Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-13497-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-13497-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII – Criegee intermediates
R. Anthony Cox
CORRESPONDING AUTHOR
Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EP, UK
Markus Ammann
Laboratory of Radiochemistry and Environmental Chemistry, OFLB 103,
Paul Scherrer Institut, 5232 Villigen, Switzerland
Division of Atmospheric
Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, Germany
Hartmut Herrmann
Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
Michael E. Jenkin
CORRESPONDING AUTHOR
Atmospheric Chemistry Services, Okehampton, Devon, EX20 4QB, UK
V. Faye McNeill
Department of Chemical Engineering, Columbia University, New York,
NY 10027, USA
Abdelwahid Mellouki
ICARE-CNRS, 1 C Av. de la Recherche Scientifique, 45071 Orléans
CEDEX 2, France
Jürgen Troe
Institute of Physical Chemistry, University of Göttingen,
Tammannstr. 6, 37077 Göttingen, Germany
Timothy J. Wallington
Ford Motor Company, Research and Advanced Engineering, Mail Drop
RIC-2122, Dearborn, MI 48121-2053, USA
Related authors
R. Anthony Cox, Markus Ammann, John N. Crowley, Paul T. Griffiths, Hartmut Herrmann, Erik H. Hoffmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Christopher J. Penkett, Andreas Tilgner, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 13011–13018, https://doi.org/10.5194/acp-21-13011-2021, https://doi.org/10.5194/acp-21-13011-2021, 2021
Short summary
Short summary
The term open-air factor was coined in the 1960s, establishing that rural air had powerful germicidal properties possibly resulting from immediate products of the reaction of ozone with alkenes, unsaturated compounds ubiquitously present in natural and polluted environments. We have re-evaluated those early experiments, applying the recently substantially improved knowledge, and put them into the context of the lifetime of aerosol-borne pathogens that are so important in the Covid-19 pandemic.
Abdelwahid Mellouki, Markus Ammann, R. Anthony Cox, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 4797–4808, https://doi.org/10.5194/acp-21-4797-2021, https://doi.org/10.5194/acp-21-4797-2021, 2021
Short summary
Short summary
Volatile organic compounds play an important role in atmospheric chemistry. This article, the eighth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers the gas-phase reactions of organic species with four, or more, carbon atoms (≥ C4) including thermal reactions of closed-shell organic species with HO and NO3 radicals and their photolysis. These data are important for atmospheric models.
Amavi N. Silva, Surandokht Nikzad, Theresa Barthelmeß, Anja Engel, Hartmut Hermann, Manuela van Pinxteren, Kai Wirtz, Oliver Wurl, and Markus Schartau
EGUsphere, https://doi.org/10.5194/egusphere-2025-4050, https://doi.org/10.5194/egusphere-2025-4050, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We conducted the first meta-analysis combining marine and freshwater studies to understand organic matter enrichment in the surface microlayer. Nitrogen-rich, particulate compounds are often enriched, with patterns varying by multiple factors. We recommend tracking both absolute concentrations and normalized enrichment patterns to better assess ecological conditions. Our study also introduces improved statistical methods for analyzing and comparing surface microlayer data.
Yaru Wang, Dominik van Pinxteren, Andreas Tilgner, Erik Hans Hoffmann, Max Hell, Susanne Bastian, and Hartmut Herrmann
Atmos. Chem. Phys., 25, 8907–8927, https://doi.org/10.5194/acp-25-8907-2025, https://doi.org/10.5194/acp-25-8907-2025, 2025
Short summary
Short summary
Tropospheric ground-level ozone (O3) is a global air quality pollutant and greenhouse gas. Long-term O3 trends from 16 stations in Saxony, Germany, were compared over three periods, revealing worsened O3 pollution over the last decade. O3 formation has been volatile organic compound (VOC)-limited at traffic and urban sites for the past 20 years. To mitigate O3 pollution, moderate nitrogen oxides and additional VOC controls, particularly in solvent use, should be prioritized in the coming years.
Vikram Pratap, Christopher J. Hennigan, Bastian Stieger, Andreas Tilgner, Laurent Poulain, Dominik van Pinxteren, Gerald Spindler, and Hartmut Herrmann
Atmos. Chem. Phys., 25, 8871–8889, https://doi.org/10.5194/acp-25-8871-2025, https://doi.org/10.5194/acp-25-8871-2025, 2025
Short summary
Short summary
In this work, we characterize trends in aerosol pH and its controlling factors during the period 2010–2019 at the Melpitz research station in eastern Germany. We find strong trends in aerosol pH and major inorganic species in response to changing emissions. We conduct a detailed thermodynamic analysis of the aerosol system and discuss implications for controlling particulate matter in the region.
Kevin Kilchhofer, Markus Ammann, Laura Torrent, Rico K. Y. Cheung, and Peter A. Alpert
Atmos. Chem. Phys., 25, 8061–8086, https://doi.org/10.5194/acp-25-8061-2025, https://doi.org/10.5194/acp-25-8061-2025, 2025
Short summary
Short summary
Aerosol particles composed of metal complexes generate radicals as a result of photochemical reactions. The reactive species generated are hazardous to human health. We report microscopy data with particles composed of an organic proxy exposed to UV light. We found that copper influenced the reoxidation and initial iron reduction via photolysis of the complex. New model results suggest that we need to account for decreased photochemical activity and use a copper-induced reoxidation reaction.
Chenjie Yu, Paola Formenti, Joel F. de Brito, Astrid Bauville, Antonin Bergé, Hichem Bouzidi, Mathieu Cazaunau, Manuela Cirtog, Claudia Di Biagio, Ludovico Di Antonio, Cécile Gaimoz, Franck Maisonneuve, Pascal Zapf, Tobias Seubert, Simone T. Andersen, Patrick Dewald, Gunther N. T. E. Türk, John N. Crowley, Alexandre Kukui, Chaoyang Xue, Cyrielle Denjean, Olivier Garrouste, Jean-Claude Etienne, Huihui Wu, James D. Allan, Dantong Liu, Yangzhou Wu, Christopher Cantrell, and Vincent Michoud
EGUsphere, https://doi.org/10.5194/egusphere-2025-2667, https://doi.org/10.5194/egusphere-2025-2667, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We presented a field measurement in a Paris suburban forest region to characterise the impacts of photochemical aging process on aerosol physical chemical properties. Photochemical production of organic aerosols increased forest fine particle mass and significantly enhanced absorption of short-wavelength sunlight. This study highlights the critical need to incorporate light absorbing carbonaceous particles formation mechanisms into models to accurately simulate their direct radiative impacts.
Donger Lai, Yanxin Bai, Zijing Zhang, Pui-Kin So, Yong Jie Li, Ying-Lung Steve Tse, Ying-Yeung Yeung, Thomas Schaefer, Hartmut Herrmann, Jian Zhen Yu, Yuchen Wang, and Man Nin Chan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2743, https://doi.org/10.5194/egusphere-2025-2743, 2025
Short summary
Short summary
Aqueous-phase •OH oxidation can potentially act as an important atmospheric sink for α-pinene-derived organosulfates (OSs). Such oxidation can also generate a variety of new OS products, and can be as a potential source for some atmospheric OSs with previously unknown origins.
Kevin Kilchhofer, Alexandre Barth, Battist Utinger, Markus Kalberer, and Markus Ammann
Aerosol Research, 3, 337–349, https://doi.org/10.5194/ar-3-337-2025, https://doi.org/10.5194/ar-3-337-2025, 2025
Short summary
Short summary
We report a substantial buildup of reactive molecules (due to sunlight) in organic particulate matter, causing adverse health effects. Metals, which occur naturally or are emitted by traffic, can complex with organic materials and initiate photochemical processes. At low humidity, organic particles may become highly viscous, which allows for the accumulation of reactive species. We found that copper acts as an reducing species to remove some of these harmful species from particles.
Simone T. Andersen, Rolf Sander, Patrick Dewald, Laura Wüst, Tobias Seubert, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Chaoyang Xue, Abdelwahid Mellouki, Alexandre Kukui, Vincent Michoud, Manuela Cirtog, Mathieu Cazaunau, Astrid Bauville, Hichem Bouzidi, Paola Formenti, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Christopher Cantrell, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 25, 5893–5909, https://doi.org/10.5194/acp-25-5893-2025, https://doi.org/10.5194/acp-25-5893-2025, 2025
Short summary
Short summary
Measurements and modelling of reactive nitrogen gases observed in a suburban temperate forest in Rambouillet, France, circa 50 km southwest of Paris in 2022 indicate that the biosphere rapidly scavenges organic nitrates of mixed biogenic and anthropogenic origin, resulting in short lifetimes for, for example, alkyl nitrates and peroxy nitrates.
Ruiqi Man, Yishu Zhu, Zhijun Wu, Peter Aaron Alpert, Bingbing Wang, Jing Dou, Jie Chen, Yan Zheng, Yanli Ge, Qi Chen, Shiyi Chen, Xiangrui Kong, Markus Ammann, and Min Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2301, https://doi.org/10.5194/egusphere-2025-2301, 2025
Short summary
Short summary
The particle chemical morphology is important to atmospheric multiphase and heterogeneous chemistry. This work directly observed the core-shell structure and water uptake behavior of individual submicron aerosol particles at an urban site and elucidated the potential impact on particle reactive uptake and heterogeneous reactions.
