian Xiao, Mei Li, Huan Liu, Mingliang Fu, Fanyuan Deng, Zhaofeng Lv, Hanyang Man, Xinxin Jin, Shuai Liu, and Kebin He
Atmos. Chem. Phys., 18, 9527–9545, https://doi.org/10.5194/acp-18-9527-2018, https://doi.org/10.5194/acp-18-9527-2018, 2018
Short summary
Short summary
This study emphasizes the importance of at-berth emissions to understanding the health impact of atmospheric pollutants. The chemical characteristics of both VOCs and PM from 20 container ship's at-berth exhaust emissions were examined using a gas chromatograph coupled to a mass spectrometer, and a single particle aerosol mass spectrometer. The profiles, based on massive samples from this study, complemented the insufficiency of relevant research in key port areas with high density populations.
Deming Han, Qingyan Fu, Song Gao, Li Li, Yingge Ma, Liping Qiao, Hao Xu, Shan Liang, Pengfei Cheng, Xiaojia Chen, Yong Zhou, Jian Zhen Yu, and Jinping Cheng
Atmos. Chem. Phys., 18, 9375–9391, https://doi.org/10.5194/acp-18-9375-2018, https://doi.org/10.5194/acp-18-9375-2018, 2018
Short summary
Short summary
Non-polar organic compounds (NPOCs), as one important class of particle constituents, served as good tracers for aerosol source apportionment. This research first systemically evaluated their characterization and explored the effects of size distribution, photodegradation and gas–particle partitioning on PM2.5 source apportionment, which will help us accurately identify the potential sources of aerosols.
Chunlei Cheng, Zuzhao Huang, Chak K. Chan, Yangxi Chu, Mei Li, Tao Zhang, Yubo Ou, Duohong Chen, Peng Cheng, Lei Li, Wei Gao, Zhengxu Huang, Bo Huang, Zhong Fu, and Zhen Zhou
Atmos. Chem. Phys., 18, 9147–9159, https://doi.org/10.5194/acp-18-9147-2018, https://doi.org/10.5194/acp-18-9147-2018, 2018
Short summary
Short summary
Particulate amines play an important role for the particle acidity and hygroscopicity. We found amines were internally mixed with sulfate and nitrate at a rural site in the PRD, China, suggesting the formation of aminium sulfate and nitrate salts. The ammonium-poor state of amine particles in summer was associated with the low emission sources of ammonia and a possible contribution of ammonium–amine exchange reactions. Amines could be a buffer for the particle acidity of ammonium-poor particles.
Zhiheng Liao, Jiaren Sun, Jialin Yao, Li Liu, Haowen Li, Jian Liu, Jielan Xie, Dui Wu, and Shaojia Fan
Atmos. Chem. Phys., 18, 6771–6783, https://doi.org/10.5194/acp-18-6771-2018, https://doi.org/10.5194/acp-18-6771-2018, 2018
Short summary
Short summary
This paper investigates the modulation effect of ABL meteorology on Beijing’s surface air quality based on self-organizing maps. The self-organized ABL types correspond to significantly distinct pollutant loadings and diurnal evolution, particularly in winter. Anomalous stable ABL conditions are estimated to contribute 58.3 %, 46.4 % and 73.3 % of the elevated PM2.5 concentrations in January 2013, December 2015 and December 2016.
Yiqiu Ma, Yubo Cheng, Xinghua Qiu, Gang Cao, Yanhua Fang, Junxia Wang, Tong Zhu, Jianzhen Yu, and Di Hu
Atmos. Chem. Phys., 18, 5607–5617, https://doi.org/10.5194/acp-18-5607-2018, https://doi.org/10.5194/acp-18-5607-2018, 2018
Short summary
Short summary
Water-soluble humic-like substances (HULISWS) are a potential toxic component of PM2.5 for their redox activity. In this study, we measured HULISWS and associated redox activity in PM2.5 sampled during a 1-year period in Beijing and investigated their sources. We found biomass burning and secondary aerosol formation were the major contributors (> 59 %) to both HULISWS and redox activity, and the combustion-related primary sources accounted for > 70 % of HULISWS and redox activity.
Cheng Wu and Jian Zhen Yu
Atmos. Meas. Tech., 11, 1233–1250, https://doi.org/10.5194/amt-11-1233-2018, https://doi.org/10.5194/amt-11-1233-2018, 2018
Short summary
Short summary
A new data generation scheme that employs the Mersenne twister (MT) pseudorandom number generator is proposed to conduct benchmark tests on a variety of linear regression techniques. With an appropriate weighting, Deming regression (DR), weighted ODR (WODR), and York regression (YR) are recommended for atmospheric studies when both x and y data have measurement errors. An Igor-based program (Scatter Plot) is developed to facilitate the regression implementation.
Cheng Wu, Dui Wu, and Jian Zhen Yu
Atmos. Chem. Phys., 18, 289–309, https://doi.org/10.5194/acp-18-289-2018, https://doi.org/10.5194/acp-18-289-2018, 2018
Short summary
Short summary
This work presents a new approach, minimum R squared (MRS) method, to quantify black carbon aerosols light absorption enhancement factor, Eabs, from ambient measurements using an Aethalometer and field carbon analyzer. Application of MRS on 1 year of measurement is demonstrated. This study provides a potential alternative to explore the Eabs information using inexpensive instrumentation with wider temporal coverage.
Guohua Zhang, Qinhao Lin, Long Peng, Xinhui Bi, Duohong Chen, Mei Li, Lei Li, Fred J. Brechtel, Jianxin Chen, Weijun Yan, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 14975–14985, https://doi.org/10.5194/acp-17-14975-2017, https://doi.org/10.5194/acp-17-14975-2017, 2017
Short summary
Short summary
The mixing state of black carbon (BC)-containing particles and the mass scavenging efficiency of BC in cloud were investigated at a mountain site (1690 m a.s.l.) in southern China. The measured BC-containing particles were internally mixed extensively with sulfate, and thus the number fraction of scavenged BC-containing particles is close to that of all the measured particles. BC-containing particles with higher fractions of organics were scavenged relatively less.
Guohua Zhang, Qinhao Lin, Long Peng, Yuxiang Yang, Yuzhen Fu, Xinhui Bi, Mei Li, Duohong Chen, Jianxin Chen, Zhang Cai, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 13891–13901, https://doi.org/10.5194/acp-17-13891-2017, https://doi.org/10.5194/acp-17-13891-2017, 2017
Short summary
Short summary
We first reported the size-resolved mixing state of oxalate in the cloud droplet residual, the cloud interstitial, and cloud-free particles by single particle mass spectrometry. Individual particle analysis provides unique insight into the formation and evolution of oxalate during in-cloud processing. The data show that in-cloud aqueous reactions dramatically improved the formation of oxalate from organic acids that were strongly associated with the aged biomass burning particles.
Mingjin Tang, Xin Huang, Keding Lu, Maofa Ge, Yongjie Li, Peng Cheng, Tong Zhu, Aijun Ding, Yuanhang Zhang, Sasho Gligorovski, Wei Song, Xiang Ding, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 17, 11727–11777, https://doi.org/10.5194/acp-17-11727-2017, https://doi.org/10.5194/acp-17-11727-2017, 2017
Short summary
Short summary
We provide a comprehensive and critical review of laboratory studies of heterogeneous uptake of OH, NO3, O3, and their directly related species by mineral dust particles. The atmospheric importance of heterogeneous uptake as sinks for these species is also assessed. In addition, we have outlined major open questions and challenges in this field and discussed research strategies to address them.
Chunlei Cheng, Mei Li, Chak K. Chan, Haijie Tong, Changhong Chen, Duohong Chen, Dui Wu, Lei Li, Cheng Wu, Peng Cheng, Wei Gao, Zhengxu Huang, Xue Li, Zhijuan Zhang, Zhong Fu, Yanru Bi, and Zhen Zhou
Atmos. Chem. Phys., 17, 9519–9533, https://doi.org/10.5194/acp-17-9519-2017, https://doi.org/10.5194/acp-17-9519-2017, 2017
Short summary
Short summary
Oxalic acid is an abundant and ubiquitous constituent in secondary organic aerosol (SOA) and can be an effective tracer for the oxidative processes leading to the formation of SOA. In this work photochemical reactions have a significant contribution to oxalic acid formation in summer, while in winter the formation of oxalic acid is closely associated with the oxidation of organic precursors in the aqueous phase.
Qinhao Lin, Guohua Zhang, Long Peng, Xinhui Bi, Xinming Wang, Fred J. Brechtel, Mei Li, Duohong Chen, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 8473–8488, https://doi.org/10.5194/acp-17-8473-2017, https://doi.org/10.5194/acp-17-8473-2017, 2017
Short summary
Short summary
A ground-based counterflow virtual impactor coupled with a single-particle aerosol mass spectrometer (SPAMS) was used to assess the mixing state of individual cloud residue particles. Abundant aged EC cloud residues that internally mixed with inorganic salts were found in air masses from northerly polluted areas. K-rich cloud residues significantly increased within southwesterly air masses. This study increases our understanding of the impacts of aerosols on cloud droplets in southern China.
Wei Nie, Juan Hong, Silja A. K. Häme, Aijun Ding, Yugen Li, Chao Yan, Liqing Hao, Jyri Mikkilä, Longfei Zheng, Yuning Xie, Caijun Zhu, Zheng Xu, Xuguang Chi, Xin Huang, Yang Zhou, Peng Lin, Annele Virtanen, Douglas R. Worsnop, Markku Kulmala, Mikael Ehn, Jianzhen Yu, Veli-Matti Kerminen, and Tuukka Petäjä
Atmos. Chem. Phys., 17, 3659–3672, https://doi.org/10.5194/acp-17-3659-2017, https://doi.org/10.5194/acp-17-3659-2017, 2017
Short summary
Short summary
HULIS are demonstrated to be important low-volatility, or even extremely low volatility, compounds in the organic aerosol phase. This sheds new light on the connection between atmospheric HULIS and ELVOCs. The interaction between HULIS and ammonium sulfate was found to decrease the volatility of the HULIS part in HULIS-AS mixed samples, indicating multiphase processes have the potential to lower the volatility of organic compounds in the aerosol phase.
Cheng Wu, X. H. Hilda Huang, Wai Man Ng, Stephen M. Griffith, and Jian Zhen Yu
Atmos. Meas. Tech., 9, 4547–4560, https://doi.org/10.5194/amt-9-4547-2016, https://doi.org/10.5194/amt-9-4547-2016, 2016
Short summary
Short summary
Organic carbon (OC) and elemental carbon (EC) in more than 1300 Hong Kong samples were analyzed using both NIOSH TOT and IMPROVE TOR protocols. EC discrepancy between the two protocols mainly (83 %) arises from a difference in peak inert mode temperature, while the rest (17 %) is attributed to a difference in the optical method (transmittance vs. reflectance) applied for the charring correction. Two approaches are proposed to translate NIOSH TOT OC and EC data into IMPROVE TOR OC and EC data.
Heidi H. Y. Cheung, Haobo Tan, Hanbing Xu, Fei Li, Cheng Wu, Jian Z. Yu, and Chak K. Chan
Atmos. Chem. Phys., 16, 8431–8446, https://doi.org/10.5194/acp-16-8431-2016, https://doi.org/10.5194/acp-16-8431-2016, 2016
Short summary
Short summary
We present simultaneous measurements of aerosol volatility and carbonaceous matters in Guangzhou, China, in Feb and Mar 2014 using a VTDMA and OC / EC analyzer. Low volatility particles with no significant evaporation at 300° C in the VTDMA contributed 5–15 % of number concentrations of the 40–300 nm particles. Mass closure suggests that non-volatile organic carbon, in addition to elemental carbon, was one of the components of the non-volatile residuals measured by the VTDMA in this study.
Cheng Wu and Jian Zhen Yu
Atmos. Chem. Phys., 16, 5453–5465, https://doi.org/10.5194/acp-16-5453-2016, https://doi.org/10.5194/acp-16-5453-2016, 2016
Short summary
Short summary
Elemental carbon (EC) has been widely used as a tracer to estimate secondary organic carbon (SOC) from ambient EC and OC data. Key to the EC tracer method is to determine a proper primary OC / EC ratio at the observation site. We examine here a method that derives this ratio by seeking the minimum correlation between SOC and EC. This method has a clear quantitative criterion for the ratio derivation and is demonstrated to have superior accuracy over the commonly used approaches for SOC estimation.
Guohua Zhang, Xinhui Bi, Ning Qiu, Bingxue Han, Qinhao Lin, Long Peng, Duohong Chen, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 16, 2631–2640, https://doi.org/10.5194/acp-16-2631-2016, https://doi.org/10.5194/acp-16-2631-2016, 2016
Short summary
Short summary
This paper first presents an estimate of the real part of the refractive indices and effective densities of chemically segregated aerosols in China. The results indicate the presence of spherical or nearly spherical shape for the majority of particle types. While sharing refractive index in a narrow range (1.47–1.53), they exhibited a wide range of effective density (0.87–1.51). Detailed relationship between physical and chemical properties benefits future research on visibility and climate.
Wei Deng, Qihou Hu, Tengyu Liu, Xinming Wang, Yanli Zhang, Xiang Ding, Yele Sun, Xinhui Bi, Jianzhen Yu, Weiqiang Yang, Xinyu Huang, Zhou Zhang, Zhonghui Huang, Quanfu He, A. Mellouki, and Christian George
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-50, https://doi.org/10.5194/acp-2016-50, 2016
Revised manuscript not accepted
T. Liu, X. Wang, Q. Hu, W. Deng, Y. Zhang, X. Ding, X. Fu, F. Bernard, Z. Zhang, S. Lü, Q. He, X. Bi, J. Chen, Y. Sun, J. Yu, P. Peng, G. Sheng, and J. Fu
Atmos. Chem. Phys., 16, 675–689, https://doi.org/10.5194/acp-16-675-2016, https://doi.org/10.5194/acp-16-675-2016, 2016
Short summary
Short summary
The formation of SOA and sulfate aerosols from the photooxidation of gasoline vehicle exhaust (GVE) when mixing with SO2 was investigated in a smog chamber. We found that the presence of GVE enhanced the conversion of SO2 to sulfate predominantly through reactions with stabilized Criegee intermediates. On the other hand, the elevated particle acidity enhanced the SOA production from GVE. This study indicated that SO2 and GVE could enhance each other in forming secondary aerosols.
T. Liu, X. Wang, W. Deng, Q. Hu, X. Ding, Y. Zhang, Q. He, Z. Zhang, S. Lü, X. Bi, J. Chen, and J. Yu
Atmos. Chem. Phys., 15, 9049–9062, https://doi.org/10.5194/acp-15-9049-2015, https://doi.org/10.5194/acp-15-9049-2015, 2015
Y. Zou, X. J. Deng, D. Zhu, D. C. Gong, H. Wang, F. Li, H. B. Tan, T. Deng, B. R. Mai, X. T. Liu, and B. G. Wang
Atmos. Chem. Phys., 15, 6625–6636, https://doi.org/10.5194/acp-15-6625-2015, https://doi.org/10.5194/acp-15-6625-2015, 2015
B. Y. Kuang, P. Lin, X. H. H. Huang, and J. Z. Yu
Atmos. Chem. Phys., 15, 1995–2008, https://doi.org/10.5194/acp-15-1995-2015, https://doi.org/10.5194/acp-15-1995-2015, 2015
Short summary
Short summary
Humic-like substances (HULIS), the hydrophobic part of water soluble organic material, account for ~10% of PM2.5 mass in the Pearl River Delta, China. Source analysis using PM2.5 chemical composition data revealed that secondary formation process, biomass burning, and residual oil combustion from shipping as significant sources of HULIS. Vehicle emissions contributed little to HULIS. Primary sources of HULIS appeared to be linked to inefficient combustion.
