Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 16, issue 13
Atmos. Chem. Phys., 16, 8431–8446, 2016
https://doi.org/10.5194/acp-16-8431-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 8431–8446, 2016
https://doi.org/10.5194/acp-16-8431-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Jul 2016

Research article | 12 Jul 2016

Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China

Heidi H. Y. Cheung1, Haobo Tan2, Hanbing Xu3, Fei Li2, Cheng Wu1, Jian Z. Yu1,4, and Chak K. Chan1,5,6 Heidi H. Y. Cheung et al.
  • 1Division of Environment, Hong Kong University of Science and Technology, Hong Kong, China
  • 2Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China
  • 3Sun Yat-sen University, Guangzhou, China
  • 4Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China
  • 5Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Hong Kong, China
  • 6School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Abstract. Simultaneous measurements of aerosol volatility and carbonaceous matters were conducted at a suburban site in Guangzhou, China, in February and March 2014 using a volatility tandem differential mobility analyzer (VTDMA) and an organic carbon/elemental carbon (OC ∕ EC) analyzer. Low volatility (LV) particles, with a volatility shrink factor (VSF) at 300 °C exceeding 0.9, contributed 5 % of number concentrations of the 40 nm particles and 11–15 % of the 80–300 nm particles. They were composed of non-volatile material externally mixed with volatile material, and therefore did not evaporate significantly at 300 °C. Non-volatile material mixed internally with the volatile material was referred to as medium volatility (MV, 0.4  <  VSF  <  0.9) and high volatility (HV, VSF  <  0.4) particles. The MV and HV particles contributed 57–71 % of number concentration for the particles between 40 and 300 nm in size. The average EC and OC concentrations measured by the OC ∕ EC analyzer were 3.4 ± 3.0 and 9.0 ± 6.0 µg m−3, respectively. Non-volatile OC evaporating at 475 °C or above, together with EC, contributed 67 % of the total carbon mass. In spite of the daily maximum and minimum, the diurnal variations in the volume fractions of the volatile material, HV, MV and LV residuals were less than 15 % for the 80–300 nm particles. Back trajectory analysis also suggests that over 90 % of the air masses influencing the sampling site were well aged as they were transported at low altitudes (below 1500 m) for over 40 h before arrival. Further comparison with the diurnal variations in the mass fractions of EC and the non-volatile OC in PM2.5 suggests that the non-volatile residuals may be related to both EC and non-volatile OC in the afternoon, during which the concentration of aged organics increased. A closure analysis of the total mass of LV and MV residuals and the mass of EC or the sum of EC and non-volatile OC was conducted. It suggests that non-volatile OC, in addition to EC, was one of the components of the non-volatile residuals measured by the VTDMA in this study.

Publications Copernicus
Download
Short summary
We present simultaneous measurements of aerosol volatility and carbonaceous matters in Guangzhou, China, in Feb and Mar 2014 using a VTDMA and OC / EC analyzer. Low volatility particles with no significant evaporation at 300° C in the VTDMA contributed 5–15 % of number concentrations of the 40–300 nm particles. Mass closure suggests that non-volatile organic carbon, in addition to elemental carbon, was one of the components of the non-volatile residuals measured by the VTDMA in this study.
We present simultaneous measurements of aerosol volatility and carbonaceous matters in...
Citation
Altmetrics
Final-revised paper
Preprint