Peng Cheng, Gilles Mailhot, Mohamed Sarakha, Guillaume Voyard, Daniele Scheres Firak, Thomas Schaefer, Hartmut Herrmann, and Marcello Brigante
EGUsphere, https://doi.org/10.5194/egusphere-2025-1744, https://doi.org/10.5194/egusphere-2025-1744, 2025
Short summary
Short summary
This study investigates the complexation of Fe(II) and Fe(III) with glutamic acid under cloud water conditions and the effect on Fenton and photo-Fenton reactions, hydroxyl radical formation, and their impact on amino acid oxidation.
Laura Wüst, Patrick Dewald, Gunther N. T. E. Türk, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 18, 1943–1959, https://doi.org/10.5194/amt-18-1943-2025, https://doi.org/10.5194/amt-18-1943-2025, 2025
Short summary
Short summary
Detection of NO2 via cavity ring-down spectroscopy (CRDS) after thermal dissociation (TD) of alkyl and peroxy nitrates can be used to detect total atmospheric organic nitrates originating from the interaction between biogenic emissions of volatile organic compounds and nitrogen oxides of anthropogenic origin. Here we present an improved TD-CRDS technique that avoids systematic bias resulting from secondary chemistry in the heated inlets and that can be deployed in regions with strong biogenic emissions.
Hanna Wiedenhaus, Roland Schrödner, Ralf Wolke, Marie L. Luttkus, Shubhi Arora, Laurent Poulain, Radek Lhotka, Petr Vodička, Jaroslav Schwarz, Petra Pokorna, Jakub Ondráček, Vladimir Ždímal, Hartmut Herrmann, and Ina Tegen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1225, https://doi.org/10.5194/egusphere-2025-1225, 2025
Short summary
Short summary
This study examines winter air quality in Central Europe, focusing on the impact of domestic heating. Using a chemical transport model and measurements, it was found that the model underestimated organic particle concentrations. This was due to an underestimation of gases from domestic heating that form secondary organic particles. Improving the model by increasing these emissions and the particle formation led to better results, demonstrating the important role of heating emissions in winter.
Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker
Atmos. Chem. Phys., 25, 741–758, https://doi.org/10.5194/acp-25-741-2025, https://doi.org/10.5194/acp-25-741-2025, 2025
Short summary
Short summary
Aerosol hygroscopicity has been investigated at a sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Katerina Seitanidi, Pourya Shahpoury, Eduardo J. d. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech., 18, 177–195, https://doi.org/10.5194/amt-18-177-2025, https://doi.org/10.5194/amt-18-177-2025, 2025
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP dithiothreitol assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardisation in OP procedures.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William R. Stockwell, Luc Vereecken, and Timothy J. Wallington
Atmos. Chem. Phys., 24, 13317–13339, https://doi.org/10.5194/acp-24-13317-2024, https://doi.org/10.5194/acp-24-13317-2024, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes in the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses the advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
T. Nash Skipper, Emma L. D'Ambro, Forwood C. Wiser, V. Faye McNeill, Rebecca H. Schwantes, Barron H. Henderson, Ivan R. Piletic, Colleen B. Baublitz, Jesse O. Bash, Andrew R. Whitehill, Lukas C. Valin, Asher P. Mouat, Jennifer Kaiser, Glenn M. Wolfe, Jason M. St. Clair, Thomas F. Hanisco, Alan Fried, Bryan K. Place, and Havala O.T. Pye
Atmos. Chem. Phys., 24, 12903–12924, https://doi.org/10.5194/acp-24-12903-2024, https://doi.org/10.5194/acp-24-12903-2024, 2024
Short summary
Short summary
We develop the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 2 to improve predictions of formaldehyde in ambient air compared to satellite-, aircraft-, and ground-based observations. With the updated chemistry, we estimate the cancer risk from inhalation exposure to ambient formaldehyde across the contiguous USA and predict that 40 % of this risk is controllable through reductions in anthropogenic emissions of nitrogen oxides and reactive organic carbon.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
Shengqian Zhou, Ying Chen, Shan Huang, Xianda Gong, Guipeng Yang, Honghai Zhang, Hartmut Herrmann, Alfred Wiedensohler, Laurent Poulain, Yan Zhang, Fanghui Wang, Zongjun Xu, and Ke Yan
Earth Syst. Sci. Data, 16, 4267–4290, https://doi.org/10.5194/essd-16-4267-2024, https://doi.org/10.5194/essd-16-4267-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is a crucial natural reactive gas in the global climate system due to its great contribution to aerosols and subsequent impact on clouds over remote oceans. Leveraging machine learning techniques, we constructed a long-term global sea surface DMS gridded dataset with daily resolution. Compared to previous datasets, our new dataset holds promise for improving atmospheric chemistry modeling and advancing our comprehension of the climate effects associated with oceanic DMS.
Patrick Dewald, Tobias Seubert, Simone T. Andersen, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Chaoyang Xue, Abdelwahid Mellouki, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 8983–8997, https://doi.org/10.5194/acp-24-8983-2024, https://doi.org/10.5194/acp-24-8983-2024, 2024
Short summary
Short summary
In the scope of a field campaign in a suburban forest near Paris in the summer of 2022, we measured the reactivity of the nitrate radical NO3 towards biogenic volatile organic compounds (BVOCs; e.g. monoterpenes) mainly below but also above the canopy. NO3 reactivity was the highest during nights with strong temperature inversions and decreased strongly with height. Reactions with BVOCs were the main removal process of NO3 throughout the diel cycle below the canopy.
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024, https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Short summary
The initial step of interfacial and multiphase chemical processes involves adsorption and desorption of gas species. This study demonstrates the role of desorption energy governing the residence time of the gas species at the environmental interface. A parameterization is formulated that enables the prediction of desorption energy based on the molecular weight, polarizability, and oxygen-to-carbon ratio of the desorbing chemical species. Its application to gas–particle interactions is discussed.
Anil Kumar Mandariya, Junteng Wu, Anne Monod, Paola Formenti, Bénédicte Picquet-Varrault, Mathieu Cazaunau, Stephan Mertes, Laurent Poulain, Antonin Berge, Edouard Pangui, Andreas Tilgner, Thomas Schaefer, Liang Wen, Hartmut Herrmann, and Jean-François Doussin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-206, https://doi.org/10.5194/amt-2023-206, 2024
Publication in AMT not foreseen
Short summary
Short summary
An optimized and controlled protocol for generating quasi-adiabatic expansion clouds under simulated dark and light conditions was presented. The irradiated clouds clearly showed a gradual activation of seed particles into droplets. In contrast, non-irradiated clouds faced a flash activation. This paper will lay the foundation for multiphase photochemical studies implying water-soluble volatile organic compounds and particulate matter formation during cloud formation-evaporation cycles.
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Sebastian Zeppenfeld, Manuela van Pinxteren, Markus Hartmann, Moritz Zeising, Astrid Bracher, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 15561–15587, https://doi.org/10.5194/acp-23-15561-2023, https://doi.org/10.5194/acp-23-15561-2023, 2023
Short summary
Short summary
Marine carbohydrates are produced in the surface of the ocean, enter the atmophere as part of sea spray aerosol particles, and potentially contribute to the formation of fog and clouds. Here, we present the results of a sea–air transfer study of marine carbohydrates conducted in the high Arctic. Besides a chemo-selective transfer, we observed a quick atmospheric aging of carbohydrates, possibly as a result of both biotic and abiotic processes.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Samira Atabakhsh, Laurent Poulain, Gang Chen, Francesco Canonaco, André S. H. Prévôt, Mira Pöhlker, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 6963–6988, https://doi.org/10.5194/acp-23-6963-2023, https://doi.org/10.5194/acp-23-6963-2023, 2023
Short summary
Short summary
The study focuses on the aerosol chemical variations found in the rural-background station of Melpitz based on ACSM and MAAP measurements. Source apportionment on both organic aerosol (OA) and black carbon (eBC) was performed, and source seasonality was also linked to air mass trajectories. Overall, three anthropogenic sources were identified in OA and eBC plus two additional aged OA. Our results demonstrate the influence of transported coal-combustion-related OA even during summer time.
Manuela van Pinxteren, Sebastian Zeppenfeld, Khanneh Wadinga Fomba, Nadja Triesch, Sanja Frka, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 6571–6590, https://doi.org/10.5194/acp-23-6571-2023, https://doi.org/10.5194/acp-23-6571-2023, 2023
Short summary
Short summary
Important marine organic carbon compounds were identified in the Atlantic Ocean and marine aerosol particles. These compounds were strongly enriched in the atmosphere. Their enrichment was, however, not solely explained via sea-to-air transfer but also via atmospheric in situ formation. The identified compounds constituted about 50 % of the organic carbon on the aerosol particles, and a pronounced coupling between ocean and atmosphere for this oligotrophic region could be concluded.
Forwood Wiser, Bryan K. Place, Siddhartha Sen, Havala O. T. Pye, Benjamin Yang, Daniel M. Westervelt, Daven K. Henze, Arlene M. Fiore, and V. Faye McNeill
Geosci. Model Dev., 16, 1801–1821, https://doi.org/10.5194/gmd-16-1801-2023, https://doi.org/10.5194/gmd-16-1801-2023, 2023
Short summary
Short summary
We developed a reduced model of atmospheric isoprene oxidation, AMORE-Isoprene 1.0. It was created using a new Automated Model Reduction (AMORE) method designed to simplify complex chemical mechanisms with minimal manual adjustments to the output. AMORE-Isoprene 1.0 has improved accuracy and similar size to other reduced isoprene mechanisms. When included in the CRACMM mechanism, it improved the accuracy of EPA’s CMAQ model predictions for the northeastern USA compared to observations.