X. H. H. Huang, Q. J. Bian, P. K. K. Louie, and J. Z. Yu
Atmos. Chem. Phys., 14, 9279–9293, https://doi.org/10.5194/acp-14-9279-2014, https://doi.org/10.5194/acp-14-9279-2014, 2014
Q. Bian, X. H. H. Huang, and J. Z. Yu
Atmos. Chem. Phys., 14, 9013–9027, https://doi.org/10.5194/acp-14-9013-2014, https://doi.org/10.5194/acp-14-9013-2014, 2014
X. Wang, T. Liu, F. Bernard, X. Ding, S. Wen, Y. Zhang, Z. Zhang, Q. He, S. Lü, J. Chen, S. Saunders, and J. Yu
Atmos. Meas. Tech., 7, 301–313, https://doi.org/10.5194/amt-7-301-2014, https://doi.org/10.5194/amt-7-301-2014, 2014
D. Wu, C. Wu, B. Liao, H. Chen, M. Wu, F. Li, H. Tan, T. Deng, H. Li, D. Jiang, and J. Z. Yu
Atmos. Chem. Phys., 13, 12257–12270, https://doi.org/10.5194/acp-13-12257-2013, https://doi.org/10.5194/acp-13-12257-2013, 2013
M. Wu, D. Wu, Q. Fan, B. M. Wang, H. W. Li, and S. J. Fan
Atmos. Chem. Phys., 13, 10755–10766, https://doi.org/10.5194/acp-13-10755-2013, https://doi.org/10.5194/acp-13-10755-2013, 2013
Y. J. Li, B. Y. L. Lee, J. Z. Yu, N. L. Ng, and C. K. Chan
Atmos. Chem. Phys., 13, 8739–8753, https://doi.org/10.5194/acp-13-8739-2013, https://doi.org/10.5194/acp-13-8739-2013, 2013
G. Zhang, X. Bi, L. Li, L. Y. Chan, M. Li, X. Wang, G. Sheng, J. Fu, and Z. Zhou
Atmos. Chem. Phys., 13, 4723–4735, https://doi.org/10.5194/acp-13-4723-2013, https://doi.org/10.5194/acp-13-4723-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Physicochemical characterization and source apportionment of Arctic ice-nucleating particles observed in Ny-Ålesund in autumn 2019
Cyclones enhance the transport of sea spray aerosols to the high atmosphere in the Southern Ocean
Impact of 2020 COVID-19 lockdowns on particulate air pollution across Europe
New particle formation in the tropical free troposphere during CAMP2Ex: statistics and impact of emission sources, convective activity, and synoptic conditions
Explaining apparent particle shrinkage related to new particle formation events in western Saudi Arabia does not require evaporation
Investigation of the effects of the Greek extreme wildfires of August 2021 on air quality and spectral solar irradiance
Characterization of dust-related new particle formation events based on long-term measurement in the North China Plain
Airborne investigation of black carbon interaction with low-level, persistent, mixed-phase clouds in the Arctic summer
The variation in the particle number size distribution during the rainfall: wet scavenging and air mass changing
Mechanisms controlling giant sea salt aerosol size distributions along a tropical orographic coastline
Characterization of size-segregated particles' turbulent flux and deposition velocity by eddy correlation method at an Arctic site
Vertical distribution of black carbon and its mixing state in the urban boundary layer in summer
Insights into the size-resolved dust emission from field measurements in the Moroccan Sahara
A new method for the quantification of ambient particulate-matter emission fluxes
Measurement report: The 4-year variability and influence of the Winter Olympics and other special events on air quality in urban Beijing during wintertime
Black carbon content of traffic emissions significantly impacts black carbon mass size distributions and mixing states
Measurement Report: Wintertime new particle formation in the rural area of the North China Plain – influencing factors and possible formation mechanism
Measurement report: Rapid decline of aerosol absorption coefficient and aerosol optical property effects on radiative forcing in an urban area of Beijing from 2018 to 2021
3D assimilation and radiative impact assessment of aerosol black carbon over the Indian region using aircraft, balloon, ground-based, and multi-satellite observations
Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds
Aerosol first indirect effect of African smoke at the cloud base of marine cumulus clouds over Ascension Island, southern Atlantic Ocean
Measurement report: Atmospheric fluorescent bioaerosol concentrations measured during 18 months in a coniferous forest in the south of Sweden
New particle formation leads to enhanced cloud condensation nuclei concentrations at Antarctic Peninsula
Measurement report: High Arctic aerosol hygroscopicity at sub- and supersaturated conditions during spring and summer
Opinion: The strength of long-term comprehensive observations to meet multiple grand challenges at different environments and in the atmosphere
Ice-nucleating particles in northern Greenland: annual cycles, biological contribution and parameterizations
Aerosol deposition to the boreal forest in the vicinity of the Alberta Oil Sands
The density of ambient black carbon retrieved by a new method: implications for cloud condensation nuclei prediction
Evaluation of aerosol- and gas-phase tracers for identification of transported biomass burning emissions in an industrially influenced location in Texas, USA
Long-range transported continental aerosol in the eastern North Atlantic: three multiday event regimes influence cloud condensation nuclei
Measurement report: Understanding the seasonal cycle of Southern Ocean aerosols
Elucidating ozone and PM2.5 pollution in the Fenwei Plain reveals the co-benefits of controlling precursor gas emissions in winter haze
Annual cycle of aerosol properties over the central Arctic during MOSAiC 2019–2020 — light-extinction, CCN, and INP levels from the boundary layer to the tropopause
Quantifying particle-to-particle heterogeneity in aerosol hygroscopicity
Measurement report: Black carbon properties and concentrations in southern Sweden urban and rural air – the importance of long-range transport
Mixing state and effective density of aerosol particles during the Beijing 2022 Olympic Winter Games
Diurnal differences in the effect of aerosols on cloud-to-ground lightning in the Sichuan Basin
Intensive aerosol properties of boreal and regional biomass burning aerosol at Mt. Bachelor Observatory: larger and black carbon (BC)-dominant particles transported from Siberian wildfires
Characterization of ultrafine particles and the occurrence of new particle formation events in an urban and coastal site of the Mediterranean area
Atmospheric nanoparticles hygroscopic growth measurement by a combined surface plasmon resonance microscope and hygroscopic tandem differential mobility analyzer
Quantified effect of seawater biogeochemistry on the temperature dependence of sea spray aerosol fluxes
A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
Annual cycle of hygroscopic properties and mixing state of the suburban aerosol in Athens, Greece
Measurement report: Atmospheric new particle formation at a peri-urban site in Lille, northern France
New particle formation and growth during summer in an urban environment: a dual chamber study
An evaluation of biomass burning aerosol mass, extinction, and size distribution in GEOS using observations from CAMP2Ex
Seasonal significance of new particle formation impacts on cloud condensation nuclei at a mountaintop location
Aerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany
Measurement report: Increasing trend of atmospheric ion concentrations in the boreal forest
Vertical profiles of cloud condensation nuclei number concentration and its empirical estimate from aerosol optical properties over the North China Plain
Guangyu Li, Elise K. Wilbourn, Zezhen Cheng, Jörg Wieder, Allison Fagerson, Jan Henneberger, Ghislain Motos, Rita Traversi, Sarah D. Brooks, Mauro Mazzola, Swarup China, Athanasios Nenes, Ulrike Lohmann, Naruki Hiranuma, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 10489–10516, https://doi.org/10.5194/acp-23-10489-2023, https://doi.org/10.5194/acp-23-10489-2023, 2023
Short summary
Short summary
In this work, we present results from an Arctic field campaign (NASCENT) in Ny-Ålesund, Svalbard, on the abundance, variability, physicochemical properties, and potential sources of ice-nucleating particles (INPs) relevant for mixed-phase cloud formation. This work improves the data coverage of Arctic INPs and aerosol properties, allowing for the validation of models predicting cloud microphysical and radiative properties of mixed-phase clouds in the rapidly warming Arctic.
Jun Shi, Jinpei Yan, Shanshan Wang, Shuhui Zhao, Miming Zhang, Suqing Xu, Qi Lin, Hang Yang, and Siying Dai
Atmos. Chem. Phys., 23, 10349–10359, https://doi.org/10.5194/acp-23-10349-2023, https://doi.org/10.5194/acp-23-10349-2023, 2023
Short summary
Short summary
An underway aerosol-monitoring system was used to determine the Na+ concentration during different cyclone periods in the Southern Ocean in order to assess the potential effects of cyclones on sea spray aerosol (SSA) emissions. It was estimated that more than 23 % of SSAs were transported upwards during cyclone periods. Vertically transported SSAs can be regarded as an important source of CCN and hence have an effect on climate in the middle and high latitudes of the Southern Hemisphere.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Qian Xiao, Jiaoshi Zhang, Yang Wang, Luke D. Ziemba, Ewan Crosbie, Edward L. Winstead, Claire E. Robinson, Joshua P. DiGangi, Glenn S. Diskin, Jeffrey S. Reid, K. Sebastian Schmidt, Armin Sorooshian, Miguel Ricardo A. Hilario, Sarah Woods, Paul Lawson, Snorre A. Stamnes, and Jian Wang
Atmos. Chem. Phys., 23, 9853–9871, https://doi.org/10.5194/acp-23-9853-2023, https://doi.org/10.5194/acp-23-9853-2023, 2023
Short summary
Short summary
Using recent airborne measurements, we show that the influences of anthropogenic emissions, transport, convective clouds, and meteorology lead to new particle formation (NPF) under a variety of conditions and at different altitudes in tropical marine environments. NPF is enhanced by fresh urban emissions in convective outflow but is suppressed in air masses influenced by aged urban emissions where reactive precursors are mostly consumed while particle surface area remains relatively high.
Simo Hakala, Ville Vakkari, Heikki Lihavainen, Antti-Pekka Hyvärinen, Kimmo Neitola, Jenni Kontkanen, Veli-Matti Kerminen, Markku Kulmala, Tuukka Petäjä, Tareq Hussein, Mamdouh I. Khoder, Mansour A. Alghamdi, and Pauli Paasonen
Atmos. Chem. Phys., 23, 9287–9321, https://doi.org/10.5194/acp-23-9287-2023, https://doi.org/10.5194/acp-23-9287-2023, 2023
Short summary
Short summary
Things are not always as they first seem in ambient aerosol measurements. Observations of decreasing particle sizes are often interpreted as resulting from particle evaporation. We show that such observations can counterintuitively be explained by particles that are constantly growing in size. This requires one to account for the previous movements of the observed air. Our explanation implies a larger number of larger particles, meaning more significant effects of aerosols on climate and health.
Akriti Masoom, Ilias Fountoulakis, Stelios Kazadzis, Ioannis-Panagiotis Raptis, Anna Kampouri, Basil E. Psiloglou, Dimitra Kouklaki, Kyriakoula Papachristopoulou, Eleni Marinou, Stavros Solomos, Anna Gialitaki, Dimitra Founda, Vasileios Salamalikis, Dimitris Kaskaoutis, Natalia Kouremeti, Nikolaos Mihalopoulos, Vassilis Amiridis, Andreas Kazantzidis, Alexandros Papayannis, Christos S. Zerefos, and Kostas Eleftheratos
Atmos. Chem. Phys., 23, 8487–8514, https://doi.org/10.5194/acp-23-8487-2023, https://doi.org/10.5194/acp-23-8487-2023, 2023
Short summary
Short summary
We analyse the spatial and temporal aerosol spectral optical properties during the extreme wildfires of August 2021 in Greece and assess their effects on air quality and solar radiation quantities related to health, agriculture, and energy. Different aerosol conditions are identified (pure smoke, pure dust, dust–smoke together); the largest impact on solar radiation quantities is found for cases with mixed dust–smoke aerosols. Such situations are expected to occur more frequently in the future.
Xiaojing Shen, Junying Sun, Huizheng Che, Yangmei Zhang, Chunhong Zhou, Ke Gui, Wanyun Xu, Quan Liu, Junting Zhong, Can Xia, Xinyao Hu, Sinan Zhang, Jialing Wang, Shuo Liu, Jiayuan Lu, Aoyuan Yu, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 8241–8257, https://doi.org/10.5194/acp-23-8241-2023, https://doi.org/10.5194/acp-23-8241-2023, 2023
Short summary
Short summary
New particle formation (NPF) events occur when the dust episodes' fade is analysed based on long-term measurement of particle number size distribution. Analysis shows that the observed formation and growth rates are approximately 50 % of and 30 % lower than those of other NPF events. As a consequence of the uptake of precursor gases on mineral dust, the physical and chemical properties of submicron particles, as well as the ability to be cloud condensation nuclei, can be changed.
Marco Zanatta, Stephan Mertes, Olivier Jourdan, Regis Dupuy, Emma Järvinen, Martin Schnaiter, Oliver Eppers, Johannes Schneider, Zsófia Jurányi, and Andreas Herber
Atmos. Chem. Phys., 23, 7955–7973, https://doi.org/10.5194/acp-23-7955-2023, https://doi.org/10.5194/acp-23-7955-2023, 2023
Short summary
Short summary
Black carbon (BC) particles influence the Arctic radiative balance. Vertical measurements of black carbon were conducted during the ACLOUD campaign in the European Arctic to study the interaction of BC with clouds. This study shows that clouds influence the vertical variability of BC properties across the inversion layer and that multiple activation and transformation mechanisms of BC may occur in the presence of low-level, persistent, mixed-phase clouds.
Guangdong Niu, Ximeng Qi, Liangduo Chen, Lian Xue, Shiyi Lai, Xin Huang, Jiaping Wang, Xuguang Chi, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 23, 7521–7534, https://doi.org/10.5194/acp-23-7521-2023, https://doi.org/10.5194/acp-23-7521-2023, 2023
Short summary
Short summary
The reported below-cloud wet-scavenging coefficients (BWSCs) are much higher than theoretical data, but the reason remains unclear. Based on long-term observation, we find that air mass changing during rainfall events causes the overestimation of BWSCs. Thus, the discrepancy in BWSCs between observation and theory is not as large as currently believed. To obtain reasonable BWSCs and parameterizations from field observations, the effect of air mass changes needs to be considered.
Katherine L. Ackerman, Alison D. Nugent, and Chung Taing
EGUsphere, https://doi.org/10.5194/egusphere-2023-1387, https://doi.org/10.5194/egusphere-2023-1387, 2023
Short summary
Short summary
Sea salt aerosol is an important marine aerosol and may be produced in greater quantities in coastal regions than over the open-ocean. This study observed these aerosols along the windward coastline of O'ahu, Hawaii to understand how wind and waves influence the production and dispersal of these particles. Overall, wave heights were more strongly correlated to changes in aerosol concentrations, but wind speeds played an important role in their dispersal and vertical mixing.
Antonio Donateo, Gianluca Pappaccogli, Daniela Famulari, Mauro Mazzola, Federico Scoto, and Stefano Decesari
Atmos. Chem. Phys., 23, 7425–7445, https://doi.org/10.5194/acp-23-7425-2023, https://doi.org/10.5194/acp-23-7425-2023, 2023
Short summary
Short summary
This work aims to measure the turbulent fluxes and the dry deposition velocity for size-segregated particles (from ultrafine to quasi-coarse range) at an Arctic site (Svalbard). Aiming to characterize the effect of surface properties on dry deposition, continuous observations were performed from the coldest months (on snow surface) to the snow melting period and throughout the summer (snow-free surface). A data fit of the deposition velocity as a function of particle diameters will be provided.
Hang Liu, Xiaole Pan, Shandong Lei, Yuting Zhang, Aodong Du, Weijie Yao, Guiqian Tang, Tao Wang, Jinyuan Xin, Jie Li, Yele Sun, Junji Cao, and Zifa Wang
Atmos. Chem. Phys., 23, 7225–7239, https://doi.org/10.5194/acp-23-7225-2023, https://doi.org/10.5194/acp-23-7225-2023, 2023
Short summary
Short summary
We provide the average vertical profiles of black carbon (BC) concentration, size distribution and coating thickness at different times of the day in an urban area based on 112 vertical profiles. In addition, it is found that BC in the residual layer generally has a thicker coating, higher absorption enhancement and hygroscopicity than on the surface. Such aged BC could enter into the boundary layer and influence the BC properties in the early morning.
Cristina González-Flórez, Martina Klose, Andrés Alastuey, Sylvain Dupont, Jerónimo Escribano, Vicken Etyemezian, Adolfo Gonzalez-Romero, Yue Huang, Konrad Kandler, George Nikolich, Agnesh Panta, Xavier Querol, Cristina Reche, Jesús Yus-Díez, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 7177–7212, https://doi.org/10.5194/acp-23-7177-2023, https://doi.org/10.5194/acp-23-7177-2023, 2023
Short summary
Short summary
Atmospheric mineral dust consists of tiny mineral particles that are emitted by wind erosion from arid regions. Its particle size distribution (PSD) affects its impact on the Earth's system. Nowadays, there is an incomplete understanding of the emitted dust PSD and a lot of debate about its variability. Here, we try to address these issues based on the measurements performed during a wind erosion and dust emission field campaign in the Moroccan Sahara within the framework of FRAGMENT project.
