Articles | Volume 20, issue 4
Atmos. Chem. Phys., 20, 2177–2199, 2020
Atmos. Chem. Phys., 20, 2177–2199, 2020

Research article 26 Feb 2020

Research article | 26 Feb 2020

The day-to-day co-variability between mineral dust and cloud glaciation: a proxy for heterogeneous freezing

Diego Villanueva et al.

Related authors

The impact of mineral dust on the day-to-day variability of stratiform cloud glaciation occurrence
Diego Villanueva, Bernd Heinold, Patric Seifert, Hartwig Deneke, Martin Radenz, and Ina Tegen
Atmos. Chem. Phys. Discuss.,,, 2018
Revised manuscript not accepted
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Observing the timescales of aerosol–cloud interactions in snapshot satellite images
Edward Gryspeerdt, Tom Goren, and Tristan W. P. Smith
Atmos. Chem. Phys., 21, 6093–6109,,, 2021
Short summary
Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220,,, 2021
Short summary
How frequent is natural cloud seeding from ice cloud layers ( < −35 °C) over Switzerland?
Ulrike Proske, Verena Bessenbacher, Zane Dedekind, Ulrike Lohmann, and David Neubauer
Atmos. Chem. Phys., 21, 5195–5216,,, 2021
Short summary
Processes contributing to cloud dissipation and formation events on the North Slope of Alaska
Joseph Sedlar, Adele Igel, and Hagen Telg
Atmos. Chem. Phys., 21, 4149–4167,,, 2021
Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment
Julia Maillard, François Ravetta, Jean-Christophe Raut, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 21, 4079–4101,,, 2021
Short summary

Cited articles

Albani, S., Mahowald, N. M., Delmonte, B., Maggi, V., and Winckler, G.: Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates, Clim. Dynam., 38, 1731–1755,, 2012. a
Ansmann, A., Tesche, M., Althausen, D., Müller, D., Seifert, P., Freudenthaler, V., Heese, B., Wiegner, M., Pisani, G., Knippertz, P., and Dubovik, O.: Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment, J. Geophys. Res.-Atmos., 113,, 2008. a, b
Ansmann, A., Rittmeister, F., Engelmann, R., Basart, S., Jorba, O., Spyrou, C., Remy, S., Skupin, A., Baars, H., Seifert, P., Senf, F., and Kanitz, T.: Profiling of Saharan dust from the Caribbean to western Africa – Part 2: Shipborne lidar measurements versus forecasts, Atmos. Chem. Phys., 17, 14987–15006,, 2017. a, b
Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 498, 355–358,, 2013. a, b, c
Augustin-Bauditz, S., Wex, H., Denjean, C., Hartmann, S., Schneider, J., Schmidt, S., Ebert, M., and Stratmann, F.: Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior, Atmos. Chem. Phys., 16, 5531–5543,, 2016. a
Short summary
Spaceborne retrievals of cloud phase were analysed together with an atmospheric composition model to assess the global frequency of ice and liquid clouds. This analysis showed that at equal temperature the average occurrence of ice clouds increases for higher dust mixing ratios on a day-to-day basis in the middle and high latitudes. This indicates that mineral dust may have a strong impact on the occurrence of ice clouds even in remote areas.
Final-revised paper