Philip T. M. Carlsson, Luc Vereecken, Anna Novelli, François Bernard, Steven S. Brown, Bellamy Brownwood, Changmin Cho, John N. Crowley, Patrick Dewald, Peter M. Edwards, Nils Friedrich, Juliane L. Fry, Mattias Hallquist, Luisa Hantschke, Thorsten Hohaus, Sungah Kang, Jonathan Liebmann, Alfred W. Mayhew, Thomas Mentel, David Reimer, Franz Rohrer, Justin Shenolikar, Ralf Tillmann, Epameinondas Tsiligiannis, Rongrong Wu, Andreas Wahner, Astrid Kiendler-Scharr, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 3147–3180, https://doi.org/10.5194/acp-23-3147-2023, https://doi.org/10.5194/acp-23-3147-2023, 2023
Short summary
Short summary
The investigation of the night-time oxidation of the most abundant hydrocarbon, isoprene, in chamber experiments shows the importance of reaction pathways leading to epoxy products, which could enhance particle formation, that have so far not been accounted for. The chemical lifetime of organic nitrates from isoprene is long enough for the majority to be further oxidized the next day by daytime oxidants.
Lenard L. Röder, Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, John N. Crowley, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 16, 1167–1178, https://doi.org/10.5194/amt-16-1167-2023, https://doi.org/10.5194/amt-16-1167-2023, 2023
Short summary
Short summary
Field experiments in atmospheric chemistry provide insights into chemical interactions of our atmosphere. However, high data coverage and accuracy are needed to enable further analysis. In this study, we explore a statistical method that combines knowledge about the chemical reactions with information from measurements to increase the quality of field experiment datasets. We test the algorithm for several applications and discuss limitations that depend on the specific variable and the dynamics.
Dirk Dienhart, Bettina Brendel, John N. Crowley, Philipp G. Eger, Hartwig Harder, Monica Martinez, Andrea Pozzer, Roland Rohloff, Jan Schuladen, Sebastian Tauer, David Walter, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 23, 119–142, https://doi.org/10.5194/acp-23-119-2023, https://doi.org/10.5194/acp-23-119-2023, 2023
Short summary
Short summary
Formaldehyde and hydroperoxide measurements were performed in the marine boundary layer around the Arabian Peninsula and highlight the Suez Canal and Arabian (Persian) Gulf as a hotspot of photochemical air pollution. A comparison with the EMAC model shows that the formaldehyde results match within a factor of 2, while hydrogen peroxide was overestimated by more than a factor of 5, which revealed enhanced HOx (OH+HO2) radicals in the simulation and an underestimation of dry deposition velocites.
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022, https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Short summary
Aerosol particle activation affects cloud, precipitation, radiation, and thus the global climate. Its long-term measurements are important but still scarce. In this study, more than 4 years of measurements at a central European station were analyzed. The overall characteristics and seasonal changes of aerosol particle activation are summarized. The power-law fit between particle hygroscopicity factor and diameter was recommended for predicting cloud
condensation nuclei number concentration.
Fabian Mahrt, Long Peng, Julia Zaks, Yuanzhou Huang, Paul E. Ohno, Natalie R. Smith, Florence K. A. Gregson, Yiming Qin, Celia L. Faiola, Scot T. Martin, Sergey A. Nizkorodov, Markus Ammann, and Allan K. Bertram
Atmos. Chem. Phys., 22, 13783–13796, https://doi.org/10.5194/acp-22-13783-2022, https://doi.org/10.5194/acp-22-13783-2022, 2022
Short summary
Short summary
The number of condensed phases in mixtures of different secondary organic aerosol (SOA) types determines their impact on air quality and climate. Here we observe the number of phases in individual particles that contain mixtures of two different types of SOA. We find that SOA mixtures can form one- or two-phase particles, depending on the difference in the average oxygen-to-carbon (O / C) ratios of the two SOA types that are internally mixed within individual particles.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Marco Wietzoreck, Marios Kyprianou, Benjamin A. Musa Bandowe, Siddika Celik, John N. Crowley, Frank Drewnick, Philipp Eger, Nils Friedrich, Minas Iakovides, Petr Kukučka, Jan Kuta, Barbora Nežiková, Petra Pokorná, Petra Přibylová, Roman Prokeš, Roland Rohloff, Ivan Tadic, Sebastian Tauer, Jake Wilson, Hartwig Harder, Jos Lelieveld, Ulrich Pöschl, Euripides G. Stephanou, and Gerhard Lammel
Atmos. Chem. Phys., 22, 8739–8766, https://doi.org/10.5194/acp-22-8739-2022, https://doi.org/10.5194/acp-22-8739-2022, 2022
Short summary
Short summary
A unique dataset of concentrations and sources of polycyclic aromatic hydrocarbons (PAHs) and their alkylated, oxygenated and nitrated derivatives, in total 74 individual species, in the marine atmosphere is presented. Exposure to these substances poses a major health risk. We found very low concentrations over the Arabian Sea, while both local and long-range-transported pollution caused elevated levels over the Mediterranean Sea and the Arabian Gulf.
Lady Mateus-Fontecha, Angela Vargas-Burbano, Rodrigo Jimenez, Nestor Y. Rojas, German Rueda-Saa, Dominik van Pinxteren, Manuela van Pinxteren, Khanneh Wadinga Fomba, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 8473–8495, https://doi.org/10.5194/acp-22-8473-2022, https://doi.org/10.5194/acp-22-8473-2022, 2022
Short summary
Short summary
This study reports the chemical composition of regionally representative PM2.5 in an area densely populated and substantially industrialized, located in the inter-Andean valley, with the highest sugarcane yield in the world and where sugarcane is burned and harvested year round. We found that sugarcane burning is not portrayed as a distinguishable sample composition component. Instead, the composition analysis revealed multiple associations among sugarcane burning components and other sources.
Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, Akima Ringsdorf, Achim Edtbauer, Horst Fischer, Jonathan Williams, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 22, 7051–7069, https://doi.org/10.5194/acp-22-7051-2022, https://doi.org/10.5194/acp-22-7051-2022, 2022
Short summary
Short summary
We measured the gas-phase reactivity of the NO3 radical on the summit (825 m a.s.l.) of a semi-rural mountain in southwestern Germany in July 2021. The impact of VOC-induced NO3 losses (mostly monoterpenes) competing with a loss by reaction with NO and photolysis throughout the diel cycle was estimated. Besides chemistry, boundary layer dynamics and plant-physiological processes presumably have a great impact on our observations, which were compared to previous NO3 measurements at the same site.
Mike J. Newland, Camille Mouchel-Vallon, Richard Valorso, Bernard Aumont, Luc Vereecken, Michael E. Jenkin, and Andrew R. Rickard
Atmos. Chem. Phys., 22, 6167–6195, https://doi.org/10.5194/acp-22-6167-2022, https://doi.org/10.5194/acp-22-6167-2022, 2022
Short summary
Short summary
Alkene ozonolysis produces Criegee intermediates, which can act as oxidants or decompose to give a range of closed-shell and radical products, including OH. Therefore it is essential to accurately represent the chemistry of Criegee intermediates in atmospheric models in order to understand their impacts on atmospheric composition. Here we provide a mechanism construction protocol by which the central features of alkene ozonolysis chemistry can be included in an automatic mechanism generator.
Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022, https://doi.org/10.5194/acp-22-5725-2022, 2022
Short summary
Short summary
A class of marine particles (transparent exopolymer particles, TEPs) that is ubiquitously found in the world oceans was measured for the first time in ambient marine aerosol particles and marine cloud waters in the tropical Atlantic Ocean. TEPs are likely to have good properties for influencing clouds. We show that TEPs are transferred from the ocean to the marine atmosphere via sea-spray formation and our results suggest that they can also form directly in aerosol particles and in cloud water.
Kristina Glojek, Griša Močnik, Honey Dawn C. Alas, Andrea Cuesta-Mosquera, Luka Drinovec, Asta Gregorič, Matej Ogrin, Kay Weinhold, Irena Ježek, Thomas Müller, Martin Rigler, Maja Remškar, Dominik van Pinxteren, Hartmut Herrmann, Martina Ristorini, Maik Merkel, Miha Markelj, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 5577–5601, https://doi.org/10.5194/acp-22-5577-2022, https://doi.org/10.5194/acp-22-5577-2022, 2022
Short summary
Short summary
A pilot study to determine the emissions of wood burning under
real-world laboratoryconditions was conducted. We found that measured black carbon (eBC) and particulate matter (PM) in rural shallow terrain depressions with residential wood burning could be much greater than predicted by models. The exceeding levels are a cause for concern since similar conditions can be expected in numerous hilly and mountainous regions across Europe, where approximately 20 % of the total population lives.