Stergios Vratolis, Evangelia Diapouli, Manousos I. Manousakas, Susana Marta Almeida, Ivan Beslic, Zsofia Kertesz, Lucyna Samek, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 23, 6941–6961, https://doi.org/10.5194/acp-23-6941-2023, https://doi.org/10.5194/acp-23-6941-2023, 2023
Short summary
Short summary
Using a dataset from 16 European and Asian cities we develop a new method so as to identify and quantify the emission fluxes from each geographic grid cell for secondary sulfate and dust aerosol. The information provided by the new method allows the implementation of targeted mitigation measures. The new method could be applied to several other pollutants (e.g., black carbon).
Yishuo Guo, Chenjuan Deng, Aino Ovaska, Feixue Zheng, Chenjie Hua, Junlei Zhan, Yiran Li, Jin Wu, Zongcheng Wang, Jiali Xie, Ying Zhang, Tingyu Liu, Yusheng Zhang, Boying Song, Wei Ma, Yongchun Liu, Chao Yan, Jingkun Jiang, Veli-Matti Kerminen, Men Xia, Tuomo Nieminen, Wei Du, Tom Kokkonen, and Markku Kulmala
Atmos. Chem. Phys., 23, 6663–6690, https://doi.org/10.5194/acp-23-6663-2023, https://doi.org/10.5194/acp-23-6663-2023, 2023
Short summary
Short summary
Using the comprehensive datasets, we investigated the long-term variations of air pollutants during winter in Beijing from 2019 to 2022 and analyzed the characteristics of atmospheric pollution cocktail during different short-term special events (e.g., Beijing Winter Olympics, COVID lockdown and Chinese New Year) associated with substantial emission reductions. Our results are useful in planning more targeted and sustainable long-term pollution control plans.
Fei Li, Biao Luo, Miaomiao Zhai, Li Liu, Gang Zhao, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, Ye Kuang, and Jun Zhao
Atmos. Chem. Phys., 23, 6545–6558, https://doi.org/10.5194/acp-23-6545-2023, https://doi.org/10.5194/acp-23-6545-2023, 2023
Short summary
Short summary
A field campaign was conducted to study black carbon (BC) mass size distributions and mixing states connected to traffic emissions using a system that combines a differential mobility analyzer and single-particle soot photometer. Results showed that the black carbon content of traffic emissions has a considerable influence on both BC mass size distributions and mixing states, which has crucial implications for accurately representing BC from various sources in regional and climate models.
Juan Hong, Min Tang, Qiaoqiao Wang, Nan Ma, Shaowen Zhu, Shaobin Zhang, Xihao Pan, Linhong Xie, Guo Li, Uwe Kuhn, Chao Yan, Jiangchuan Tao, Ye Kuang, Yao He, Wanyun Xu, Runlong Cai, Yaqing Zhou, Zhibin Wang, Guangsheng Zhou, Bin Yuan, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 23, 5699–5713, https://doi.org/10.5194/acp-23-5699-2023, https://doi.org/10.5194/acp-23-5699-2023, 2023
Short summary
Short summary
A comprehensive investigation of the characteristics of new particle formation (NPF) events was conducted at a rural site on the North China Plain (NCP), China, during the wintertime of 2018 by covering the particle number size distribution down to sub–3 nm. Potential mechanisms for NPF under the current environment were explored, followed by a further discussion on the factors governing the occurrence of NPF at this rural site compared with other regions (e.g., urban areas) in the NCP region.
Xinyao Hu, Junying Sun, Can Xia, Xiaojing Shen, Yangmei Zhang, Quan Liu, Zhaodong Liu, Sinan Zhang, Jialing Wang, Aoyuan Yu, Jiayuan Lu, Shuo Liu, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 5517–5531, https://doi.org/10.5194/acp-23-5517-2023, https://doi.org/10.5194/acp-23-5517-2023, 2023
Short summary
Short summary
The simultaneous measurements under dry conditions of aerosol optical properties were conducted at three wavelengths for PM1 and PM10 in urban Beijing from 2018 to 2021. Considerable reductions in aerosol absorption coefficient and increased single scattering albedo demonstrated that absorbing aerosols were more effectively controlled than scattering aerosols due to pollution control measures. The aerosol radiative effect and the transport's impact on aerosol optical properties were analysed.
Nair Krishnan Kala, Narayana Anand, Mohanan R. Manoj, Srinivasan Prasanth, Harshavardhana S. Pathak, Thara Prabhakaran, Pramod D. Safai, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
EGUsphere, https://doi.org/10.5194/egusphere-2023-499, https://doi.org/10.5194/egusphere-2023-499, 2023
Short summary
Short summary
We present a 3D data set of aerosol black carbon over the Indian mainland by assimilating data from surface, aircraft, and balloon measurements, along with multi-satellite observations. Radiative transfer computations using height-resolved aerosol absorption show higher warming in the free-troposphere and will have large implications for atmospheric stability. This data set will help reduce the uncertainty in aerosol radiative effects in climate model simulations over the Indian region.
Ghislain Motos, Gabriel Freitas, Paraskevi Georgakaki, Jörg Wieder, Guangyu Li, Wenche Aas, Chris Lunder, Radovan Krejci, Julie Therese Pasquier, Jan Henneberger, Robert Oscar David, Christoph Ritter, Claudia Mohr, Paul Zieger, and Athanasios Nenes
EGUsphere, https://doi.org/10.5194/egusphere-2023-530, https://doi.org/10.5194/egusphere-2023-530, 2023
Short summary
Short summary
Low-altitude clouds play a key role in regulating the climate of the Arctic, a region that suffers from climate change more than any other on the planet. We gathered meteorological and aerosol physical and chemical data over a year and utilized them for a parameterization that help us unravel the factors driving and limiting the efficiency of cloud droplet formation. We then linked these information to the sources of aerosol found during each season and to processes of cloud glaciation.
Martin de Graaf, Karolina Sarna, Jessica Brown, Elma V. Tenner, Manon Schenkels, and David P. Donovan
Atmos. Chem. Phys., 23, 5373–5391, https://doi.org/10.5194/acp-23-5373-2023, https://doi.org/10.5194/acp-23-5373-2023, 2023
Short summary
Short summary
Clouds over the oceans reflect sunlight and cool the earth. Simultaneous measurements were performed of cloud droplet sizes and smoke particles in and near the cloud base over Ascension Island, a remote island in the Atlantic Ocean, to determine the sensitivity of cloud droplets to smoke from the African continent. The smoke was found to reduce cloud droplet sizes, which makes the cloud droplets more susceptible to evaporation, reducing cloud lifetime.
Madeleine Petersson Sjögren, Malin Alsved, Tina Šantl-Temkiv, Thomas Bjerring Kristensen, and Jakob Löndahl
Atmos. Chem. Phys., 23, 4977–4992, https://doi.org/10.5194/acp-23-4977-2023, https://doi.org/10.5194/acp-23-4977-2023, 2023
Short summary
Short summary
Biological aerosol particles (bioaerosols) affect human health by spreading diseases and may be important agents for atmospheric processes, but their abundance and size distributions are largely unknown. We measured bioaerosols for 18 months in the south of Sweden to investigate bioaerosol temporal variations and their couplings to meteorology. Our results showed that the bioaerosols emissions were coupled to meteorological parameters and depended strongly on the season.
Jiyeon Park, Hyojin Kang, Yeontae Gim, Eunho Jang, Ki-Tae Park, Sangjong Park, Chang Hoon Jung, Darius Ceburnis, Colin O'Dowd, and Young Jun Yoon
EGUsphere, https://doi.org/10.5194/egusphere-2023-707, https://doi.org/10.5194/egusphere-2023-707, 2023
Short summary
Short summary
We measured the number size distribution of 2.5–300 nm particles and cloud condensation nuclei (CCN) number concentrations at King Sejong Station in the Antarctic Peninsula continuously from January 1 to December 31, 2018. During the pristine and clean periods, Ninety-seven new particle formation (NPF) events were detected. Of the 83 events, CCN concentrations increased by 2–268 % (median 44 %) following 1 to 36 hours (median 8 hours) after NPF events.
Andreas Massling, Robert Lange, Jakob Boyd Pernov, Ulrich Gosewinkel, Lise-Lotte Sørensen, and Henrik Skov
Atmos. Chem. Phys., 23, 4931–4953, https://doi.org/10.5194/acp-23-4931-2023, https://doi.org/10.5194/acp-23-4931-2023, 2023
Short summary
Short summary
The effect of anthropogenic activities on cloud formation introduces the highest uncertainties with respect to climate change. Data on Arctic aerosols and their corresponding cloud-forming properties are very scarce and most important as the Arctic is warming about 2 times as fast as the rest of the globe. Our studies investigate aerosols in the remote Arctic and suggest relatively high cloud-forming potential, although differences are observed between the Arctic spring and summer.
Markku Kulmala, Anna Lintunen, Hanna Lappalainen, Annele Virtanen, Chao Yan, Ekaterina Ezhova, Tuomo Nieminen, Ilona Riipinen, Risto Makkonen, Johanna Tamminen, Anu-Maija Sundström, Antti Arola, Armin Hansel, Kari Lehtinen, Timo Vesala, Tuukka Petäjä, Jaana Bäck, Tom Kokkonen, and Veli-Matti Kerminen
EGUsphere, https://doi.org/10.5194/egusphere-2023-627, https://doi.org/10.5194/egusphere-2023-627, 2023
Short summary
Short summary
To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as NPF and growth, feedback loops, the effect of COVID, and what has been learnt from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized.
Kevin C. H. Sze, Heike Wex, Markus Hartmann, Henrik Skov, Andreas Massling, Diego Villanueva, and Frank Stratmann
Atmos. Chem. Phys., 23, 4741–4761, https://doi.org/10.5194/acp-23-4741-2023, https://doi.org/10.5194/acp-23-4741-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) play an important role in cloud formation and thus in our climate. But little is known about the abundance and properties of INPs, especially in the Arctic, where the temperature increases almost 4 times as fast as that of the rest of the globe. We observe higher INP concentrations and more biological INPs in summer than in winter, likely from local sources. We also provide three equations for estimating INP concentrations in models at different times of the year.
Timothy Jiang, Mark Gordon, Paul A. Makar, Ralf M. Staebler, and Michael Wheeler
Atmos. Chem. Phys., 23, 4361–4372, https://doi.org/10.5194/acp-23-4361-2023, https://doi.org/10.5194/acp-23-4361-2023, 2023
Short summary
Short summary
Measurements of submicron aerosols (particles smaller than 1 / 1000 of a millimeter) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us how quickly aerosols are absorbed by the forest (known as deposition rate) and how the deposition rate depends on the size of the aerosol. The measurements show good agreement with a parameterization developed from a recent study for deposition of aerosols to a similar pine forest.
Jingye Ren, Lu Chen, Jieyao Liu, and Fang Zhang
Atmos. Chem. Phys., 23, 4327–4342, https://doi.org/10.5194/acp-23-4327-2023, https://doi.org/10.5194/acp-23-4327-2023, 2023
Short summary
Short summary
The density of black carbon (BC) is linked to its morphology and mixing state and could cause uncertainty in evaluating cloud condensation nuclei (CCN) activity. A method for retrieving the mixing state and density of BC in the urban atmosphere is developed. The mean retrieval density of internally mixed BC was lower, assuming void-free spherical structures. Our study suggests the importance of accounting for variable BC density in models when assessing its climate effect in urban atmosphere.
Sujan Shrestha, Shan Zhou, Manisha Mehra, Meghan C. Guagenti, Subin Yoon, Sergio L. Alvarez, Fangzhou Guo, Chun-Ying Chao, James H. Flynn III, Yuxuan Wang, Robert J. Griffin, Sascha Usenko, and Rebecca J. Sheesley
EGUsphere, https://doi.org/10.5194/egusphere-2023-367, https://doi.org/10.5194/egusphere-2023-367, 2023
Short summary
Short summary
We evaluated different methods for assessing the influence of long range transport of biomass burning (BB) plumes at a coastal site in Texas, USA. We show that the aerosol composition and optical properties exhibited good agreement while CO and acetonitrile trends were less specific for assessing BB source influence. Our results demonstrate that the network of aerosol optical measurements can be useful to identify the influence of aged BB plumes in anthropogenically-influenced areas.
Francesca Gallo, Janek Uin, Kevin J. Sanchez, Richard H. Moore, Jian Wang, Robert Wood, Fan Mei, Connor Flynn, Stephen Springston, Eduardo B. Azevedo, Chongai Kuang, and Allison C. Aiken
Atmos. Chem. Phys., 23, 4221–4246, https://doi.org/10.5194/acp-23-4221-2023, https://doi.org/10.5194/acp-23-4221-2023, 2023
Short summary
Short summary
This study provides a summary statistic of multiday aerosol plume transport event influences on aerosol physical properties and the cloud condensation nuclei budget at the U.S. Department of Energy Atmospheric Radiation Measurement Facility in the eastern North Atlantic (ENA). An algorithm that integrates aerosol properties is developed and applied to identify multiday aerosol transport events. The influence of the aerosol plumes on aerosol populations at the ENA is successively assessed.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys., 23, 3749–3777, https://doi.org/10.5194/acp-23-3749-2023, https://doi.org/10.5194/acp-23-3749-2023, 2023
Short summary
Short summary
Observations of aerosols in pristine regions are rare but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Chunshui Lin, Ru-Jin Huang, Haobin Zhong, Jing Duan, Zixi Wang, Wei Huang, and Wei Xu
Atmos. Chem. Phys., 23, 3595–3607, https://doi.org/10.5194/acp-23-3595-2023, https://doi.org/10.5194/acp-23-3595-2023, 2023
Short summary
Short summary
The complex interaction between O3 and PM2.5, coupled with the topology of the Fenwei Plain and the evolution of the boundary layer height, highlights the challenges in further reducing particulate pollution in winter despite years of efforts to reduce emissions. Through scenario analysis in a chemical box model constrained by observation, we show the co-benefits of reducing NOx and VOCs simultaneously in reducing ozone and SOA.
Albert Ansmann, Kevin Ohneiser, Ronny Engelmann, Martin Radenz, Hannes Griesche, Julian Hofer, Dietrich Althausen, Jessie M. Creamean, Matthew C. Boyer, Daniel A. Knopf, Sandro Dahlke, Marion Maturilli, Henriette Gebauer, Johannes Bühl, Cristofer Jimenez, Patric Seifert, and Ulla Wandinger
EGUsphere, https://doi.org/10.5194/egusphere-2023-444, https://doi.org/10.5194/egusphere-2023-444, 2023
Short summary
Short summary
The one-year MOSAiC (2019–2020) expedition with the German ice breaker Polarstern was the largest polar field campaign ever conducted. The Polarstern with our lidar aboard drifted with the pack ice north of 85° N for more than seven months (October 2019 to mid–May 2020). We measured the full annual cycle of aerosol conditions in terms of aerosol optical and cloud-process-relevant properties. We observed a strong contrast between polluted winter and clean summer aerosol conditions.
Liang Yuan and Chunsheng Zhao
Atmos. Chem. Phys., 23, 3195–3205, https://doi.org/10.5194/acp-23-3195-2023, https://doi.org/10.5194/acp-23-3195-2023, 2023
Short summary
Short summary
Chemical compositions vary between and within particles due to the complex sources and aging processes, causing particle-to-particle heterogeneity in aerosol hygroscopicity, which is of great importance to aerosol climatic and environmental effects. This study proposes an algorithm to quantify the heterogeneity from in situ measurements, sheds light on the reanalysis of the existing H-TDMA datasets, and could have a large impact on how we use and think about these datasets.
Erik Ahlberg, Stina Ausmeel, Lovisa Nilsson, Mårten Spanne, Julija Pauraite, Jacob Klenø Nøjgaard, Michele Bertò, Henrik Skov, Pontus Roldin, Adam Kristensson, Erik Swietlicki, and Axel Eriksson
Atmos. Chem. Phys., 23, 3051–3064, https://doi.org/10.5194/acp-23-3051-2023, https://doi.org/10.5194/acp-23-3051-2023, 2023
Short summary
Short summary
To investigate the properties and origin of black carbon particles in southern Sweden during late summer, we performed measurements both at a rural site and the nearby city of Malmö. We found that local traffic emissions of black carbon led to concentrations around twice as high as those at the rural site. Modeling show that these emissions are not clearly distinguishable at the rural site, unless meteorology was favourable, which shows the importance of long-range transport and processing.