Wenyu Sun, Matias Berasategui, Andrea Pozzer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 22, 4969–4984, https://doi.org/10.5194/acp-22-4969-2022, https://doi.org/10.5194/acp-22-4969-2022, 2022
Short summary
Short summary
The reaction between OH and SO2 is a termolecular process that in the atmosphere results in the formation of H2SO4 and thus aerosols. We present the first temperature- and pressure-dependent measurements of the rate coefficients in N2. This is also the first study to examine the effects of water vapour on the kinetics of this reaction. Our results indicate the rate coefficient is larger than that recommended by evaluation panels, with deviations of up to 30 % in some parts of the atmosphere.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Chenglong Zhang, Valéry Catoire, Fengxia Bao, Abdelwahid Mellouki, Likun Xue, Jianmin Chen, Keding Lu, Yong Zhao, Hengde Liu, Zhaoxin Guo, and Yujing Mu
Atmos. Chem. Phys., 22, 3149–3167, https://doi.org/10.5194/acp-22-3149-2022, https://doi.org/10.5194/acp-22-3149-2022, 2022
Short summary
Short summary
Summertime measurements of nitrous acid (HONO) and related parameters were conducted at the foot and the summit of Mt. Tai (1534 m above sea level). We proposed a rapid vertical air mass exchange between the foot and the summit level, which enhances the role of HONO in the oxidizing capacity of the upper boundary layer. Kinetics for aerosol-derived HONO sources were constrained. HONO formation from different paths was quantified and discussed.
Mike J. Newland, Yangang Ren, Max R. McGillen, Lisa Michelat, Véronique Daële, and Abdelwahid Mellouki
Atmos. Chem. Phys., 22, 1761–1772, https://doi.org/10.5194/acp-22-1761-2022, https://doi.org/10.5194/acp-22-1761-2022, 2022
Short summary
Short summary
Wildfires are increasing in extent and severity, driven by climate change. Such fires emit large amounts of volatile organic compounds (VOCs) to the atmosphere. Many of these, such as the furans studied here, are very reactive and are rapidly converted to other VOCs, which are expected to have negative health effects and to further impact the climate. Here, we establish the importance of the nitrate radical for removing these compounds both during the night and during the day.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Wenjin Zhang, Xiaowei He, Pengfei Liu, Chenglong Zhang, Xiaoxi Zhao, Chengtang Liu, Zhuobiao Ma, Junfeng Liu, Jinhe Wang, Keding Lu, Valéry Catoire, Abdelwahid Mellouki, and Yujing Mu
Atmos. Chem. Phys., 22, 1035–1057, https://doi.org/10.5194/acp-22-1035-2022, https://doi.org/10.5194/acp-22-1035-2022, 2022
Short summary
Short summary
Nitrous acid (HONO) and related parameters were measured at the foot and the summit of Mt. Tai in the summer of 2018. Based on measurements at the foot station, we utilized a box model to explore the roles of different sources in the HONO budget. We also studied radical chemistry in this high-ozone region.
Clara M. Nussbaumer, John N. Crowley, Jan Schuladen, Jonathan Williams, Sascha Hafermann, Andreas Reiffs, Raoul Axinte, Hartwig Harder, Cheryl Ernest, Anna Novelli, Katrin Sala, Monica Martinez, Chinmay Mallik, Laura Tomsche, Christian Plass-Dülmer, Birger Bohn, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 18413–18432, https://doi.org/10.5194/acp-21-18413-2021, https://doi.org/10.5194/acp-21-18413-2021, 2021
Short summary
Short summary
HCHO is an important atmospheric trace gas influencing the photochemical processes in the Earth’s atmosphere, including the budget of HOx and the abundance of tropospheric O3. This research presents the photochemical calculations of HCHO and O3 based on three field campaigns across Europe. We show that HCHO production via the oxidation of only four volatile organic compound precursors, i.e., CH4, CH3CHO, C5H8 and CH3OH, can balance the observed loss at all sites well.
Nabil Deabji, Khanneh Wadinga Fomba, Souad El Hajjaji, Abdelwahid Mellouki, Laurent Poulain, Sebastian Zeppenfeld, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 18147–18174, https://doi.org/10.5194/acp-21-18147-2021, https://doi.org/10.5194/acp-21-18147-2021, 2021
Short summary
Short summary
Mountain and high-altitude sites provide representative data for the lower free troposphere, various pathways for aerosol interactions, and changing boundary layer heights useful in understanding atmospheric composition. However, only few studies exist in African regions despite diversity in both natural and anthropogenic emissions. This study provides detailed atmospheric studies in the northern African high-altitude region.
Dirk Dienhart, John N. Crowley, Efstratios Bourtsoukidis, Achim Edtbauer, Philipp G. Eger, Lisa Ernle, Hartwig Harder, Bettina Hottmann, Monica Martinez, Uwe Parchatka, Jean-Daniel Paris, Eva Y. Pfannerstill, Roland Rohloff, Jan Schuladen, Christof Stönner, Ivan Tadic, Sebastian Tauer, Nijing Wang, Jonathan Williams, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 17373–17388, https://doi.org/10.5194/acp-21-17373-2021, https://doi.org/10.5194/acp-21-17373-2021, 2021
Short summary
Short summary
We present the first ship-based in situ measurements of formaldehyde (HCHO), hydroxyl radicals (OH) and the OH reactivity around the Arabian Peninsula. Regression analysis of the HCHO production rate and the related OH chemistry revealed the regional HCHO yield αeff, which represents the different chemical regimes encountered. Highest values were found for the Arabian Gulf (also known as the Persian Gulf), which highlights this region as a hotspot of photochemical air pollution.
Daniel A. Knopf and Markus Ammann
Atmos. Chem. Phys., 21, 15725–15753, https://doi.org/10.5194/acp-21-15725-2021, https://doi.org/10.5194/acp-21-15725-2021, 2021
Short summary
Short summary
Adsorption on and desorption of gas molecules from solid or liquid surfaces or interfaces represent the initial interaction of gas-to-condensed-phase processes that can define the physicochemical evolution of the condensed phase. We apply a thermodynamic and microscopic treatment of these multiphase processes to evaluate how adsorption and desorption rates and surface accommodation depend on the choice of adsorption model and standard states with implications for desorption energy and lifetimes.
Clara M. Nussbaumer, Uwe Parchatka, Ivan Tadic, Birger Bohn, Daniel Marno, Monica Martinez, Roland Rohloff, Hartwig Harder, Flora Kluge, Klaus Pfeilsticker, Florian Obersteiner, Martin Zöger, Raphael Doerich, John N. Crowley, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 14, 6759–6776, https://doi.org/10.5194/amt-14-6759-2021, https://doi.org/10.5194/amt-14-6759-2021, 2021
Short summary
Short summary
NO2 plays a central role in atmospheric photochemical processes and requires accurate measurements. This research presents NO2 data obtained via chemiluminescence using a photolytic converter from airborne studies around Cabo Verde and laboratory investigations. We show the limits and error-proneness of a conventional blue light converter in aircraft measurements affected by humidity and NO levels and suggest the use of an alternative quartz converter for more reliable results.
Philipp G. Eger, Luc Vereecken, Rolf Sander, Jan Schuladen, Nicolas Sobanski, Horst Fischer, Einar Karu, Jonathan Williams, Ville Vakkari, Tuukka Petäjä, Jos Lelieveld, Andrea Pozzer, and John N. Crowley
Atmos. Chem. Phys., 21, 14333–14349, https://doi.org/10.5194/acp-21-14333-2021, https://doi.org/10.5194/acp-21-14333-2021, 2021
Short summary
Short summary
We determine the impact of pyruvic acid photolysis on the formation of acetaldehyde and peroxy radicals during summer and autumn in the Finnish boreal forest using a data-constrained box model. Our results are dependent on the chosen scenario in which the overall quantum yield and the photolysis products are varied. We highlight that pyruvic acid photolysis can be an important contributor to acetaldehyde and peroxy radical formation in remote, forested regions.
Andreas Tilgner, Thomas Schaefer, Becky Alexander, Mary Barth, Jeffrey L. Collett Jr., Kathleen M. Fahey, Athanasios Nenes, Havala O. T. Pye, Hartmut Herrmann, and V. Faye McNeill
Atmos. Chem. Phys., 21, 13483–13536, https://doi.org/10.5194/acp-21-13483-2021, https://doi.org/10.5194/acp-21-13483-2021, 2021
Short summary
Short summary
Feedbacks of acidity and atmospheric multiphase chemistry in deliquesced particles and clouds are crucial for the tropospheric composition, depositions, climate, and human health. This review synthesizes the current scientific knowledge on these feedbacks using both inorganic and organic aqueous-phase chemistry. Finally, this review outlines atmospheric implications and highlights the need for future investigations with respect to reducing emissions of key acid precursors in a changing world.
Yangang Ren, Li Zhou, Abdelwahid Mellouki, Véronique Daële, Mahmoud Idir, Steven S. Brown, Branko Ruscic, Robert S. Paton, Max R. McGillen, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 13537–13551, https://doi.org/10.5194/acp-21-13537-2021, https://doi.org/10.5194/acp-21-13537-2021, 2021
Short summary
Short summary
Aromatic aldehydes are a family of compounds emitted into the atmosphere from both anthropogenic and biogenic sources that are formed from the degradation of aromatic hydrocarbons. Their atmospheric degradation may impact air quality. We report on their atmospheric degradation through reaction with NO3, which is useful to estimate their atmospheric lifetimes. We have also attempted to elucidate the mechanism of these reactions via studies of isotopic substitution and quantum chemistry.
R. Anthony Cox, Markus Ammann, John N. Crowley, Paul T. Griffiths, Hartmut Herrmann, Erik H. Hoffmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Christopher J. Penkett, Andreas Tilgner, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 13011–13018, https://doi.org/10.5194/acp-21-13011-2021, https://doi.org/10.5194/acp-21-13011-2021, 2021
Short summary
Short summary
The term open-air factor was coined in the 1960s, establishing that rural air had powerful germicidal properties possibly resulting from immediate products of the reaction of ozone with alkenes, unsaturated compounds ubiquitously present in natural and polluted environments. We have re-evaluated those early experiments, applying the recently substantially improved knowledge, and put them into the context of the lifetime of aerosol-borne pathogens that are so important in the Covid-19 pandemic.
James Weber, Scott Archer-Nicholls, Nathan Luke Abraham, Youngsub M. Shin, Thomas J. Bannan, Carl J. Percival, Asan Bacak, Paulo Artaxo, Michael Jenkin, M. Anwar H. Khan, Dudley E. Shallcross, Rebecca H. Schwantes, Jonathan Williams, and Alex T. Archibald
Geosci. Model Dev., 14, 5239–5268, https://doi.org/10.5194/gmd-14-5239-2021, https://doi.org/10.5194/gmd-14-5239-2021, 2021
Short summary
Short summary
The new mechanism CRI-Strat 2 features state-of-the-art isoprene chemistry not previously available in UKCA and improves UKCA's ability to reproduce observed concentrations of isoprene, monoterpenes, and OH in tropical regions. The enhanced ability to model isoprene, the most widely emitted non-methane volatile organic compound (VOC), will allow understanding of how isoprene and other biogenic VOCs affect atmospheric composition and, through biosphere–atmosphere feedbacks, climate change.
Patrick Dewald, Raphael Dörich, Jan Schuladen, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 14, 5501–5519, https://doi.org/10.5194/amt-14-5501-2021, https://doi.org/10.5194/amt-14-5501-2021, 2021
Short summary
Short summary
Organic nitrates generated from the reaction between isoprene and the nitrate radical (ISOP-NITs) were detected via their thermal dissociation in heated quartz inlets to nitrogen dioxide monitored by cavity ring-down spectroscopy. The temperature-dependent dissociation profiles of ISOP-NITs in the presence of ozone (O3) are broad in contrast to narrow profiles of common reference compounds. We demonstrate that this broadening is caused by O3-assisted reactions of ISOP-NITs on quartz surfaces.
Markus Hartmann, Xianda Gong, Simonas Kecorius, Manuela van Pinxteren, Teresa Vogl, André Welti, Heike Wex, Sebastian Zeppenfeld, Hartmut Herrmann, Alfred Wiedensohler, and Frank Stratmann
Atmos. Chem. Phys., 21, 11613–11636, https://doi.org/10.5194/acp-21-11613-2021, https://doi.org/10.5194/acp-21-11613-2021, 2021
Short summary
Short summary
Ice-nucleating particles (INPs) are not well characterized in the Arctic despite their importance for the Arctic energy budget. Little is known about their nature (mineral or biological) and sources (terrestrial or marine, long-range transport or local). We find indications that, at the beginning of the melt season, a local, biogenic, probably marine source is likely, but significant enrichment of INPs has to take place from the ocean to the aerosol phase.
Raphael Dörich, Philipp Eger, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 14, 5319–5332, https://doi.org/10.5194/amt-14-5319-2021, https://doi.org/10.5194/amt-14-5319-2021, 2021
Short summary
Short summary
We demonstrate in laboratory experiments that the formation of IOx anions (formed in reactions of I− with O3) or acetate anions (formed e.g. by the reaction of I− with peracetic acid) results in unexpected sensitivity of an iodide chemical ionisation mass spectrometer (I-CIMS) to HNO3 at a mass-to-charge ratio of 62. This helps explain observations of apparent high daytime levels of N2O5. Airborne measurements using I-CIMS confirm these conclusions.
Caterina Mogno, Paul I. Palmer, Christoph Knote, Fei Yao, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 10881–10909, https://doi.org/10.5194/acp-21-10881-2021, https://doi.org/10.5194/acp-21-10881-2021, 2021
Short summary
Short summary
We use a 3-D atmospheric chemistry model to investigate how seasonal emissions sources and meteorological conditions affect the surface distribution of fine particulate matter (PM2.5) and organic aerosol (OA) over the Indo-Gangetic Plain. We find that all seasonal mean values of PM2.5 still exceed safe air quality levels, with human emissions contributing to PM2.5 all year round, open fires during post- and pre-monsoon, and biogenic emissions during monsoon. OA contributes up to 30 % to PM2.5.
Rongrong Wu, Luc Vereecken, Epameinondas Tsiligiannis, Sungah Kang, Sascha R. Albrecht, Luisa Hantschke, Defeng Zhao, Anna Novelli, Hendrik Fuchs, Ralf Tillmann, Thorsten Hohaus, Philip T. M. Carlsson, Justin Shenolikar, François Bernard, John N. Crowley, Juliane L. Fry, Bellamy Brownwood, Joel A. Thornton, Steven S. Brown, Astrid Kiendler-Scharr, Andreas Wahner, Mattias Hallquist, and Thomas F. Mentel
Atmos. Chem. Phys., 21, 10799–10824, https://doi.org/10.5194/acp-21-10799-2021, https://doi.org/10.5194/acp-21-10799-2021, 2021
Short summary
Short summary
Isoprene is the biogenic volatile organic compound with the largest emissions rates. The nighttime reaction of isoprene with the NO3 radical has a large potential to contribute to SOA. We classified isoprene nitrates into generations and proposed formation pathways. Considering the potential functionalization of the isoprene nitrates we propose that mainly isoprene dimers contribute to SOA formation from the isoprene NO3 reactions with at least a 5 % mass yield.
Anke Mutzel, Yanli Zhang, Olaf Böge, Maria Rodigast, Agata Kolodziejczyk, Xinming Wang, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 8479–8498, https://doi.org/10.5194/acp-21-8479-2021, https://doi.org/10.5194/acp-21-8479-2021, 2021
Short summary
Short summary
This study investigates secondary organic aerosol (SOA) formation and particle growth from α-pinene, limonene, and m-cresol oxidation through NO3 and OH radicals and the effect of relative humidity. The formed SOA is comprehensively characterized with respect to the content of OC / EC, WSOC, SOA-bound peroxides, and SOA marker compounds. The findings present new insights and implications of nighttime chemistry, which can form SOA more efficiently than OH radical reaction during daytime.
Nils Friedrich, Philipp Eger, Justin Shenolikar, Nicolas Sobanski, Jan Schuladen, Dirk Dienhart, Bettina Hottmann, Ivan Tadic, Horst Fischer, Monica Martinez, Roland Rohloff, Sebastian Tauer, Hartwig Harder, Eva Y. Pfannerstill, Nijing Wang, Jonathan Williams, James Brooks, Frank Drewnick, Hang Su, Guo Li, Yafang Cheng, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 21, 7473–7498, https://doi.org/10.5194/acp-21-7473-2021, https://doi.org/10.5194/acp-21-7473-2021, 2021
Short summary
Short summary
This paper uses NOx and NOz measurements from the 2017 AQABA ship campaign in the Mediterranean Sea and around the Arabian Peninsula to examine the influence e.g. of emissions from shipping and oil and gas production. Night-time losses of NOx dominated in the Arabian Gulf and in the Red Sea, whereas daytime losses were more important in the Mediterranean Sea. Nitric acid and organic nitrates were the most prevalent components of NOz.
Thorsten Bartels-Rausch, Xiangrui Kong, Fabrizio Orlando, Luca Artiglia, Astrid Waldner, Thomas Huthwelker, and Markus Ammann
The Cryosphere, 15, 2001–2020, https://doi.org/10.5194/tc-15-2001-2021, https://doi.org/10.5194/tc-15-2001-2021, 2021
Short summary
Short summary
Chemical reactions in sea salt embedded in coastal polar snow impact the composition and air quality of the atmosphere. Here, we investigate the phase changes of sodium chloride. This is of importance as chemical reactions proceed faster in liquid solutions compared to in solid salt and the precise precipitation temperature of sodium chloride is still under debate. We focus on the upper nanometres of sodium chloride–ice samples because of their role as a reactive interface in the environment.
Abdelwahid Mellouki, Markus Ammann, R. Anthony Cox, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 4797–4808, https://doi.org/10.5194/acp-21-4797-2021, https://doi.org/10.5194/acp-21-4797-2021, 2021
Short summary
Short summary
Volatile organic compounds play an important role in atmospheric chemistry. This article, the eighth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers the gas-phase reactions of organic species with four, or more, carbon atoms (≥ C4) including thermal reactions of closed-shell organic species with HO and NO3 radicals and their photolysis. These data are important for atmospheric models.
Nadja Triesch, Manuela van Pinxteren, Sanja Frka, Christian Stolle, Tobias Spranger, Erik Hans Hoffmann, Xianda Gong, Heike Wex, Detlef Schulz-Bull, Blaženka Gašparović, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 4267–4283, https://doi.org/10.5194/acp-21-4267-2021, https://doi.org/10.5194/acp-21-4267-2021, 2021
Short summary
Short summary
To investigate the source of lipids and their representatives in the marine atmosphere, concerted measurements of seawater and submicrometer aerosol particle sampling were carried out on the Cabo Verde islands. This field study describes the biogenic sources of lipids, their selective transfer from the ocean into the atmosphere and their enrichment as part of organic matter. A strong enrichment of the studied representatives of the lipid classes on submicrometer aerosol particles was observed.