Aodong Du, Jiaxing Sun, Hang Liu, Weiqi Xu, Wei Zhou, Yuting Zhang, Lei Li, Xubing Du, Yan Li, Xiaole Pan, Zifa Wang, and Yele Sun
EGUsphere, https://doi.org/10.5194/egusphere-2023-240, https://doi.org/10.5194/egusphere-2023-240, 2023
Short summary
Short summary
We characterized the impacts of emission controls on particle mixing state and density during Beijing Olympic Winter Games using a SPA-MS in tandem with a DMA and an AAC. OC and sulfate–containing particles increased while those from primary emissions decreased. The effective particle densities increased and varied largely for different particles, highlighting the impacts of aging and formation processes on the changes of particle density and mixing state.
Haichao Wang, Yongbo Tan, Zheng Shi, Ning Yang, and Tianxue Zheng
Atmos. Chem. Phys., 23, 2843–2857, https://doi.org/10.5194/acp-23-2843-2023, https://doi.org/10.5194/acp-23-2843-2023, 2023
Short summary
Short summary
The effects of aerosols on lightning are complex and still far from understood. We analysed the impacts of aerosols on lightning activity in the Sichuan Basin. Results show that lightning flashes first increase with aerosol loading during all periods and then behave differently (decrease in the afternoon and flatten at night). This suggests that the changes in solar radiation can modulate the aerosol effects on the occurrence and development of convection and lightning activity.
Nathaniel W. May, Noah Bernays, Ryan Farley, Qi Zhang, and Daniel A. Jaffe
Atmos. Chem. Phys., 23, 2747–2764, https://doi.org/10.5194/acp-23-2747-2023, https://doi.org/10.5194/acp-23-2747-2023, 2023
Short summary
Short summary
In summer 2019 at Mt. Bachelor Observatory, we observed smoke from wildfires with transport times ranging from less than a day up to 2 weeks. Aerosol absorption of multi-day transported smoke was dominated by black carbon, while smoke with shorter transport times had greater brown carbon absorption. Notably, Siberian smoke exhibited aerosol scattering and physical properties indicative of contributions from larger particles than typically observed in smoke.
Adelaide Dinoi, Daniel Gulli, Kay Weinhold, Ivano Ammoscato, Claudia R. Calidonna, Alfred Wiedensohler, and Daniele Contini
Atmos. Chem. Phys., 23, 2167–2181, https://doi.org/10.5194/acp-23-2167-2023, https://doi.org/10.5194/acp-23-2167-2023, 2023
Short summary
Short summary
In this study, particle number size distribution analysis was performed with the purpose of characterizing new particle formation (NPF) events occurring in two areas of southern Italy over 5 years of measurements. The identification of NPF events produced different results in terms of frequency and seasonality. Some of the main variables involved in the process, the local atmospheric conditions in which the events occurred, and the role of the air masses were discussed and compared.
Zhibo Xie, Jiaoshi Zhang, Huaqiao Gui, Yang Liu, Bo Yang, Haosheng Dai, Hang Xiao, Douguo Zhang, Da-Ren Chen, and Jianguo Liu
Atmos. Chem. Phys., 23, 2079–2088, https://doi.org/10.5194/acp-23-2079-2023, https://doi.org/10.5194/acp-23-2079-2023, 2023
Short summary
Short summary
The hygroscopic growth of single nanoparticles is important for hygroscopic characteristic analysis of atmospheric particles and for scientific studies involving atmospheric particles. Based on the hygroscopicity difference of subgroups of atmospheric nanoparticles, the classification and proportion analysis of atmospheric nanoparticles has been completed, which has potential significance in predicting the contribution of the atmospheric particulate hygroscopicity and particle growth mechanism.
Karine Sellegri, Theresa Barthelmeß, Jonathan Trueblood, Antonia Cristi, Evelyn Freney, Clémence Rose, Neill Barr, Mike Harvey, Karl Safi, Stacy Deppeler, Karen Thompson, Wayne Dillon, Anja Engel, and Cliff Law
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-790, https://doi.org/10.5194/acp-2022-790, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
The number of sea spray emitted to the atmosphere depends on the ocean temperature, but this dependency is not well understood, especially when ocean biology is involved. In this study, we show that sea spray emissions are increased by up to a factor of four at low seawater temperatures compared to moderate temperatures, and quantify the temperature dependence as a function of the ocean biogeochemistry.
Matthew Boyer, Diego Aliaga, Jakob Boyd Pernov, Hélène Angot, Lauriane L. J. Quéléver, Lubna Dada, Benjamin Heutte, Manuel Dall'Osto, David C. S. Beddows, Zoé Brasseur, Ivo Beck, Silvia Bucci, Marina Duetsch, Andreas Stohl, Tiia Laurila, Eija Asmi, Andreas Massling, Daniel Charles Thomas, Jakob Klenø Nøjgaard, Tak Chan, Sangeeta Sharma, Peter Tunved, Radovan Krejci, Hans Christen Hansson, Federico Bianchi, Katrianne Lehtipalo, Alfred Wiedensohler, Kay Weinhold, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 23, 389–415, https://doi.org/10.5194/acp-23-389-2023, https://doi.org/10.5194/acp-23-389-2023, 2023
Short summary
Short summary
The Arctic is a unique environment that is warming faster than other locations on Earth. We evaluate measurements of aerosol particles, which can influence climate, over the central Arctic Ocean for a full year and compare the data to land-based measurement stations across the Arctic. Our measurements show that the central Arctic has similarities to but also distinct differences from the stations further south. We note that this may change as the Arctic warms and sea ice continues to decline.
Christina Spitieri, Maria Gini, Martin Gysel-Beer, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 23, 235–249, https://doi.org/10.5194/acp-23-235-2023, https://doi.org/10.5194/acp-23-235-2023, 2023
Short summary
Short summary
The paper provides insights into the hygroscopic properties and state of mixing of atmospheric aerosol through 1 year of measurements of key microphysical parameters in the suburbs of the most densely populated city of Greece, Athens, in the eastern Mediterranean, which is considered an important climate change hotspot. The results can be used for the prediction of cloud condensation nuclei and quantification of the influence of ambient relative humidity on light scattering by aerosol particles.
Suzanne Crumeyrolle, Jenni S. S. Kontkanen, Clémence Rose, Alejandra Velazquez Garcia, Eric Bourrianne, Maxime Catalfamo, Véronique Riffault, Emmanuel Tison, Joel Ferreira de Brito, Nicolas Visez, Nicolas Ferlay, Frédérique Auriol, and Isabelle Chiapello
Atmos. Chem. Phys., 23, 183–201, https://doi.org/10.5194/acp-23-183-2023, https://doi.org/10.5194/acp-23-183-2023, 2023
Short summary
Short summary
Ultrafine particles (UFPs) are particles with an aerodynamic diameter of 100 nm or less and negligible mass concentration but are the dominant contributor to the total particle number concentration. The present study aims to better understand the environmental factors favoring or inhibiting atmospheric new particle formation (NPF) over Lille, a large city in the north of France, and to analyze the impact of such an event on urban air quality using a long-term dataset (3 years).
Spiro D. Jorga, Kalliopi Florou, David Patoulias, and Spyros N. Pandis
Atmos. Chem. Phys., 23, 85–97, https://doi.org/10.5194/acp-23-85-2023, https://doi.org/10.5194/acp-23-85-2023, 2023
Short summary
Short summary
We take advantage of this unexpected low, new particle formation frequency in Greece and use a dual atmospheric simulation chamber system with starting point ambient air in an effort to gain insight about the chemical species that is limiting nucleation in this area. A potential nucleation precursor, ammonia, was added in one of the chambers while the other one was used as a reference. The addition of ammonia assisted new particle formation in almost 50 % of the experiments conducted.
Allison B. Marquardt Collow, Virginie Buchard, Peter R. Colarco, Arlindo M. da Silva, Ravi Govindaraju, Edward P. Nowottnick, Sharon Burton, Richard Ferrare, Chris Hostetler, and Luke Ziemba
Atmos. Chem. Phys., 22, 16091–16109, https://doi.org/10.5194/acp-22-16091-2022, https://doi.org/10.5194/acp-22-16091-2022, 2022
Short summary
Short summary
Biomass burning aerosol impacts aspects of the atmosphere and Earth system through radiative forcing, serving as cloud condensation nuclei, and air quality. Despite its importance, the representation of biomass burning aerosol is not always accurate in models. Field campaign observations from CAMP2Ex are used to evaluate the mass and extinction of aerosols in the GEOS model. Notable biases in the model illuminate areas of future development with GEOS and the underlying GOCART aerosol module.
Noah S. Hirshorn, Lauren M. Zuromski, Christopher Rapp, Ian McCubbin, Gerardo Carrillo-Cardenas, Fangqun Yu, and A. Gannet Hallar
Atmos. Chem. Phys., 22, 15909–15924, https://doi.org/10.5194/acp-22-15909-2022, https://doi.org/10.5194/acp-22-15909-2022, 2022
Short summary
Short summary
New particle formation (NPF) is a source of atmospheric aerosol number concentration that can impact climate by growing to larger sizes and under proper conditions form cloud condensation nuclei (CCN). Using novel methods, we find that at Storm Peak Laboratory, a remote, mountaintop site in Colorado, NPF is observed to enhance CCN concentrations in the spring by a factor of 1.54 and in the winter by a factor of 1.36 which can occur on a regional scale having important climate implications.
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022, https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Short summary
Aerosol particle activation affects cloud, precipitation, radiation, and thus the global climate. Its long-term measurements are important but still scarce. In this study, more than 4 years of measurements at a central European station were analyzed. The overall characteristics and seasonal changes of aerosol particle activation are summarized. The power-law fit between particle hygroscopicity factor and diameter was recommended for predicting cloud
condensation nuclei number concentration.
Juha Sulo, Janne Lampilahti, Xuemeng Chen, Jenni Kontkanen, Tuomo Nieminen, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Katrianne Lehtipalo
Atmos. Chem. Phys., 22, 15223–15242, https://doi.org/10.5194/acp-22-15223-2022, https://doi.org/10.5194/acp-22-15223-2022, 2022
Short summary
Short summary
We measured atmospheric ion concentrations continuously in a boreal forest between 2005 and 2021 and observed an increasing interannual trend. The increase in cluster ion concentrations can be largely explained by an overall decreasing level of anthropogenic aerosols in the boreal forest. This suggests that the role of ions in atmospheric new particle formation may be more important in the future.
Rui Zhang, Yuying Wang, Zhanqing Li, Zhibin Wang, Russell R. Dickerson, Xinrong Ren, Hao He, Fei Wang, Ying Gao, Xi Chen, Jialu Xu, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022, https://doi.org/10.5194/acp-22-14879-2022, 2022
Short summary
Short summary
Factors of cloud condensation nuclei number concentration (NCCN) profiles determined in the North China Plain include air mass sources, temperature structure, anthropogenic emissions, and terrain distribution. Cloud condensation nuclei (CCN) spectra suggest that the ability of aerosol activation into CCN is stronger in southeasterly than in northwesterly air masses and stronger in the free atmosphere than near the surface. A good method to parameterize NCCN from aerosol optical data is found.
Cited articles
Adler, G., Riziq, A. A., Erlick, C., and Rudich, Y.: Effect of
intrinsic organic carbon on the optical properties of fresh diesel soot,
P. Natl. Acad. Sci. USA, 107, 6699–6704, https://doi.org/10.1073/pnas.0903311106, 2010.
Adler, G., Flores, J. M., Abo Riziq, A., Borrmann, S., and Rudich, Y.:
Chemical, physical, and optical evolution of biomass burning aerosols: a
case study, Atmos. Chem. Phys., 11, 1491–1503, https://doi.org/10.5194/acp-11-1491-2011, 2011.
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.
Anderson, T. L., Charlson, R. J., Schwartz, S. E., Knutti, R., Boucher, O.,
Rodhe, H., and Heintzenberg, J.: Climate forcing by aerosols – a hazy
picture, Science, 300, 1103–1104, https://doi.org/10.1126/science.1084777, 2003.
Appel, B. R., Tokiwa, Y., and Haik, M.: Sampling of nitrates in ambient air,
Atmos. Environ., 15, 283–289, https://doi.org/10.1016/0004-6981(81)90029-9, 1981.
Apte, J. S., Marshall, J. D., Cohen, A. J., and Brauer, M.: Addressing
Global Mortality from Ambient PM2.5, Environ. Sci. Technol., 49, 8057–8066,
https://doi.org/10.1021/acs.est.5b01236, 2015.
Bai, Z., Cui, X., Wang, X., Xie, H., and Chen, B.: Light absorption of black
carbon is doubled at Mt. Tai and typical urban area in North China,
Sci. Total Environ., 635, 1144–1151, https://doi.org/10.1016/j.scitotenv.2018.04.244,
2018.
Bambha, R. P., Dansson, M. A., Schrader, P. E., and Michelsen, H. A.:
Effects of volatile coatings and coating removal mechanisms on the
morphology of graphitic soot, Carbon, 61, 80–96, https://doi.org/10.1016/j.carbon.2013.04.070, 2013.
Bhattarai, C., Samburova, V., Sengupta, D., Iaukea-Lum, M., Watts, A. C.,
Moosmüller, H., and Khlystov, A. Y.: Physical and chemical
characterization of aerosol in fresh and aged emissions from open combustion
of biomass fuels, Aerosol. Sci. Tech., 52, 1266–1282, https://doi.org/10.1080/02786826.2018.1498585, 2018.
Bhattarai, H., Saikawa, E., Wan, X., Zhu, H., Ram, K., Gao, S., Kang, S.,
Zhang, Q., Zhang, Y., Wu, G., Wang, X., Kawamura, K., Fu, P., and Cong, Z.:
Levoglucosan as a tracer of biomass burning: Recent progress and
perspectives, Atmos. Res., 220, 20–33, https://doi.org/10.1016/j.atmosres.2019.01.004,
2019.
Bian, Q., Alharbi, B., Shareef, M. M., Husain, T., Pasha, M. J., Atwood, S. A., and Kreidenweis, S. M.: Sources of PM2.5 carbonaceous aerosol in Riyadh, Saudi Arabia, Atmos. Chem. Phys., 18, 3969–3985, https://doi.org/10.5194/acp-18-3969-2018, 2018.
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous
particles: An investigative review, Aerosol. Sci. Tech., 40, 27–67, https://doi.org/10.1080/02786820500421521, 2006.
Bond, T. C., Habib, G., and Bergstrom, R. W.: Limitations in the enhancement
of visible light absorption due to mixing state, J. Geophys. Res., 111,
D20211, https://doi.org/10.1029/2006JD007315, 2006.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Karcher, B., Koch, D., Kinne, S.,
Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Bones, D. L., Henricksen, D. K., Mang, S. A., Gonsior, M., Bateman, A. P.,
Nguyen, T. B., Cooper, W. J., and Nizkorodov, S. A.: Appearance of strong
absorbers and fluorophores in limonene-O3 secondary organic aerosol due to
-mediated chemical aging over long time scales, J. Geophys. Res., 115, D05203,
https://doi.org/10.1029/2009jd012864, 2010.
Browne, E. C., Zhang, X., Franklin, J. P., Ridley, K. J., Kirchstetter, T.
W., Wilson, K. R., Cappa, C. D., and Kroll, J. H.: Effect of heterogeneous
oxidative aging on light absorption by biomass burning organic aerosol,
Aerosol. Sci. Tech., 53, 66300674, https://doi.org/10.1080/02786826.2019.1599321,
2019.
Burtscher, H., Baltensperger, U., Bukowiecki, N., Cohn, P., Hüglin, C.,
Mohr, M., Matter, U., Nyeki, S., Schmatloch, V., Streit, N., and
Weingartner, E.: Separation of volatile and non-volatile aerosol fractions
by thermodesorption: instrumental development and applications, J. Aerosol.
Sci., 32, 427–442, https://doi.org/10.1016/S0021-8502(00)00089-6, 2001.
Cai, J., Zeng, X., Zhi, G., Gligorovski, S., Sheng, G., Yu, Z., Wang, X., and Peng, P.: Molecular Composition and Photochemical Evolution of Water Soluble Organic Carbon (WSOC) Extracted from Field Biomass Burning Aerosols using High Resolution Mass Spectrometry, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-608, in review, 2019.
Canonaco, F., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: Seasonal differences in oxygenated organic aerosol composition: implications for emissions sources and factor analysis, Atmos. Chem. Phys., 15, 6993–7002, https://doi.org/10.5194/acp-15-6993-2015, 2015.
Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S.,
Cross, E. S., Davidovits, P., Hakala, J., Hayden, K. L., Jobson, B. T.,
Kolesar, K. R., Lack, D. A., Lerner, B. M., Li, S.-M., Mellon, D., Nuaaman,
I., Olfert, J. S., Petäjä, T., Quinn, P. K., Song, C., Subramanian,
R., Williams, E. J., and Zaveri, R. A.: Radiative Absorption Enhancements
Due to the Mixing State of Atmospheric Black Carbon, Science, 337,
1078–1081, https://doi.org/10.1126/science.1223447, 2012.
Cappa, C. D., Zhang, X., Russell, L. M., Collier, S., Lee, A. K. Y., Chen,
C.-L., Betha, R., Chen, S., Liu, J., Price, D. J., Sanchez, K. J.,
McMeeking, G. R., Williams, L. R., Onasch, T. B., Worsnop, D. R., Abbatt,
J., and Zhang, Q.: Light absorption by ambient black and brown carbon and
its dependence on black carbon coating state for two California, USA cities
in winter and summer, J. Geophys. Res., 124, 1550–1577, https://doi.org/10.1029/2018JD029501, 2019.
Chen, B., Bai, Z., Cui, X., Chen, J., Andersson, A., and Gustafsson, Ö.:
Light absorption enhancement of black carbon from urban haze in Northern
China winter, Environ. Pollut., 221, 418–426, https://doi.org/10.1016/j.envpol.2016.12.004, 2017.
Chen, H., Hu, D., Wang, L., Mellouki, A., and Chen, J.: Modification in
light absorption cross section of laboratory-generated black carbon-brown
carbon particles upon surface reaction and hydration, Atmos. Environ., 116,
253–261, https://doi.org/10.1016/j.atmosenv.2015.06.052, 2015.
Cheng, Y., Engling, G., Moosmüller, H., Arnott, W. P., Chen, L. W. A.,
Wold, C. E., Hao, W. M., and He, K.-B.: Light absorption by biomass burning
source emissions, Atmos. Environ., 127, 347–354, https://doi.org/10.1016/j.atmosenv.2015.12.045, 2016.
Chung, S. H. and Seinfeld, J. H.: Global distribution and climate forcing of
carbonaceous aerosols, J. Geophys. Res., 107, AAC 14-1–AAC 14-33, https://doi.org/10.1029/2001JD001397,
2002.
Conrad, B. M. and Johnson, M. R.: Mass absorption cross-section of
flare-generated black carbon: Variability, predictive model, and
implications, Carbon, 149, 760–771, https://doi.org/10.1016/j.carbon.2019.04.086, 2019.
Csiszar, I., Schroeder, W., Giglio, L., Ellicott, E., Vadrevu, K. P.,
Justice, C. O., and Wind, B.: Active fires from the Suomi NPP Visible
Infrared Imaging Radiometer Suite: Product status and first evaluation
results, J. Geophys. Res., 119, 803–816, https://doi.org/10.1002/2013jd020453, 2014.
Cui, F., Chen, M., Ma, Y., Zheng, J., Zhou, Y., Li, S., Qi, L., and Wang,
L.: An intensive study on aerosol optical properties and affecting factors
in Nanjing, China, J. Environ. Sci., 40, 35–43, https://doi.org/10.1016/j.jes.2015.08.017, 2016.
Cui, X., Wang, X., Yang, L., Chen, B., Chen, J., Andersson, A., and
Gustafsson, Ö.: Radiative absorption enhancement from coatings on black
carbon aerosols, Sci. Total Environ., 551, 51–56, https://doi.org/10.1016/j.scitotenv.2016.02.026, 2016.
Dasari, S., Andersson, A., Bikkina, S., Holmstrand, H., Budhavant, K.,
Satheesh, S., Asmi, E., Kesti, J., Backman, J., Salam, A., Bisht, D. S.,
Tiwari, S., Hameed, Z., and Gustafsson, Ö.: Photochemical degradation
affects the light absorption of water-soluble brown carbon in the South
Asian outflow, Sci. Adv., 5, eaau8066, https://doi.org/10.1126/sciadv.aau8066,
2019.
Dastanpour, R., Momenimovahed, A., Thomson, K., Olfert, J., and Rogak, S.:
Variation of the optical properties of soot as a function of particle mass,
Carbon, 124, 201–211, https://doi.org/10.1016/j.carbon.2017.07.005, 2017.
Deng, T., Deng, X., Li, F., Wang, S., and Wang, G.: Study on aerosol optical
properties and radiative effect in cloudy weather in the Guangzhou region,
Sci. Total Environ., 568, 147–154, https://doi.org/10.1016/j.scitotenv.2016.05.156,
2016.
Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. M.,
Petäjä, T., Su, H., Cheng, Y. F., Yang, X. Q., Wang, M. H., Chi, X.
G., Wang, J. P., Virkkula, A., Guo, W. D., Yuan, J., Wang, S. Y., Zhang, R.
J., Wu, Y. F., Song, Y., Zhu, T., Zilitinkevich, S., Kulmala, M., and Fu, C.
B.: Enhanced haze pollution by black carbon in megacities in China, Geophys.
Res. Lett., 43, 2873–2879, https://doi.org/10.1002/2016GL067745, 2016.
Ditas, J., Ma, N., Zhang, Y., Assmann, D., Neumaier, M., Riede, H., Karu,
E., Williams, J., Scharffe, D., Wang, Q., Saturno, J., Schwarz, J. P.,
Katich, J. M., McMeeking, G. R., Zahn, A., Hermann, M., Brenninkmeijer, C.
A. M., Andreae, M. O., Pöschl, U., Su, H., and Cheng, Y.: Strong impact
of wildfires on the abundance and aging of black carbon in the lowermost
stratosphere, P. Natl. Acad. Sci. USA, 115,
E11595–E11603, https://doi.org/10.1073/pnas.1806868115, 2018.
Draxier, R. R. and Hess, G. D.: An overview of the HYSPLIT_4
modelling system for trajectories, dispersion and deposition, Aust. Meteorol.
Mag., 47, 295–308, 1998.
Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The “dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.
Drinovec, L., Gregorič, A., Zotter, P., Wolf, R., Bruns, E. A., Prévôt, A. S. H., Petit, J.-E., Favez, O., Sciare, J., Arnold, I. J., Chakrabarty, R. K., Moosmüller, H., Filep, A., and Močnik, G.: The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles, Atmos. Meas. Tech., 10, 1043–1059, https://doi.org/10.5194/amt-10-1043-2017, 2017.
Engling, G., Carrico, C. M., Kreidenweis, S. M., Collett Jr., J. L., Day, D.
E., Malm, W. C., Lincoln, E., Min Hao, W., Iinuma, Y., and Herrmann, H.:
Determination of levoglucosan in biomass combustion aerosol by
high-performance anion-exchange chromatography with pulsed amperometric
detection, Atmos. Environ., 40, 299–311, https://doi.org/10.1016/j.atmosenv.2005.12.069, 2006.
Fan, X., Yu, X., Wang, Y., Xiao, X., Li, F., Xie, Y., Wei, S., Song, J., and
Peng, P. A.: The aging behaviors of chromophoric biomass burning brown
carbon during dark aqueous hydroxyl radical oxidation processes in
laboratory studies, Atmos. Environ., 205, 9–18, https://doi.org/10.1016/j.atmosenv.2019.02.039, 2019.
Fang, Y., Chen, Y., Lin, T., Hu, L., Tian, C., Luo, Y., Yang, X., Li, J.,
and Zhang, G.: Spatiotemporal Trends of Elemental Carbon and Char/Soot
Ratios in Five Sediment Cores from Eastern China Marginal Seas: Indicators
of Anthropogenic Activities and Transport Patterns, Environ. Sci. Technol.,
52, 9704–9712, https://doi.org/10.1021/acs.est.8b00033, 2018.
Fierce, L., Bond, T. C., Bauer, S. E., Mena, F., and Riemer, N.: Black
carbon absorption at the global scale is affected by particle-scale
diversity in composition, Nat. Commun., 7, 12361, https://doi.org/10.1038/ncomms12361, 2016.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.:
Present-day climate forcing and response from black carbon in snow, J.
Geophys. Res., 112, D11202, https://doi.org/10.1029/2006JD008003, 2007.
Fortenberry, C. F., Walker, M. J., Zhang, Y., Mitroo, D., Brune, W. H., and Williams, B. J.: Bulk and molecular-level characterization of laboratory-aged biomass burning organic aerosol from oak leaf and heartwood fuels, Atmos. Chem. Phys., 18, 2199–2224, https://doi.org/10.5194/acp-18-2199-2018, 2018.
Fuller, K. A., Malm, W. C., and Kreidenweis, S. M.: Effects of mixing on
extinction by carbonaceous particles, J. Geophys. Res., 104, 15941–15954,
https://doi.org/10.1029/1998JD100069, 1999.
Gertler, C. G., Puppala, S. P., Panday, A., Stumm, D., and Shea, J.: Black
carbon and the Himalayan cryosphere: A review, Atmos. Environ., 125,
404–417, https://doi.org/10.1016/j.atmosenv.2015.08.078, 2016.
Ghazi, R. and Olfert, J. S.: Coating Mass Dependence of Soot Aggregate
Restructuring due to Coatings of Oleic Acid and Dioctyl Sebacate, Aerosol.
Sci. Tech., 47, 192–200, https://doi.org/10.1080/02786826.2012.741273, 2013.
Gilardoni, S., Massoli, P., Paglione, M., Giulianelli, L., Carbone, C.,
Rinaldi, M., Decesari, S., Sandrini, S., Costabile, F., Gobbi, G. P.,
Pietrogrande, M. C., Visentin, M., Scotto, F., Fuzzi, S., and Facchini, M.
C.: Direct observation of aqueous secondary organic aerosol from
biomass-burning emissions, P. Natl. Acad. Sci. USA,
113, 10013–10018, https://doi.org/10.1073/pnas.1602212113, 2016.
Grahame, T. J., Klemm, R., and Schlesinger, R. B.: Public health and
components of particulate matter: The changing assessment of black carbon,
J. Air Waste Manage., 64, 620–660, https://doi.org/10.1080/10962247.2014.912692,
2014.
Griffith, S. M., Huang, X. H. H., Louie, P. K. K., and Yu, J. Z.:
Characterizing the thermodynamic and chemical composition factors
controlling PM2.5 nitrate: Insights gained from two years of online
measurements in Hong Kong, Atmos. Environ., 122, 864–875, https://doi.org/10.1016/j.atmosenv.2015.02.009, 2015.
Gross, D. S., Gälli, M. E., Silva, P. J., and Prather, K. A.: Relative
Sensitivity Factors for Alkali Metal and Ammonium Cations in Single-Particle
Aerosol Time-of-Flight Mass Spectra, Anal. Chem., 72, 416–422, https://doi.org/10.1021/ac990434g, 2000.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Hansen, J. and Nazarenko, L.: Soot climate forcing via snow and ice albedos,
P. Natl. Acad. Sci. USA, 101, 423–428, https://doi.org/10.1073/pnas.2237157100, 2004.
Hatch, L. E., Pratt, K. A., Huffman, J. A., Jimenez, J. L., and Prather, K.
A.: Impacts of Aerosol Aging on Laser Desorption/Ionization in
Single-Particle Mass Spectrometers, Aerosol. Sci. Tech., 48, 1050–1058,
https://doi.org/10.1080/02786826.2014.955907, 2014.
He, C., Flanner, M. G., Chen, F., Barlage, M., Liou, K.-N., Kang, S., Ming, J., and Qian, Y.: Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model, Atmos. Chem. Phys., 18, 11507–11527, https://doi.org/10.5194/acp-18-11507-2018, 2018.
Healy, R. M., Wang, J. M., Jeong, C. H., Lee, A. K. Y., Willis, M. D.,
Jaroudi, E., Zimmerman, N., Hilker, N., Murphy, M., Eckhardt, S., Stohl, A.,
Abbatt, J. P. D., Wenger, J. C., and Evans, G. J.: Light-absorbing
properties of ambient black carbon and brown carbon from fossil fuel and
biomass burning sources, J. Geophys. Res., 120, 2015JD023382, https://doi.org/10.1002/2015JD023382, 2015.
Hems, R. F. and Abbatt, J. P. D.: Aqueous Phase Photo-oxidation of Brown
Carbon Nitrophenols: Reaction Kinetics, Mechanism, and Evolution of Light
Absorption, ACS Earth and Space Chemistry, 2, 225–234, https://doi.org/10.1021/acsearthspacechem.7b00123, 2018.
Huang, X. H. H., Bian, Q. J., Louie, P. K. K., and Yu, J. Z.: Contributions of vehicular carbonaceous aerosols to PM2.5 in a roadside environment in Hong Kong, Atmos. Chem. Phys., 14, 9279–9293, https://doi.org/10.5194/acp-14-9279-2014, 2014.
Huntzicker, J. J., Johnson, R. L., Shah, J. J., and Cary, R. A.: Analysis of
Organic and Elemental Carbon in Ambient Aerosols by a Thermal-Optical
Method, in: Particulate Carbon: Atmospheric Life Cycle, edited by: Wolff, G.
T. and Klimisch, R. L., Springer US, Boston, MA, 79–88, 1982.
IPCC: Climate change 2013: the physical science basis: Working Group I
contribution to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, xi, 1535 pp., 2013.
Irwin, M., Kondo, Y., Moteki, N., and Miyakawa, T.: Evaluation of a
Heated-Inlet for Calibration of the SP2, Aerosol. Sci. Tech., 47,
895–905, https://doi.org/10.1080/02786826.2013.800187, 2013.
Jacobson, M. Z.: Isolating nitrated and aromatic aerosols and nitrated
aromatic gases as sources of ultraviolet light absorption, J. Geophys. Res.,
104, 3527–3542, https://doi.org/10.1029/1998jd100054, 1999.
Jacobson, M. Z.: Strong radiative heating due to the mixing state of black
carbon in atmospheric aerosols, Nature, 409, 695–697, https://doi.org/10.1038/35055518,
2001.
Jeong, C.-H., McGuire, M. L., Godri, K. J., Slowik, J. G., Rehbein, P. J. G., and Evans, G. J.: Quantification of aerosol chemical composition using continuous single particle measurements, Atmos. Chem. Phys., 11, 7027–7044, https://doi.org/10.5194/acp-11-7027-2011, 2011.
Ji, D., Gao, M., Maenhaut, W., He, J., Wu, C., Cheng, L., Gao, W., Sun, Y.,
Sun, J., Xin, J., Wang, L., and Wang, Y.: The carbonaceous aerosol levels
still remain a challenge in the Beijing-Tianjin-Hebei region of China:
Insights from continuous high temporal resolution measurements in multiple
cities, Environ. Int., 126, 171–183, https://doi.org/10.1016/j.envint.2019.02.034,
2019.
Ji, Y., Qin, X., Wang, B., Xu, J., Shen, J., Chen, J., Huang, K., Deng, C., Yan, R., Xu, K., and Zhang, T.: Counteractive effects of regional transport and emission control on the formation of fine particles: a case study during the Hangzhou G20 summit, Atmos. Chem. Phys., 18, 13581–13600, https://doi.org/10.5194/acp-18-13581-2018, 2018.
Johansson, K. O., Head-Gordon, M. P., Schrader, P. E., Wilson, K. R., and
Michelsen, H. A.: Resonance-stabilized hydrocarbon-radical chain reactions
may explain soot inception and growth, Science, 361, 997–1000, https://doi.org/10.1126/science.aat3417, 2018.
Jung, J., Kim, Y. J., Lee, K. Y., Kawamura, K., Hu, M., and Kondo, Y.: The
effects of accumulated refractory particles and the peak inert mode
temperature on semi-continuous organic carbon and elemental carbon
measurements during the CAREBeijing 2006 campaign, Atmos. Environ., 45,
7192–7200, https://doi.org/10.1016/j.atmosenv.2011.09.003, 2011.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Kaufman, Y. J. and Koren, I.: Smoke and pollution aerosol effect on cloud
cover, Science, 313, 655–658, https://doi.org/10.1126/science.1126232, 2006.