Laurent Poulain, Benjamin Fahlbusch, Gerald Spindler, Konrad Müller, Dominik van Pinxteren, Zhijun Wu, Yoshiteru Iinuma, Wolfram Birmili, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 3667–3684, https://doi.org/10.5194/acp-21-3667-2021, https://doi.org/10.5194/acp-21-3667-2021, 2021
Short summary
Short summary
We present results from source apportionment analysis on the carbonaceous aerosol particles, including organic aerosol (OA) and equivalent black carbon (eBC), allowing us to distinguish local emissions from long-range transport for OA and eBC sources. By merging online chemical measurements and considering particle number size distribution, the different air masses reaching the sampling place were described and discussed, based on their respective chemical composition and size distribution.
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021, https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary
Short summary
Photochemistry of iron(III) complexes plays an important role in aerosol aging, especially in the lower troposphere. Ensuing radical chemistry leads to decarboxylation, and the production of peroxides, and oxygenated volatile compounds, resulting in particle mass loss due to release of the volatile products to the gas phase. We investigated kinetic transport limitations due to high particle viscosity under low relative humidity conditions. For quantification a numerical model was developed.
Nadja Triesch, Manuela van Pinxteren, Anja Engel, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 163–181, https://doi.org/10.5194/acp-21-163-2021, https://doi.org/10.5194/acp-21-163-2021, 2021
Short summary
Short summary
To investigate the sources of free amino acids (FAAs) in the marine atmosphere, concerted measurements (the simultaneous investigation of seawater, size-segregated aerosol particles and cloud water) were performed at the Cabo Verde islands. This study describes the transfer of FAAs as part of organic matter from the ocean into the atmosphere on a molecular level. In the investigated marine environment, a high enrichment of FAAs in submicron aerosol particles and in cloud droplets was observed.
Jiarong Li, Chao Zhu, Hui Chen, Defeng Zhao, Likun Xue, Xinfeng Wang, Hongyong Li, Pengfei Liu, Junfeng Liu, Chenglong Zhang, Yujing Mu, Wenjin Zhang, Luming Zhang, Hartmut Herrmann, Kai Li, Min Liu, and Jianmin Chen
Atmos. Chem. Phys., 20, 13735–13751, https://doi.org/10.5194/acp-20-13735-2020, https://doi.org/10.5194/acp-20-13735-2020, 2020
Short summary
Short summary
Based on a field study at Mt. Tai, China, the simultaneous variations of cloud microphysics, aerosol microphysics and their potential interactions during cloud life cycles were discussed. Results demonstrated that clouds on clean days were more susceptible to the concentrations of particle number, while clouds formed on polluted days might be more sensitive to meteorological parameters. Particles larger than 150 nm played important roles in forming cloud droplets with sizes of 5–10 μm.
Matias Berasategui, Damien Amedro, Luc Vereecken, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 13541–13555, https://doi.org/10.5194/acp-20-13541-2020, https://doi.org/10.5194/acp-20-13541-2020, 2020
Short summary
Short summary
Peracetic acid is one of the most abundant organic peroxides in the atmosphere. We combine experiments and theory to show that peracetic acid reacts orders of magnitude more slowly with OH than presently accepted, which results in a significant extension of its atmospheric lifetime.
Jacinta Edebeli, Jürg C. Trachsel, Sven E. Avak, Markus Ammann, Martin Schneebeli, Anja Eichler, and Thorsten Bartels-Rausch
Atmos. Chem. Phys., 20, 13443–13454, https://doi.org/10.5194/acp-20-13443-2020, https://doi.org/10.5194/acp-20-13443-2020, 2020
Short summary
Short summary
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is well known by skiers. Snow is also a well-known host of chemical reactions – the products of which impact air composition and quality. Here, we present laboratory experiments that show how the dynamics of snow make snow essentially inert with respect to gas-phase ozone with time despite its content of reactive chemicals. Impacts on polar atmospheric chemistry are discussed.
Yangang Ren, Bastian Stieger, Gerald Spindler, Benoit Grosselin, Abdelwahid Mellouki, Thomas Tuch, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 13069–13089, https://doi.org/10.5194/acp-20-13069-2020, https://doi.org/10.5194/acp-20-13069-2020, 2020
Short summary
Short summary
We present HONO measurements from the TROPOS research site in Melpitz, Germany. Investigations of HONO sources and sinks revealed the nighttime formation by heterogeneous conversion of NO2 to HONO followed by a significant surface deposition at night. The evaporation of dew was identified as the main HONO source in the morning. In the following, dew measurements with a self-made dew collector were performed to estimate the amount of evaporated HONO from dew in the atmospheric HONO distribution.
Michael E. Jenkin, Richard Valorso, Bernard Aumont, Mike J. Newland, and Andrew R. Rickard
Atmos. Chem. Phys., 20, 12921–12937, https://doi.org/10.5194/acp-20-12921-2020, https://doi.org/10.5194/acp-20-12921-2020, 2020
Short summary
Short summary
Unsaturated organic compounds are emitted in large quantities from natural and human-influenced sources. Atmospheric removal occurs significantly by reaction with ozone, initiating reaction sequences forming free radicals and organic pollutants in the gaseous and particulate phases. Due to their very large number, it is impossible to study the reaction rate for every compound, and most have to be estimated. Updated and extended estimation methods are reported for use in atmospheric models.
Nils Friedrich, Ivan Tadic, Jan Schuladen, James Brooks, Eoghan Darbyshire, Frank Drewnick, Horst Fischer, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 13, 5739–5761, https://doi.org/10.5194/amt-13-5739-2020, https://doi.org/10.5194/amt-13-5739-2020, 2020
Short summary
Short summary
We present a new instrument for the measurement of NOx and NOy based on a combination of the thermal dissociation of NOy to NOx and cavity ring-down spectroscopic detection of NO2. It features a denuder to separate the contributions of gas-phase and particulate nitrates to NOy. We provide a detailed characterization of the instrument and briefly outline results from first deployments.
Laurent Poulain, Gerald Spindler, Achim Grüner, Thomas Tuch, Bastian Stieger, Dominik van Pinxteren, Jean-Eudes Petit, Olivier Favez, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Meas. Tech., 13, 4973–4994, https://doi.org/10.5194/amt-13-4973-2020, https://doi.org/10.5194/amt-13-4973-2020, 2020
Short summary
Short summary
The stability and the comparability between ACSM and collocated filter sampling and MPSS measurements was investigated in order to examine the instruments robustness for year-long measurements. Specific attention was paid to the influence of the upper size cutoff diameter to better understand how it might affect the data validation. Recommendations are provided for better on-site quality assurance and quality control of the ACSM, which would be useful for either long-term or intensive campaigns.
James Weber, Scott Archer-Nicholls, Paul Griffiths, Torsten Berndt, Michael Jenkin, Hamish Gordon, Christoph Knote, and Alexander T. Archibald
Atmos. Chem. Phys., 20, 10889–10910, https://doi.org/10.5194/acp-20-10889-2020, https://doi.org/10.5194/acp-20-10889-2020, 2020
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) are important for aerosol growth and new particle formation, particularly in air masses with less sulphuric acid. This new chemical mechanism reproduces measured [HOM] and [HOM precursors] and is concise enough for use in global climate models. The mechanism also reproduces the observed suppression of HOMs by isoprene, suggesting enhanced emissions may not necessarily lead to more aerosols. Greater HOM importance in the pre-industrial era is also shown.
Nijing Wang, Achim Edtbauer, Christof Stönner, Andrea Pozzer, Efstratios Bourtsoukidis, Lisa Ernle, Dirk Dienhart, Bettina Hottmann, Horst Fischer, Jan Schuladen, John N. Crowley, Jean-Daniel Paris, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 20, 10807–10829, https://doi.org/10.5194/acp-20-10807-2020, https://doi.org/10.5194/acp-20-10807-2020, 2020
Short summary
Short summary
Carbonyl compounds were measured on a ship travelling around the Arabian Peninsula in summer 2017, crossing both highly polluted and extremely clean regions of the marine boundary layer. We investigated the sources and sinks of carbonyls. The results from a global model showed a significant model underestimation for acetaldehyde, a molecule that can influence regional air chemistry. By adding a diurnal oceanic source, the model estimation was highly improved.
Khanneh Wadinga Fomba, Nabil Deabji, Sayf El Islam Barcha, Ibrahim Ouchen, El Mehdi Elbaramoussi, Rajaa Cherkaoui El Moursli, Mimoun Harnafi, Souad El Hajjaji, Abdelwahid Mellouki, and Hartmut Herrmann
Atmos. Meas. Tech., 13, 4773–4790, https://doi.org/10.5194/amt-13-4773-2020, https://doi.org/10.5194/amt-13-4773-2020, 2020
Short summary
Short summary
As air quality monitoring networks often sample aerosol particles on quartz filters, the development and applicability of analytical methods with quartz filters are becoming important. In this study different filter preparation methods (e.g., baking, acid digestion) were investigated for quantifying trace metals on quartz and polycarbonate filters, and cloud water using the total reflection X-Ray fluorescence (TXRF) technique, with low detection limits of about 0.3 ng cm−3 for some elements.
Patrick Dewald, Jonathan M. Liebmann, Nils Friedrich, Justin Shenolikar, Jan Schuladen, Franz Rohrer, David Reimer, Ralf Tillmann, Anna Novelli, Changmin Cho, Kangming Xu, Rupert Holzinger, François Bernard, Li Zhou, Wahid Mellouki, Steven S. Brown, Hendrik Fuchs, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 10459–10475, https://doi.org/10.5194/acp-20-10459-2020, https://doi.org/10.5194/acp-20-10459-2020, 2020
Short summary
Short summary
We present direct measurements of NO3 reactivity resulting from the oxidation of isoprene by NO3 during an intensive simulation chamber study. Measurements were in excellent agreement with values calculated from measured isoprene amounts and the rate coefficient for the reaction of NO3 with isoprene. Comparison of the measurement with NO3 reactivities from non-steady-state and model calculations suggests that isoprene-derived RO2 and HO2 radicals account to ~ 50 % of overall NO3 losses.