Knox, A., Evans, G. J., Brook, J. R., Yao, X., Jeong, C. H., Godri, K. J.,
Sabaliauskas, K., and Slowik, J. G.: Mass Absorption Cross-Section of
Ambient Black Carbon Aerosol in Relation to Chemical Age, Aerosol. Sci.
Tech., 43, 522–532, https://doi.org/10.1080/02786820902777207, 2009.
Koch, D. and Del Genio, A. D.: Black carbon semi-direct effects on cloud cover: review and synthesis, Atmos. Chem. Phys., 10, 7685–7696, https://doi.org/10.5194/acp-10-7685-2010, 2010.
Kondo, Y., Matsui, H., Moteki, N., Sahu, L., Takegawa, N., Kajino, M., Zhao,
Y., Cubison, M. J., Jimenez, J. L., Vay, S., Diskin, G. S., Anderson, B.,
Wisthaler, A., Mikoviny, T., Fuelberg, H. E., Blake, D. R., Huey, G.,
Weinheimer, A. J., Knapp, D. J., and Brune, W. H.: Emissions of black
carbon, organic, and inorganic aerosols from biomass burning in North
America and Asia in 2008, J. Geophys. Res., 116, D08204, https://doi.org/10.1029/2010jd015152, 2011.
Kopacz, M., Mauzerall, D. L., Wang, J., Leibensperger, E. M., Henze, D. K., and Singh, K.: Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau, Atmos. Chem. Phys., 11, 2837–2852, https://doi.org/10.5194/acp-11-2837-2011, 2011.
Krasowsky, T. S., McMeeking, G. R., Wang, D., Sioutas, C., and Ban-Weiss, G.
A.: Measurements of the impact of atmospheric aging on physical and optical
properties of ambient black carbon particles in Los Angeles, Atmos.
Environ., 142, 496–504, https://doi.org/10.1016/j.atmosenv.2016.08.010, 2016.
Kumar, N. K., Corbin, J. C., Bruns, E. A., Massabó, D., Slowik, J. G., Drinovec, L., Močnik, G., Prati, P., Vlachou, A., Baltensperger, U., Gysel, M., El-Haddad, I., and Prévôt, A. S. H.: Production of particulate brown carbon during atmospheric aging of residential wood-burning emissions, Atmos. Chem. Phys., 18, 17843–17861, https://doi.org/10.5194/acp-18-17843-2018, 2018.
Lack, D. A. and Cappa, C. D.: Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon, Atmos. Chem. Phys., 10, 4207–4220, https://doi.org/10.5194/acp-10-4207-2010, 2010.
Lack, D. A. and Langridge, J. M.: On the attribution of black and brown carbon light absorption using the Ångström exponent, Atmos. Chem. Phys., 13, 10535–10543, https://doi.org/10.5194/acp-13-10535-2013, 2013.
Lack, D. A., Langridge, J. M., Bahreini, R., Cappa, C. D., Middlebrook, A.
M., and Schwarz, J. P.: Brown carbon and internal mixing in biomass burning
particles, P. Natl. Acad. Sci. USA, 109, 14802–14807, https://doi.org/10.1073/pnas.1206575109, 2012a.
Lack, D. A., Richardson, M. S., Law, D., Langridge, J. M., Cappa, C. D.,
McLaughlin, R. J., and Murphy, D. M.: Aircraft instrument for comprehensive
characterization of aerosol optical properties, Part 2: black and brown
carbon absorption and absorption enhancement measured with photo acoustic
spectroscopy, Aerosol. Sci. Tech., 46, 555–568, https://doi.org/10.1080/02786826.2011.645955, 2012b.
Lambe, A. T., Cappa, C. D., Massoli, P., Onasch, T. B., Forestieri, S. D.,
Martin, A. T., Cummings, M. J., Croasdale, D. R., Brune, W. H., Worsnop, D.
R., and Davidovits, P.: Relationship between Oxidation Level and Optical
Properties of Secondary Organic Aerosol, Environ. Sci. Technol., 47,
6349–6357, https://doi.org/10.1021/es401043j, 2013.
Lan, Z.-J., Huang, X.-F., Yu, K.-Y., Sun, T.-L., Zeng, L.-W., and Hu, M.:
Light absorption of black carbon aerosol and its enhancement by mixing state
in an urban atmosphere in South China, Atmos. Environ., 69, 118–123, https://doi.org/10.1016/j.atmosenv.2012.12.009, 2013.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric
Brown Carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167,
2015.
Lee, A. K. Y., Rivellini, L.-H., Chen, C.-L., Liu, J., Price, D., Betha, R.,
Russell, L. M., Zhang, X., and Cappa, C. D.: Influences of primary emission
and secondary coating formation on the particle diversity and mixing state
of black carbon particles, Environ. Sci. Technol., 53, 9429–9438, https://doi.org/10.1021/acs.est.9b03064, 2019.
Lee, B. P., Li, Y. J., Yu, J. Z., Louie, P. K. K., and Chan, C. K.:
Characteristics of submicron particulate matter at the urban roadside in
downtown Hong Kong – Overview of 4 months of continuous high-resolution
aerosol mass spectrometer measurements, J. Geophys. Res., 120, 7040–7058,
https://doi.org/10.1002/2015jd023311, 2015.
Lee, H. J., Aiona, P. K., Laskin, A., Laskin, J., and Nizkorodov, S. A.:
Effect of Solar Radiation on the Optical Properties and Molecular
Composition of Laboratory Proxies of Atmospheric Brown Carbon, Environ. Sci.
Technol., 48, 10217–10226, https://doi.org/10.1021/es502515r, 2014.
Lefevre, G., Yon, J., Bouvier, M., Liu, F., and Coppalle, A.: Impact of
Organic Coating on Soot Angular and Spectral Scattering Properties, Environ.
Sci. Technol., 53, 6383–6391, https://doi.org/10.1021/acs.est.8b05482, 2019.
Levin, E. J. T., McMeeking, G. R., Carrico, C. M., Mack, L. E., Kreidenweis,
S. M., Wold, C. E., Moosmüller, H., Arnott, W. P., Hao, W. M., Collett
Jr., J. L., and Malm, W. C.: Biomass burning smoke aerosol properties
measured during Fire Laboratory at Missoula Experiments (FLAME), J. Geophys.
Res., 115, D18210, https://doi.org/10.1029/2009jd013601, 2010.
Levy II, H., Mahlman, J. D., Moxim, W. J., and Liu, S. C.: Tropospheric
ozone: The role of transport, J. Geophys. Res., 90, 3753–3772, https://doi.org/10.1029/JD090iD02p03753, 1985.
Lewis, K., Arnott, W. P., Moosmüller, H., and Wold, C. E.: Strong
spectral variation of biomass smoke light absorption and single scattering
albedo observed with a novel dual-wavelength photoacoustic instrument, J.
Geophys. Res., 113, D16203, https://doi.org/10.1029/2007jd009699, 2008.
Li, C., He, Q., Schade, J., Passig, J., Zimmermann, R., Meidan, D., Laskin, A., and Rudich, Y.: Dynamic changes in optical and chemical properties of tar ball aerosols by atmospheric photochemical aging, Atmos. Chem. Phys., 19, 139–163, https://doi.org/10.5194/acp-19-139-2019, 2019.
Li, G.-L., Sun, L., Ho, K.-F., Wong, K.-C., and Ning, Z.: Implication of
Light Absorption Enhancement and Mixing State of Black Carbon (BC) by
Coatings in Hong Kong, Aerosol Air. Qual. Res., 18, 2753–2763, https://doi.org/10.4209/aaqr.2017.11.0473, 2018.
Li, H., Cheng, J., Zhang, Q., Zheng, B., Zhang, Y., Zheng, G., and He, K.: Rapid transition in winter aerosol composition in Beijing from 2014 to 2017: response to clean air actions, Atmos. Chem. Phys., 19, 11485–11499, https://doi.org/10.5194/acp-19-11485-2019, 2019.
Li, K., Ye, X., Pang, H., Lu, X., Chen, H., Wang, X., Yang, X., Chen, J., and Chen, Y.: Temporal variations in the hygroscopicity and mixing state of black carbon aerosols in a polluted megacity area, Atmos. Chem. Phys., 18, 15201–15218, https://doi.org/10.5194/acp-18-15201-2018, 2018.
Li, L., Huang, Z., Dong, J., Li, M., Gao, W., Nian, H., Fu, Z., Zhang, G.,
Bi, X., Cheng, P., and Zhou, Z.: Real time bipolar time-of-flight mass
spectrometer for analyzing single aerosol particles, Int. J. Mass Spectrom., 303, 118–124, https://doi.org/10.1016/j.ijms.2011.01.017, 2011.
Li, M., Bao, F., Zhang, Y., Song, W., Chen, C., and Zhao, J.: Role of
elemental carbon in the photochemical aging of soot, P.
Natl. Acad. Sci., 115, 7717–7722, https://doi.org/10.1073/pnas.1804481115,
2018.
Li, S., Zhu, M., Yang, W., Tang, M., Huang, X., Yu, Y., Fang, H., Yu, X.,
Yu, Q., Fu, X., Song, W., Zhang, Y., Bi, X., and Wang, X.: Filter-based
measurement of light absorption by brown carbon in PM2.5 in a megacity in
South China, Sci. Total Environ., 633, 1360–1369, https://doi.org/10.1016/j.scitotenv.2018.03.235, 2018.
Li, Y. J., Sun, Y., Zhang, Q., Li, X., Li, M., Zhou, Z., and Chan, C. K.:
Real-time chemical characterization of atmospheric particulate matter in
China: A review, Atmos. Environ., 158, 270–304, https://doi.org/10.1016/j.atmosenv.2017.02.027, 2017.
Li, Z., Tan, H., Zheng, J., Liu, L., Qin, Y., Wang, N., Li, F., Li, Y., Cai, M., Ma, Y., and Chan, C. K.: Light absorption properties and potential sources of particulate brown carbon in the Pearl River Delta region of China, Atmos. Chem. Phys., 19, 11669–11685, https://doi.org/10.5194/acp-19-11669-2019, 2019.
Liakakou, E., Kaskaoutis, D. G., Grivas, G., Stavroulas, I., Tsagkaraki, M.,
Paraskevopoulou, D., Bougiatioti, A., Dumka, U. C., Gerasopoulos, E., and
Mihalopoulos, N.: Long-term brown carbon spectral characteristics in a
Mediterranean city (Athens), Sci. Total Environ., 708, 135019, https://doi.org/10.1016/j.scitotenv.2019.135019, 2019.
Liang, C., Pankow, J. F., Odum, J. R., and Seinfeld, J. H.: Gas/Particle
Partitioning of Semivolatile Organic Compounds To Model Inorganic, Organic,
and Ambient Smog Aerosols, Environ. Sci. Technol., 31, 3086–3092, https://doi.org/10.1021/es9702529, 1997.
Lin, P., Laskin, J., Nizkorodov, S. A., and Laskin, A.: Revealing Brown
Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium
Sulfate, Environ. Sci. Technol., 49, 14257–14266, https://doi.org/10.1021/acs.est.5b03608, 2015.
Lin, P., Aiona, P. K., Li, Y., Shiraiwa, M., Laskin, J., Nizkorodov, S. A.,
and Laskin, A.: Molecular Characterization of Brown Carbon in Biomass
Burning Aerosol Particles, Environ. Sci. Technol., 50, 11815–11824, https://doi.org/10.1021/acs.est.6b03024, 2016.
Liu, B., Ma, Y., Gong, W., Zhang, M., and Shi, Y.: The relationship between
black carbon and atmospheric boundary layer height, Atmos. Pollut.
Res., 10, 65–72, https://doi.org/10.1016/j.apr.2018.06.007, 2019.
Liu, D., Allan, J. D., Young, D. E., Coe, H., Beddows, D., Fleming, Z. L., Flynn, M. J., Gallagher, M. W., Harrison, R. M., Lee, J., Prevot, A. S. H., Taylor, J. W., Yin, J., Williams, P. I., and Zotter, P.: Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime, Atmos. Chem. Phys., 14, 10061–10084, https://doi.org/10.5194/acp-14-10061-2014, 2014.
Liu, D., Whitehead, J., Alfarra, M. R., Reyes-Villegas, E., Spracklen, D.
V., Reddington, C. L., Kong, S., Williams, P. I., Ting, Y.-C., Haslett, S.,
Taylor, J. W., Flynn, M. J., Morgan, W. T., McFiggans, G., Coe, H., and
Allan, J. D.: Black-carbon absorption enhancement in the atmosphere
determined by particle mixing state, Nat. Geosci., 10, 184–188, https://doi.org/10.1038/ngeo2901, 2017.
Liu, F., Yon, J., and Bescond, A.: On the radiative properties of soot
aggregates – Part 2: Effects of coating, J. Quant.
Spectrosc. Ra., 172, 134–145, https://doi.org/10.1016/j.jqsrt.2015.08.005, 2016.
Liu, H., Pan, X., Liu, D., Liu, X., Chen, X., Tian, Y., Sun, Y., Fu, P., and Wang, Z.: Mixing characteristics of refractory black carbon aerosols determined by a tandem CPMA-SP2 system at an urban site in Beijing, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-244, in review, 2019a.
Liu, H., Pan, X., Wu, Y., Wang, D., Tian, Y., Liu, X., Lei, L., Sun, Y., Fu, P., and Wang, Z.: Effective densities of soot particles and their relationships with the mixing state at an urban site in the Beijing megacity in the winter of 2018, Atmos. Chem. Phys., 19, 14791–14804, https://doi.org/10.5194/acp-19-14791-2019, 2019b.
Liu, J., Lin, P., Laskin, A., Laskin, J., Kathmann, S. M., Wise, M., Caylor, R., Imholt, F., Selimovic, V., and Shilling, J. E.: Optical properties and aging of light-absorbing secondary organic aerosol, Atmos. Chem. Phys., 16, 12815–12827, https://doi.org/10.5194/acp-16-12815-2016, 2016.
Liu, J., Wu, D., Fan, S., Mao, X., and Chen, H.: A one-year, on-line,
multi-site observational study on water-soluble inorganic ions in PM2.5 over
the Pearl River Delta region, China, Sci. Total Environ., 601–602, 1720–1732,
https://doi.org/10.1016/j.scitotenv.2017.06.039, 2017.
Liu, S., Aiken, A. C., Gorkowski, K., Dubey, M. K., Cappa, C. D., Williams,
L. R., Herndon, S. C., Massoli, P., Fortner, E. C., Chhabra, P. S., Brooks,
W. A., Onasch, T. B., Jayne, J. T., Worsnop, D. R., China, S., Sharma, N.,
Mazzoleni, C., Xu, L., Ng, N. L., Liu, D., Allan, J. D., Lee, J. D.,
Fleming, Z. L., Mohr, C., Zotter, P., Szidat, S., and Prevot, A. S. H.:
Enhanced light absorption by mixed source black and brown carbon particles
in UK winter, Nat. Commun., 6, 8435, https://doi.org/10.1038/ncomms9435, 2015.
Liu, S. C.: Possible effects on fropospheric O3 and OH due to No emissions,
Geophys. Res. Lett., 4, 325–328, https://doi.org/10.1029/GL004i008p00325, 1977.
Ma, X., Zangmeister, C. D., Gigault, J., Mulholland, G. W., and Zachariah,
M. R.: Soot aggregate restructuring during water processing, J. Aerosol.
Sci., 66, 209–219, https://doi.org/10.1016/j.jaerosci.2013.08.001, 2013.
Ma, Y., Huang, C., Jabbour, H., Zheng, Z., Wang, Y., Jiang, Y., Zhu, W., and
Zheng, J.: Mixing state and light absorption enhancement of black carbon
aerosols in summertime Nanjing, China, Atmos. Environ., 222, 117141, https://doi.org/10.1016/j.atmosenv.2019.117141, 2020.
Martinsson, J., Eriksson, A. C., Nielsen, I. E., Malmborg, V. B., Ahlberg,
E., Andersen, C., Lindgren, R., Nyström, R., Nordin, E. Z., Brune, W.
H., Svenningsson, B., Swietlicki, E., Boman, C., and Pagels, J. H.: Impacts
of Combustion Conditions and Photochemical Processing on the Light
Absorption of Biomass Combustion Aerosol, Environ. Sci. Technol., 49,
14663–14671, https://doi.org/10.1021/acs.est.5b03205, 2015.
Matsui, H., Hamilton, D. S., and Mahowald, N. M.: Black carbon radiative
effects highly sensitive to emitted particle size when resolving
mixing-state diversity, Nat. Commun., 9, 3446, https://doi.org/10.1038/s41467-018-05635-1, 2018.
McMeeking, G. R., Kreidenweis, S. M., Baker, S., Carrico, C. M., Chow, J.
C., Collett, J. L., Hao, W. M., Holden, A. S., Kirchstetter, T. W., Malm, W.
C., Moosmüller, H., Sullivan, A. P., and Wold, C. E.: Emissions of trace
gases and aerosols during the open combustion of biomass in the laboratory,
J. Geophys. Res., 114, D19210, https://doi.org/10.1029/2009JD011836, 2009.
McMeeking, G. R., Fortner, E., Onasch, T. B., Taylor, J. W., Flynn, M., Coe,
H., and Kreidenweis, S. M.: Impacts of nonrefractory material on light
absorption by aerosols emitted from biomass burning, J. Geophys. Res., 119,
12272–12286, https://doi.org/10.1002/2014JD021750, 2014.
Metcalf, A. R., Loza, C. L., Coggon, M. M., Craven, J. S., Jonsson, H. H.,
Flagan, R. C., and Seinfeld, J. H.: Secondary Organic Aerosol Coating
Formation and Evaporation: Chamber Studies Using Black Carbon Seed Aerosol
and the Single-Particle Soot Photometer, Aerosol. Sci. Tech., 47,
326–347, https://doi.org/10.1080/02786826.2012.750712, 2013.
Millet, D. B., Donahue, N. M., Pandis, S. N., Polidori, A., Stanier, C. O.,
Turpin, B. J., and Goldstein, A. H.: Atmospheric volatile organic compound
measurements during the Pittsburgh Air Quality Study: Results,
interpretation, and quantification of primary and secondary contributions,
J. Geophys. Res., 110, D07S07, https://doi.org/10.1029/2004jd004601, 2005.
Ming, J., Cachier, H., Xiao, C., Qin, D., Kang, S., Hou, S., and Xu, J.:
Black carbon record based on a shallow Himalayan ice core and its climatic
implications, Atmos. Chem. Phys., 8, 1343–1352, https://doi.org/10.5194/acp-8-1343-2008, 2008.
Moffet, R. C. and Prather, K. A.: In-situ measurements of the mixing state
and optical properties of soot with implications for radiative forcing
estimates, P. Natl. Acad. Sci. USA, 106, 11872–11877, https://doi.org/10.1073/pnas.0900040106, 2009.
Mohr, C., Huffman, J. A., Cubison, M. J., Aiken, A. C., Docherty, K. S.,
Kimmel, J. R., Ulbrich, I. M., Hannigan, M., and Jimenez, J. L.:
Characterization of Primary Organic Aerosol Emissions from Meat Cooking,
Trash Burning, and Motor Vehicles with High-Resolution Aerosol Mass
Spectrometry and Comparison with Ambient and Chamber Observations, Environ.
Sci. Technol., 43, 2443–2449, https://doi.org/10.1021/es8011518, 2009.
Moise, T., Flores, J. M., and Rudich, Y.: Optical Properties of Secondary
Organic Aerosols and Their Changes by Chemical Processes, Chem. Rev.,
115, 4400–4439, https://doi.org/10.1021/cr5005259, 2015.
Moosmüller, H., Chakrabarty, R. K., Ehlers, K. M., and Arnott, W. P.:
Absorption Angstrom coefficient, brown carbon, and aerosols: basic concepts,
bulk matter, and spherical particles, Atmos. Chem. Phys., 11, 1217–1225,
https://doi.org/10.5194/acp-11-1217-2011, 2011.
Nenes, A., Conant, W. C., and Seinfeld, J. H.: Black carbon radiative
heating effects on cloud microphysics and implications for the aerosol
indirect effect 2. Cloud microphysics, J. Geophys. Res., 107, AAC 24-21–AAC
24-11, https://doi.org/10.1029/2002jd002101, 2002.
Nordmann, S., Cheng, Y. F., Carmichael, G. R., Yu, M., Denier van der Gon, H. A. C., Zhang, Q., Saide, P. E., Pöschl, U., Su, H., Birmili, W., and Wiedensohler, A.: Atmospheric black carbon and warming effects influenced by the source and absorption enhancement in central Europe, Atmos. Chem. Phys., 14, 12683–12699, https://doi.org/10.5194/acp-14-12683-2014, 2014.
Pathak, R., Donahue, N. M., and Pandis, S. N.: Ozonolysis of â-Pinene:
Temperature Dependence of Secondary Organic Aerosol Mass Fraction, Environ.
Sci. Technol., 42, 5081–5086, https://doi.org/10.1021/es070721z, 2008.
Pei, X., Hallquist, M., Eriksson, A. C., Pagels, J., Donahue, N. M., Mentel, T., Svenningsson, B., Brune, W., and Pathak, R. K.: Morphological transformation of soot: investigation of microphysical processes during the condensation of sulfuric acid and limonene ozonolysis product vapors, Atmos. Chem. Phys., 18, 9845–9860, https://doi.org/10.5194/acp-18-9845-2018, 2018.
Peng, J., Hu, M., Guo, S., Du, Z., Zheng, J., Shang, D., Levy Zamora, M.,
Zeng, L., Shao, M., Wu, Y.-S., Zheng, J., Wang, Y., Glen, C. R., Collins, D.
R., Molina, M. J., and Zhang, R.: Markedly enhanced absorption and direct
radiative forcing of black carbon under polluted urban environments,
P. Natl. Acad. Sci. USA, 113, 4266–4271, https://doi.org/10.1073/pnas.1602310113, 2016.
Peng, J., Hu, M., Guo, S., Du, Z., Shang, D., Zheng, J., Zheng, J., Zeng, L., Shao, M., Wu, Y., Collins, D., and Zhang, R.: Ageing and hygroscopicity variation of black carbon particles in Beijing measured by a quasi-atmospheric aerosol evolution study (QUALITY) chamber, Atmos. Chem. Phys., 17, 10333–10348, https://doi.org/10.5194/acp-17-10333-2017, 2017.
Pokhrel, R. P., Wagner, N. L., Langridge, J. M., Lack, D. A., Jayarathne, T., Stone, E. A., Stockwell, C. E., Yokelson, R. J., and Murphy, S. M.: Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC∕OC for aerosol emissions from biomass burning, Atmos. Chem. Phys., 16, 9549–9561, https://doi.org/10.5194/acp-16-9549-2016, 2016.
Qin, Y. M., Tan, H. B., Li, Y. J., Li, Z. J., Schurman, M. I., Liu, L., Wu, C., and Chan, C. K.: Chemical characteristics of brown carbon in atmospheric particles at a suburban site near Guangzhou, China, Atmos. Chem. Phys., 18, 16409–16418, https://doi.org/10.5194/acp-18-16409-2018, 2018.
Radney, J. G., You, R., Zachariah, M. R., and Zangmeister, C. D.: Direct In
Situ Mass Specific Absorption Spectra of Biomass Burning Particles Generated
from Smoldering Hard and Softwoods, Environ. Sci. Technol., 51, 5622–5629,
https://doi.org/10.1021/acs.est.7b00810, 2017.
Ray, D., Singh, S., Ghosh, S. K., and Raha, S.: Dynamic response of light
absorption by PM2.5 bound water-soluble organic carbon to heterogeneous
oxidation, Aerosol. Sci. Tech., 53, 1–11, https://doi.org/10.1080/02786826.2019.1661350,
2019.
Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovik, O., Eleuterio, D. P., Holben, B. N., Reid, E. A., and Zhang, J.: A review of biomass burning emissions part III: intensive optical properties of biomass burning particles, Atmos. Chem. Phys., 5, 827–849, https://doi.org/10.5194/acp-5-827-2005, 2005.
Roden, C. A., Bond, T. C., Conway, S., and Pinel, A. B. O.: Emission factors
and real-time optical properties of particles emitted from traditional wood
burning cookstoves, Environ. Sci. Technol., 40, 6750–6757, https://doi.org/10.1021/es052080i, 2006.
Romonosky, D. E., Gomez, S. L., Lam, J., Carrico, C. M., Aiken, A. C.,
Chylek, P., and Dubey, M. K.: Optical Properties of Laboratory and Ambient
Biomass Burning Aerosols: Elucidating Black, Brown, and Organic Carbon
Components and Mixing Regimes, J. Geophys. Res., 124, 5088–5105, https://doi.org/10.1029/2018jd029892, 2019.
Ruppel, M. M., Isaksson, E., Ström, J., Beaudon, E., Svensson, J., Pedersen, C. A., and Korhola, A.: Increase in elemental carbon values between 1970 and 2004 observed in a 300-year ice core from Holtedahlfonna (Svalbard), Atmos. Chem. Phys., 14, 11447–11460, https://doi.org/10.5194/acp-14-11447-2014, 2014.
Saathoff, H., Naumann, K. H., Schnaiter, M., Schöck, W., Möhler, O.,
Schurath, U., Weingartner, E., Gysel, M., and Baltensperger, U.: Coating of
soot and (NH4)2SO4 particles by ozonolysis products of á-pinene, J.
Aerosol. Sci., 34, 1297–1321, https://doi.org/10.1016/S0021-8502(03)00364-1, 2003.
Saliba, G., Subramanian, R., Saleh, R., Ahern, A. T., Lipsky, E. M.,
Tasoglou, A., Sullivan, R. C., Bhandari, J., Mazzoleni, C., and Robinson, A.
L.: Optical properties of black carbon in cookstove emissions coated with
secondary organic aerosols: Measurements and modeling, Aerosol. Sci.
Tech., 50, 1264–1276, https://doi.org/10.1080/02786826.2016.1225947, 2016.
Santos, G. T. A. D., Santos, P. S. M., and Duarte, A. C.: Vanillic and
syringic acids from biomass burning: Behaviour during Fenton-like oxidation
in atmospheric aqueous phase and in the absence of light, J. Hazard. Mater.,
313, 201–208, https://doi.org/10.1016/j.jhazmat.2016.04.006, 2016.
Santos, P. S. M. and Duarte, A. C.: Fenton-like oxidation of small aromatic
acids from biomass burning in water and in the absence of light:
Implications for atmospheric chemistry, Chemosphere, 119, 786–793, https://doi.org/10.1016/j.chemosphere.2014.08.024, 2015.
Santos, P. S. M., Domingues, M. R. M., and Duarte, A. C.: Fenton-like
oxidation of small aromatic acids from biomass burning in atmospheric water
and in the absence of light: Identification of intermediates and reaction
pathways, Chemosphere, 154, 599–603, https://doi.org/10.1016/j.chemosphere.2016.04.015,
2016.
Schmidl, C., Marr, I. L., Caseiro, A., Kotianová, P., Berner, A., Bauer,
H., Kasper-Giebl, A., and Puxbaum, H.: Chemical characterisation of fine
particle emissions from wood stove combustion of common woods growing in
mid-European Alpine regions, Atmos. Environ., 42, 126–141, https://doi.org/10.1016/j.atmosenv.2007.09.028, 2008.
Schnaiter, M., Linke, C., Mohler, O., Naumann, K. H., Saathoff, H., Wagner,
R., Schurath, U., and Wehner, B.: Absorption amplification of black carbon
internally mixed with secondary organic aerosol, J. Geophys. Res., 110,
D19204, https://doi.org/10.1029/2005JD006046, 2005.
Schwarz, J., Gao, R., Spackman, J., Watts, L., Thomson, D., Fahey, D.,
Ryerson, T., Peischl, J., Holloway, J., and Trainer, M.: Measurement of the
mixing state, mass, and optical size of individual black carbon particles in
urban and biomass burning emissions, Geophys. Res. Lett., 35, L13810, https://doi.org/10.1029/2008GL033968, 2008a.
Schwarz, J. P., Spackman, J. R., Fahey, D. W., Gao, R. S., Lohmann, U.,
Stier, P., Watts, L. A., Thomson, D. S., Lack, D. A., Pfister, L., Mahoney,
M. J., Baumgardner, D., Wilson, J. C., and Reeves, J. M.: Coatings and their
enhancement of black carbon light absorption in the tropical atmosphere, J.
Geophys. Res., 113, D03203, https://doi.org/10.1029/2007JD009042, 2008b.
Shapiro, E. L., Szprengiel, J., Sareen, N., Jen, C. N., Giordano, M. R., and McNeill, V. F.: Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 9, 2289–2300, https://doi.org/10.5194/acp-9-2289-2009, 2009.
Shen, G., Chen, Y., Wei, S., Fu, X., Zhu, Y., and Tao, S.: Mass absorption
efficiency of elemental carbon for source samples from residential biomass
and coal combustions, Atmos. Environ., 79, 79–84, https://doi.org/10.1016/j.atmosenv.2013.05.082, 2013.
Shiraiwa, M., Kondo, Y., Iwamoto, T., and Kita, K.: Amplification of Light
Absorption of Black Carbon by Organic Coating, Aerosol. Sci. Tech., 44,
46–54, https://doi.org/10.1080/02786820903357686, 2010.
Simoneit, B. R. T.: Biomass burning – A review of organic tracers for smoke
from incomplete combustion, Appl. Geochem., 17, 129–162, https://doi.org/10.1016/S0883-2927(01)00061-0, 2002.
Sumlin, B. J., Pandey, A., Walker, M. J., Pattison, R. S., Williams, B. J.,
and Chakrabarty, R. K.: Atmospheric Photooxidation Diminishes Light
Absorption by Primary Brown Carbon Aerosol from Biomass Burning,
Environ. Sci. Tech. Let., 4, 540–545, https://doi.org/10.1021/acs.estlett.7b00393, 2017.
Tang, M., Alexander, J. M., Kwon, D., Estillore, A. D., Laskina, O., Young,
M. A., Kleiber, P. D., and Grassian, V. H.: Optical and Physicochemical
Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction
Spectroscopy, and Hygroscopic Growth, J. Phys. Chem. A,
120, 4155–4166, https://doi.org/10.1021/acs.jpca.6b03425, 2016.
Thamban, N. M., Tripathi, S. N., Moosakutty, S. P., Kuntamukkala, P., and
Kanawade, V. P.: Internally mixed black carbon in the Indo-Gangetic Plain
and its effect on absorption enhancement, Atmos. Res., 197, 211–223, https://doi.org/10.1016/j.atmosres.2017.07.007, 2017.
Tian, J., Wang, Q., Ni, H., Wang, M., Zhou, Y., Han, Y., Shen, Z.,
Pongpiachan, S., Zhang, N., Zhao, Z., Zhang, Q., Zhang, Y., Long, X., and
Cao, J.: Emission Characteristics of Primary Brown Carbon Absorption From
Biomass and Coal Burning: Development of an Optical Emission Inventory for
China, J. Geophys. Res., 124, 1879–1893, https://doi.org/10.1029/2018JD029352, 2019.
Tian, M., Liu, Y., Yang, F., Zhang, L., Peng, C., Chen, Y., Shi, G., Wang,
H., Luo, B., Jiang, C., Li, B., Takeda, N., and Koizumi, K.: Increasing
importance of nitrate formation for heavy aerosol pollution in two
megacities in Sichuan Basin, southwest China, Environ. Pollut., 250,
898–905, https://doi.org/10.1016/j.envpol.2019.04.098, 2019.
Turpin, B. J. and Huntzicker, J. J.: Identification of secondary organic
aerosol episodes and quantitation of primary and secondary organic aerosol
concentrations during SCAQS, Atmos. Environ., 29, 3527–3544, https://doi.org/10.1016/1352-2310(94)00276-Q, 1995.
Ueda, S., Nakayama, T., Taketani, F., Adachi, K., Matsuki, A., Iwamoto, Y., Sadanaga, Y., and Matsumi, Y.: Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan, Atmos. Chem. Phys., 16, 2525–2541, https://doi.org/10.5194/acp-16-2525-2016, 2016.
Virkkula, A., Makela, T., Hillamo, R., Yli-Tuomi, T., Hirsikko, A., Hameri,
K., and Koponen, I. K.: A simple procedure for correcting loading effects of
aethalometer data, J. Air Waste Manage., 57, 1214–1222, https://doi.org/10.3155/1047-3289.57.10.1214, 2007.