Ahmad Jhony Rusumdar, Andreas Tilgner, Ralf Wolke, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 10351–10377, https://doi.org/10.5194/acp-20-10351-2020, https://doi.org/10.5194/acp-20-10351-2020, 2020
Short summary
Short summary
In the present study, simulations with the SPACCIM-SpactMod multiphase chemistry model are performed. The investigations aim at assessing the impact of a detailed treatment of non-ideality in multiphase models dealing with aqueous aerosol chemistry. The model studies demonstrate that the inclusion of non-ideality considerably affects the multiphase chemical processing of transition metal ions, oxidants, and related chemical subsystems such as organic chemistry in aqueous aerosols.
Cited articles
Alam, M. S., Camredon, M., Rickard, A. R., Carr, T., Wyche, K. P., Hornsby,
K. E., Monks, P. S., and Bloss, W. J.: Total radical yields from tropospheric
ethene ozonolysis, Phys. Chem. Chem. Phys., 13, 11002–11015, 2011.
Alam, M. S., Rickard, A. R., Camredon, M., Wyche, K. P., Carr, T., Hornsby,
K. E., Monks, P. S., and Bloss, W. J.: Radical product yields from the
ozonolysis of short chain alkenes under atmospheric boundary layer
conditions, J. Phys. Chem., 117, 12468–12483, 2013.
Andreae, M. O., Talbot, R. W., Andreae, T. W., and Harriss, R. C.: Formic and
acetic-acid over the central Amazon region, Brazil .1. Dry season, J.
Geophys. Res.-Atmos., 93, 1616–1624, 1988.
Anglada, J. M. and Solé, A.: Impact of water dimer on the atmospheric
reactivity of carbonyl oxides, Phys. Chem. Chem. Phys., 18, 17698–17712,
2016.
Anglada, J. M., Aplincourt, P., Bofill, J. M., and Cremer, D.: Atmospheric
formation of OH radicals and H2O2 from alkene ozonolysis under
humid conditions, Chem. Phys. Chem., 3, 215–221, 2002.
Anglada, J. M., González, J., and Torrent-Sucarrat, M.: Effects of the
substituents on the reactivity of carbonyl oxides. A theoretical study on
the reaction of substituted carbonyl oxides with water, Phys. Chem. Chem.
Phys., 13, 13034–13045, 2011.
Aschmann, S. M., Arey, J., and Atkinson, R.: OH radical formation from the
gas-phase reactions of O3 with methacrolein and methyl vinyl ketone,
Atmos. Environ., 30, 2939–2943, 1996.
Aschmann, S. M., Arey, J., and Atkinson, R.: OH radical formation from the
gas-phase reactions of O3 with a series of terpenes, Atmos. Environ.,
36, 4347–4355, 2002.
Aschmann, S. M., Tuazon, E. C., Arey, J., and Atkinson, R.: Products of the
gas-phase reaction of O3 with cyclohexene, J. Phys. Chem. A, 107,
2247–2255, 2003.
Atkinson, R. and Aschmann, S. M.: OH radical production from the gas-phase
reactions of O3 with a series of alkenes under atmospheric conditions,
Environ. Sci. Technol., 27, 1357–1363, 1993.
Atkinson, R., Aschmann, S. M., Arey, J., and Shorees, B.: Formation of OH
radicals in the gas phase reactions of O3 with a series of terpenes, J.
Geophys. Res., 97, 6065–6073, 1992.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Bannan, T. J., Booth, A. M., Le Breton, M., Bacak, A., Muller, J. B. A.,
Leather, K. E., Khan, M. A. H., Lee, J. D., Dunmore, R. E., Hopkins, J. R.,
Fleming, Z. L., Sheps, L., Taatjes, C. A., Shallcross, D. E., and Percival,
C. J.: Seasonality of formic acid (HCOOH) in London during the ClearfLo
campaign, J. Geophys. Res.-Atmos., 122, 12488–12498, 2017.
Barber, V. P., Pandit, S., Green, A. M., Trongsiriwat, N., Walsh, P. J.,
Klippenstein, S. J., and Lester, M. I.: Four-carbon Criegee intermediate from
isoprene ozonolysis: Methyl vinyl ketone oxide synthesis, infrared spectrum,
and OH production, J. Am. Chem. Soc., 140, 10866–10880,
https://doi.org/10.1021/jacs.8b06010, 2018.
Beames, J. M., Liu, F., Lu. L., and Lester, M. I.: Ultraviolet spectrum and
photochemistry of the simplest Criegee intermediate CH2OO, J. Am.
Chem. Soc., 134, 20045–20048, https://doi.org/10.1021/ja310603j, 2012.
Beck, M., Winterhalter, R., Herrmann, F., and Moortgat, G. K.: The gas-phase
ozonolysis of α-humulene, Phys. Chem. Chem. Phys., 13, 10970–11001,
2011.
Berndt, T., Böge, O., and Stratmann, F.: Gas-phase ozonolysis of
alpha-pinene: gaseous products and particle formation, Atmos. Environ., 37,
3933–3945, 2003.
Berndt, T., Jokinen, T., Sipilä. M., Mauldin, R. L., Herrmann, H.,
Stratmann, F., Junninen, H., and Kulmala, M.: H2SO4 formation from
the gas-phase reaction of stabilized Criegee intermediates with SO2:
Influence of water vapour content and temperature, Atmos. Environ., 89,
603–612, 2014.
Berndt, T., Herrmann, H., and Kurteìn, T.: Direct probing of Criegee
intermediates from gas-phase ozonolysis using chemical ionization mass
spectrometry, J. Am. Chem. Soc., 139, 13387–13392, 2017.
Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M. J., and
Wallington, T. J.: The mechanisms of atmospheric oxidation of the alkenes,
Oxford University Press, Oxford, UK, ISBN 978-0-19513177-2, 2000.
Calvert, J. G., Orlando, J. J., Stockwell, W. R., and Wallington, T. J.: The
mechanisms of reactions influencing atmospheric ozone, Oxford University
Press, Oxford, UK, ISBN 978-0-19023302-0, 2015.
Campos-Pineda, M. and Zhang, J.: Low-pressure yields of stabilized Criegee
intermediates CH3CHOO and (CH3)2COO in ozonolysis of
trans-2-butene and 2,3-dimethyl-2-butene, Chem. Phys. Lett., 683, 647–652, 2017.
Campos-Pineda, M. and Zhang, J.: Product yields of stabilized Criegee
intermediates in the ozonolysis reactions of cis-2-butene, 2-methyl-2-butene, cyclopentene, and cyclohexene, Sci. China Chem., 61, 850–856, https://doi.org/10.1007/s11426-017-9229-0, 2018.
Caravan, R. L., Vansco, M. F., Au, K., Khan, M. A. H., Li, Y.-L. Winiberg,
F. A. F., Zuraski, K., Lin, Y.-H., Chao, W., Trongsiriwat, N., Walsh, P. J.,
Osborn, D. L., Percival, C. J., Lin, J.-J. M., Shallcross, D. E., Sheps, L.,
Klippenstein, S. J., Taatjes, C. A., and Lester, M. I.: Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate, P. Nat. Acad.
Sci. USA, 117, 9733–9740, https://doi.org/10.1073/pnas.1916711117, 2020.
Chhantyal-Pun, R., McGillen, M. R., Beames, J. M., Khan, M. A. H., Percival,
C. J., Shallcross, D. E., and Orr-Ewing, A. J.: Temperature-dependence of
the rates of reaction of trifluoroacetic acid with Criegee intermediates
Angew. Chem. Int. Ed., 56, 9044–9047, 2017a.
Chhantyal-Pun, R., Welz, O., Savee J. D., Eskola, A. J., Lee, E. P. F.,
Blacker, L., Hill, H. R., Ashcroft, M., Khan, M. A. H., Lloyd-Jones, G. C.,
Evans, L., Rotavera, B., Rotavera H., Osborn, D. L., Mok, D. K. W., Dyke, J.
M., Shallcross, D. E., Percival, C. J., Orr-Ewing, A. J., and Taatjes, C. A.:
Direct measurements of unimolecular and bimolecular reaction kinetics of the
Criegee intermediate (CH3)2COO, J. Phys. Chem. A, 121, 4–15,
https://doi.org/10.1021/acs.jpca.6b07810, 2017b.
Chhantyal-Pun, R., Rotavera, B., McGillen, M. R., Khan, M. A. H., Eskola, A.
J., Caravan, R. L., Blacker, L., Tew, D. P., Osborn, D. L., Percival, C. J.,
Shallcross, D. E., and Orr-Ewing A. J.: Criegee intermediate reactions with
carboxylic acids: a potential source of secondary organic aerosol in the
atmosphere, ACS Earth Space Chem., 2, 833–842, 2018.
Chew, A. A. and Atkinson, R.: OH radical formation yields from the gas-phase
reactions of O3 with alkenes and monoterpenes, J. Geophys. Res., 101,
28649–28653, 1996.
Chuong, B., Zhang, J., and Donahue, N. M.: Cycloalkene ozonolysis:
collisionally mediated mechanistic branching, J. Am. Chem. Soc., 126,
12363–12373, 2004.