Wang, J., Zhang, Q., Chen, M., Collier, S., Zhou, S., Ge, X., Xu, J., Shi,
J., Xie, C., Hu, J., Ge, S., Sun, Y., and Coe, H.: First Chemical
Characterization of Refractory Black Carbon Aerosols and Associated Coatings
over the Tibetan Plateau (4730 m a.s.l), Environ. Sci. Technol., 51,
14072–14082, https://doi.org/10.1021/acs.est.7b03973, 2017a.
Wang, J., Zhao, B., Wang, S., Yang, F., Xing, J., Morawska, L., Ding, A.,
Kulmala, M., Kerminen, V.-M., Kujansuu, J., Wang, Z., Ding, D., Zhang, X.,
Wang, H., Tian, M., Petäjä, T., Jiang, J., and Hao, J.: Particulate
matter pollution over China and the effects of control policies,
Sci. Total Environ., 584–585, 426–447, https://doi.org/10.1016/j.scitotenv.2017.01.027,
2017b.
Wang, Q., Huang, R., Zhao, Z., Cao, J., Ni, H., Tie, X., Zhu, C., Shen, Z.,
Wang, M., and Dai, W.: Effects of photochemical oxidation on the mixing
state and light absorption of black carbon in the urban atmosphere of China,
Environ. Res. Lett., 12, 044012, https://doi.org/10.1088/1748-9326/aa64ea,
2017.
Wang, Q., Cao, J., Han, Y., Tian, J., Zhang, Y., Pongpiachan, S., Zhang, Y.,
Li, L., Niu, X., Shen, Z., Zhao, Z., Tipmanee, D., Bunsomboonsakul, S.,
Chen, Y., and Sun, J.: Enhanced light absorption due to the mixing state of
black carbon in fresh biomass burning emissions, Atmos. Environ., 180,
184–191, https://doi.org/10.1016/j.atmosenv.2018.02.049, 2018a.
Wang, Q., Cao, J., Han, Y., Tian, J., Zhu, C., Zhang, Y., Zhang, N., Shen,
Z., Ni, H., Zhao, S., and Wu, J.: Sources and physicochemical
characteristics of black carbon aerosol from the southeastern Tibetan
Plateau: internal mixing enhances light absorption, Atmos. Chem. Phys., 18,
4639–4656, https://doi.org/10.5194/acp-18-4639-2018, 2018b.
Wang, Q. Y., Huang, R. J., Cao, J. J., Han, Y. M., Wang, G. H., Li, G. H.,
Wang, Y. C., Dai, W. T., Zhang, R. J., and Zhou, Y. Q.: Mixing State of
Black Carbon Aerosol in a Heavily Polluted Urban Area of China: Implications
for Light Absorption Enhancement, Aerosol. Sci. Tech., 48, 689–697, https://doi.org/10.1080/02786826.2014.917758, 2014.
Wang, Y., Chen, Y., Wu, Z., Shang, D., Bian, Y., Du, Z., Schmitt, S. H., Su, R., Gkatzelis, G. I., Schlag, P., Hohaus, T., Voliotis, A., Lu, K., Zeng, L., Zhao, C., Alfarra, R., McFiggans, G., Wiedensohler, A., Kiendler-Scharr, A., Zhang, Y., and Hu, M.: Mutual promotion effect between aerosol particle liquid water and nitrate formation lead to severe nitrate-dominated particulate matter pollution and low visibility, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-716, in review, 2019.
Wang, Y. Q.: MeteoInfo: GIS software for meteorological data visualization
and analysis, Meteorol. Appl., 21, 360–368, https://doi.org/10.1002/met.1345, 2014.
Wang, Y. Q.: An Open Source Software Suite for Multi-Dimensional
Meteorological Data Computation and Visualisation, Journal of Open Research
Software, 7, 21, https://doi.org/10.5334/jors.267, 2019.
Warren, B., Austin, R. L., and Cocker, D. R.: Temperature dependence of
secondary organic aerosol, Atmos. Environ., 43, 3548–3555, https://doi.org/10.1016/j.atmosenv.2009.04.011, 2009.
Wei, Y., Ma, L., Cao, T., Zhang, Q., Wu, J., Buseck, P. R., and Thompson, J.
E.: Light Scattering and Extinction Measurements Combined with Laser-Induced
Incandescence for the Real-Time Determination of Soot Mass Absorption Cross
Section, Anal. Chem., 85, 9181–9188, https://doi.org/10.1021/ac401901b, 2013.
Weyant, C. L., Shepson, P. B., Subramanian, R., Cambaliza, M. O. L.,
Heimburger, A., McCabe, D., Baum, E., Stirm, B. H., and Bond, T. C.: Black
Carbon Emissions from Associated Natural Gas Flaring, Environ. Sci.
Technol., 50, 2075–2081, https://doi.org/10.1021/acs.est.5b04712, 2016.
Wilcox, E. M., Thomas, R. M., Praveen, P. S., Pistone, K., Bender, F. A.-M.,
and Ramanathan, V.: Black carbon solar absorption suppresses turbulence in
the atmospheric boundary layer, P. Natl. Acad. Sci., 113, 11794–11799, https://doi.org/10.1073/pnas.1525746113, 2016.
Williams, M. A., Kumar, T. V. L., and Rao, D. N.: Characterizing black
carbon aerosols in relation to atmospheric boundary layer height during wet
removal processes over a semi urban location, J. Atmos. Sol.-Terr. Phy., 182,
165–176, https://doi.org/10.1016/j.jastp.2018.11.018, 2019.
Wong, J. P. S., Tsagkaraki, M., Tsiodra, I., Mihalopoulos, N., Violaki, K., Kanakidou, M., Sciare, J., Nenes, A., and Weber, R. J.: Atmospheric evolution of molecular-weight-separated brown carbon from biomass burning, Atmos. Chem. Phys., 19, 7319–7334, https://doi.org/10.5194/acp-19-7319-2019, 2019.
Wu, C.: Histbox, Zenodo, https://doi.org/10.5281/zenodo.832405, 2020a.
Wu, C.: MRS, Zenodo, https://doi.org/10.5281/zenodo.832395, 2020b.
Wu, C.: Scatter Plot, Zenodo, https://doi.org/10.5281/zenodo.832416, 2020c.
Wu, C. and Yu, J. Z.: Determination of primary combustion source organic carbon-to-elemental carbon (OC∕EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method, Atmos. Chem. Phys., 16, 5453–5465, https://doi.org/10.5194/acp-16-5453-2016, 2016.
Wu, C. and Yu, J. Z.: Evaluation of linear regression techniques for atmospheric applications: the importance of appropriate weighting, Atmos. Meas. Tech., 11, 1233–1250, https://doi.org/10.5194/amt-11-1233-2018, 2018.
Wu, C., Ng, W. M., Huang, J., Wu, D., and Yu, J. Z.: Determination of
Elemental and Organic Carbon in PM2.5 in the Pearl River Delta Region:
Inter-Instrument (Sunset vs. DRI Model 2001 Thermal/Optical Carbon Analyzer)
and Inter-Protocol Comparisons (IMPROVE vs. ACE-Asia Protocol), Aerosol.
Sci. Tech., 46, 610–621, https://doi.org/10.1080/02786826.2011.649313, 2012.
Wu, C., Wu, D., and Yu, J. Z.: Quantifying black carbon light absorption enhancement with a novel statistical approach, Atmos. Chem. Phys., 18, 289–309, https://doi.org/10.5194/acp-18-289-2018, 2018.
Wu, C., Wu, D., and Yu, J. Z.: Estimation and Uncertainty Analysis of
Secondary Organic Carbon Using One-Year of Hourly Organic and Elemental
Carbon Data, J. Geophys. Res., 124, 2774–2795, https://doi.org/10.1029/2018JD029290,
2019.
Xia, Y., Zhao, Y., and Nielsen, C. P.: Benefits of China's efforts in
gaseous pollutant control indicated by the bottom-up emissions and satellite
observations 2000–2014, Atmos. Environ., 136, 43–53, https://doi.org/10.1016/j.atmosenv.2016.04.013, 2016.
Xie, C., Xu, W., Wang, J., Liu, D., Ge, X., Zhang, Q., Wang, Q., Du, W.,
Zhao, J., Zhou, W., Li, J., Fu, P., Wang, Z., Worsnop, D., and Sun, Y.:
Light absorption enhancement of black carbon in urban Beijing in summer,
Atmos. Environ., 213, 499–504, https://doi.org/10.1016/j.atmosenv.2019.06.041, 2019.
Xie, S., Zhang, Y., Qi, L., and Tang, X.: Spatial distribution of
traffic-related pollutant concentrations in street canyons, Atmos. Environ.,
37, 3213–3224, https://doi.org/10.1016/S1352-2310(03)00321-2, 2003.
Xu, J., Cui, T., Fowler, B., Fankhauser, A., Yang, K., Surratt, J. D., and
McNeill, V. F.: Aerosol Brown Carbon from Dark Reactions of Syringol in
Aqueous Aerosol Mimics, ACS Earth and Space Chemistry, 2, 608–617, https://doi.org/10.1021/acsearthspacechem.8b00010, 2018a.
Xu, J., Wang, Q., Deng, C., McNeill, V. F., Fankhauser, A., Wang, F., Zheng,
X., Shen, J., Huang, K., and Zhuang, G.: Insights into the characteristics
and sources of primary and secondary organic carbon: High time resolution
observation in urban Shanghai, Environ. Pollut., 233, 1177–1187, https://doi.org/10.1016/j.envpol.2017.10.003, 2018b.
Xu, Q., Wang, S., Jiang, J., Bhattarai, N., Li, X., Chang, X., Qiu, X.,
Zheng, M., Hua, Y., and Hao, J.: Nitrate dominates the chemical composition
of PM2.5 during haze event in Beijing, China, Sci. Total Environ., 689, 1293–1303, https://doi.org/10.1016/j.scitotenv.2019.06.294, 2019.
Xu, X., Zhao, W., Zhang, Q., Wang, S., Fang, B., Chen, W., Venables, D. S., Wang, X., Pu, W., Wang, X., Gao, X., and Zhang, W.: Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign, Atmos. Chem. Phys., 16, 6421–6439, https://doi.org/10.5194/acp-16-6421-2016, 2016.
Xu, X., Zhao, W., Qian, X., Wang, S., Fang, B., Zhang, Q., Zhang, W., Venables, D. S., Chen, W., Huang, Y., Deng, X., Wu, B., Lin, X., Zhao, S., and Tong, Y.: The influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single-scattering albedo, Atmos. Chem. Phys., 18, 16829–16844, https://doi.org/10.5194/acp-18-16829-2018, 2018.
Xue, H. X., Khalizov, A. F., Wang, L., Zheng, J., and Zhang, R. Y.: Effects
of dicarboxylic acid coating on the optical properties of soot, Phys.
Chem. Chem. Phys., 11, 7869–7875, https://doi.org/10.1039/b904129j, 2009.
Xue, J., Yuan, Z., Lau, A. K. H., and Yu, J. Z.: Insights into factors
affecting nitrate in PM2.5 in a polluted high NOx environment through hourly
observations and size distribution measurements, J. Geophys. Res., 119,
4888–4902, https://doi.org/10.1002/2013JD021108, 2014.
Yao, Z., Zhang, Y., Shen, X., Wang, X., Wu, Y., and He, K.: Impacts of
temporary traffic control measures on vehicular emissions during the Asian
Games in Guangzhou, China, J. Air Waste Manage., 63, 11–19, https://doi.org/10.1080/10962247.2012.724041, 2013.
Ye, Z., Qu, Z., Ma, S., Luo, S., Chen, Y., Chen, H., Chen, Y., Zhao, Z.,
Chen, M., and Ge, X.: A comprehensive investigation of aqueous-phase
photochemical oxidation of 4-ethylphenol, Sci. Total Environ., 685, 976–985,
https://doi.org/10.1016/j.scitotenv.2019.06.276, 2019.
Ying, Q., Feng, M., Song, D., Wu, L., Hu, J., Zhang, H., Kleeman, M. J., and
Li, X.: Improve regional distribution and source apportionment of PM2.5
trace elements in China using inventory-observation constrained emission
factors, Sci. Total Environ., 624, 355–365, https://doi.org/10.1016/j.scitotenv.2017.12.138, 2018.
You, R., Radney, J. G., Zachariah, M. R., and Zangmeister, C. D.: Measured
Wavelength-Dependent Absorption Enhancement of Internally Mixed Black Carbon
with Absorbing and Nonabsorbing Materials, Environ. Sci. Technol., 50,
7982–7990, https://doi.org/10.1021/acs.est.6b01473, 2016.
Zhang, G., Bi, X., Li, L., Chan, L. Y., Li, M., Wang, X., Sheng, G., Fu, J., and Zhou, Z.: Mixing state of individual submicron carbon-containing particles during spring and fall seasons in urban Guangzhou, China: a case study, Atmos. Chem. Phys., 13, 4723–4735, https://doi.org/10.5194/acp-13-4723-2013, 2013.
Zhang, G., Han, B., Bi, X., Dai, S., Huang, W., Chen, D., Wang, X., Sheng,
G., Fu, J., and Zhou, Z.: Characteristics of individual particles in the
atmosphere of Guangzhou by single particle mass spectrometry, Atmos. Res.,
153, 286–295, https://doi.org/10.1016/j.atmosres.2014.08.016, 2015.
Zhang, G. H., Bi, X. H., He, J. J., Chen, D. H., Chan, L. Y., Xie, G. W.,
Wang, X. M., Sheng, G. Y., Fu, J. M., and Zhou, Z.: Variation of secondary
coatings associated with elemental carbon by single particle analysis,
Atmos. Environ., 92, 162–170, https://doi.org/10.1016/j.atmosenv.2014.04.018, 2014.
Zhang, R. Y., Khalizov, A. F., Pagels, J., Zhang, D., Xue, H. X., and
McMurry, P. H.: Variability in morphology, hygroscopicity, and optical
properties of soot aerosols during atmospheric processing, P. Natl. Acad. Sci.
USA, 105, 10291–10296, https://doi.org/10.1073/pnas.0804860105, 2008.
Zhang, X., Mao, M., Yin, Y., and Wang, B.: Absorption enhancement of aged
black carbon aerosols affected by their microphysics: A numerical
investigation, J. Quant. Spectrosc. Ra.,
202, 90–97, https://doi.org/10.1016/j.jqsrt.2017.07.025, 2017.
Zhang, Y., Favez, O., Canonaco, F., Liu, D., Močnik, G., Amodeo, T.,
Sciare, J., Prévôt, A. S. H., Gros, V., and Albinet, A.: Evidence of
major secondary organic aerosol contribution to lensing effect black carbon
absorption enhancement, Climate and Atmospheric Science, 1, 47, https://doi.org/10.1038/s41612-018-0056-2, 2018a.
Zhang, Y., Zhang, Q., Cheng, Y., Su, H., Li, H., Li, M., Zhang, X., Ding, A., and He, K.: Amplification of light absorption of black carbon associated with air pollution, Atmos. Chem. Phys., 18, 9879–9896, https://doi.org/10.5194/acp-18-9879-2018, 2018b.
Zhong, M. and Jang, M.: Light absorption coefficient measurement of SOA
using a UV–Visible spectrometer connected with an integrating sphere,
Atmos. Environ., 45, 4263–4271, https://doi.org/10.1016/j.atmosenv.2011.04.082, 2011.
Zhong, M. and Jang, M.: Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight, Atmos. Chem. Phys., 14, 1517–1525, https://doi.org/10.5194/acp-14-1517-2014, 2014.
Zhou, Y., Huang, X. H. H., Griffith, S. M., Li, M., Li, L., Zhou, Z., Wu,
C., Meng, J., Chan, C. K., Louie, P. K. K., and Yu, J. Z.: A field
measurement based scaling approach for quantification of major ions, organic
carbon, and elemental carbon using a single particle aerosol mass
spectrometer, Atmos. Environ., 143, 300–312, https://doi.org/10.1016/j.atmosenv.2016.08.054, 2016.
Short summary
Atmospheric aging processes (AAPs) can lead to black carbon (BC) light absorption enhancement (Eabs), which remained poorly characterized at a long timescale. By applying a newly developed approach, the minimum R squared method (MRS), this study investigated the temporal variations of BC Eabs at both seasonal and diel scales in an urban environment. Factors affecting the temporal variability of BC Eabs were also analyzed, including variability in emission sources and various types of AAPs.
Atmospheric aging processes (AAPs) can lead to black carbon (BC) light absorption enhancement...
Altmetrics
Final-revised paper
Preprint