Cox, R. A. and Penkett, S. A.: Oxidation of atmospheric SO2 by products
of the ozone–olefin reaction, Nature, 230, 321–322, 1971.
Cox, R. A. and Penkett, S. A.: Aerosol formation from sulphur dioxide in the
presence of ozone and olefinic hydrocarbons, J. Chem. Soc., Faraday Trans.
1, 1735–1753, 1972.
Criegee, R., Blust, G., and Zinke, H.: Eine neuartige synthese von ozoniden,
Chem. Ber., 87,766–768, 1954.
Donahue, N. M., Kroll, J. H., Anderson, J. G., and Demerjian, K. L.: Direct
observation of OH production from the ozonolysis of olefins, Geophys. Res.
Lett., 25, 59–62, https://doi.org/10.1029/97GL53560, 1998.
Drozd, G. T. and Donahue, N. M.: Pressure dependence of stabilized Criegee
intermediate formation from a sequence of alkenes, J. Phys. Chem. A, 115,
4381–4387, 2011.
Drozd, G. T., Kroll, J., and Donahue, N. M.: 2,3-Dimethyl-2-butene (TME)
ozonolysis: pressure dependence of stabilized Criegee intermediates and
evidence of stabilized vinyl hydroperoxides, J. Phys. Chem. A, 115, 161–166,
2011.
Fang, Y., Liu, F., Barber, V. P., Klippenstein, S. J., McCoy, A. B., and
Lester, M. I.: Deep tunneling in the unimolecular decay of CH3CHOO
Criegee intermediates to OH radical products, J. Chem. Phys. 145, 234308, https://doi.org/10.1063/1.4972015,
2016.
Fang, Y., Liu, F., Barber, V. P., Klippenstein, S. J., McCoy, A. B., and
Lester, M. I.: Tunneling effects in the unimolecular decay of
(CH3)2COO Criegee intermediates to OH radical products, J. Chem.
Phys. 146, 134307, https://doi.org/10.1063/1.4979297, 2017.
Fenske, J. D., Hasson, A. S., Paulson, S. E., Kuwata, K. T., Ho, A., and
Houk, K. N.: The pressure dependence of the OH radical yield from
ozone-alkene reactions, J. Phys. Chem. A, 104, 7821–7833, 2000.
Finlayson, B. J., Pitts, J. N., and Akimoto, H.: Production of vibrationally
excited OH in chemiluminescent ozone-olefin reactions, Chem. Phys. Lett.,
12, 495–498, 1972.
Finlayson-Pitts, B. J. and Pitts, J. N.: Chemistry of the upper and lower
atmosphere: theory, experiments, and applications, Academic Press,
https://doi.org/10.1016/B978-012257060-5/50010-1, 2000.
Forester, C. D. and Wells, J. R.: Hydroxyl radical yields from reactions of
terpene mixtures with ozone, Indoor Air, 21, 400–409, 2011.
Griesbaum, K., Miclaus, V., and Jung, I. C.: Isolation of ozonides from
gas-phase ozonolyses of terpenes, Environ. Sci. Technol., 32, 647–649, 1998.
Hakala, J. P. and Donahue, N. M.: Pressure-dependent Criegee intermediate
stabilization from alkene ozonolysis, J. Phys. Chem. A, 120, 2173–2178,
2016.
Hakala, J. P. and Donahue, N. M.: Pressure stabilization of Criegee
intermediates formed from symmetric trans-alkene ozonolysis, J. Phys. Chem.
A, 122, 9426–9434, 2018.
Hakola, H., Arey, J., Aschmann, S. M., and Atkinson, R.: Product formation
from the gas-phase reactions of OH radicals and O3 with a series of
monoterpenes, J. Atmos. Chem., 18, 75–102, 1994.
Hasson, A. S., Orzechowska, G., and Paulson, S. E.: Production of stabilized
Criegee intermediates and peroxides in the gas phase ozonolysis of alkenes
1. Ethene, trans-2-butene, and 2,3-dimethyl-2-butene, J. Geophys. Res.-Atmos.,
106, 34131–34142, 2001a.
Hasson, A. S., Ho, A. W., Kuwata, K. T., and Paulson, S. E.: Production of
stabilized Criegee intermediates and peroxides in the gas phase ozonolysis
of alkenes 2. Asymmetric and biogenic alkenes, J. Geophys. Res.-Atmos., 106,
34143–34153, 2001b.
Hasson, A. S., Chung, M. Y., Kuwata, K. T., Converse, A. D., Krohn, D., and
Paulson, S. E.: Reaction of Criegee intermediates with water vapor – An
additional source of OH radicals in alkene ozonolysis?, J. Phys. Chem. A,
107, 6176–6182, 2003.
Hatakeyama, S., Kobayashi, H., and Akimoto, H.: Gas-phase oxidation of
SO2 in the ozone-olefin reactions, J. Phys. Chem., 88, 4736–4739, 1984.
Hatakeyama, S., Kobayashi, H., Lin, Z.-Y., Takagi, H., and Akimoto, H.:
Mechanism for the reaction of CH2OO with SO2, J. Phys. Chem., 90,
4131–4135, 1986.
Herrmann, F., Winterhalter, R., Moortgat, G. K., and Williams, J.: Hydroxyl
radical (OH) yields from the ozonolysis of both double bonds for five
monoterpenes, Atmos. Environ., 44, 3458–3464, 2010.
Horie, O. and Moortgat, G. K.: Decomposition pathways of the excited Criegee
intermediates in the ozonolysis of simple alkenes, Atmos. Environ., 25A,
1881–1896, 1991.
Horie, O., Schafer, C., and Moortgat, G. K.: High reactivity of hexafluoro
acetone toward Criegee intermediates in the gas-phase ozonolysis of simple
alkenes, Int. J. Chem. Kinet., 31, 261–269, 1999.
Huang, H.-L., Chao, W., and Lin, J. J.-M.: Kinetics of a Criegee intermediate
that would survive high humidity and may oxidize atmospheric SO2, P.
Natl. Acad. Sci. USA, 112, 10857–10862, https://doi.org/10.1073/pnas.1513149112, 2015.
IUPAC, Task Group on Atmospheric Chemical Kinetic Data Evaluation: Evaluated kinetic data, available at: http://iupac.pole-ether.fr/, last access: 22 September 2020.
Jenkin, M. E., Wyche, K. P., Evans, C. J., Carr, T., Monks, P. S., Alfarra, M. R., Barley, M. H., McFiggans, G. B., Young, J. C., and Rickard, A. R.: Development and chamber evaluation of the MCM v3.2 degradation scheme for β-caryophyllene, Atmos. Chem. Phys., 12, 5275–5308, https://doi.org/10.5194/acp-12-5275-2012, 2012.
Johnson, D. and Marston, G.: The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere, Chem. Soc. Rev., 37, 699–716, 2008.
Kan, C. S., Su, F., Calvert, J. G., and Shaw, J. H.: Mechanism of the
ozone-ethene reaction in dilute N2 ∕ O2 mixtures near 1-atm
Pressure, J. Phys. Chem., 85, 2359–2363, 1981.
Khan, M. A. H., Percival, C. J., Caravan, R. L., Taatjes, C. A., and
Shallcross, D. E.: Criegee intermediates and their impacts on the
troposphere, Environ. Sci.-Proc. Imp., 20, 437–453, 2018.
Kroll, J. H., Hanisco, T. F, Donahue, N. M., Demerjian, K. L., and Anderson,
J. G.: Accurate, direct measurements of OH yields from gas-phase
ozone-alkene reactions using an in situ LIF Instrument, Geophys. Res. Lett.,
28, 3863–3866, https://doi.org/10.1029/2001GL013406, 2001a.
Kroll, J. H., Clarke, J. S., Donahue, N. M., Anderson, J. G., and Demerjian,
K. L.: Mechanism of HOx formation in the gas-phase ozone-alkene
reaction. 1. Direct, pressure-dependent measurements of prompt OH yields, J.
Phys. Chem. A, 105, 1554–1560, 2001b.
Kroll, J. H., Sahay, S. R., Anderson, J. G., Demerjian, K. L., and Donahue,
N. M.: Mechanism of HOx formation in the gas-phase ozone-alkene
reaction. 2. Prompt versus thermal dissociation of carbonyl oxides to form
OH, J. Phys. Chem. A, 105, 4446–4457, 2001c.
Kuwata, K. T., Hermes, M. R., Carlson, M. J., and Zogg, C. K.: Computational
studies of the isomerization and hydration
reactions of acetaldehyde oxide and methyl vinyl carbonyl oxide, J. Phys.
Chem. A, 114, 9192–9204, 2010.
Li, H., Fang, Y., Beames, J. M., and Lester, M. I.: Velocity map imaging of
O-atom products from UV photodissociation of the CH2OO Criegee
intermediate, J. Chem. Phys., 142, 214312, https://doi.org/10.1063/1.4921990, 2015.
Liu, F., Beames, J. M., Green, A. M., and Lester, M. I.: UV spectroscopic characterization of dimethyl- and ethyl-substituted carbonyl oxides, J. Phys. Chem. A, 118, 2298–2306, 2014.
Long, B., Bao, J. L., and Truhlar, D.G.: Atmospheric chemistry of Criegee
intermediates: Unimolecular reactions and reactions with water, J. Am. Chem.
Soc., 138, 14409–14422, https://doi.org/10.1021/jacs.6b08655, 2016.
Long, B., Bao, J. L., and Truhlar, D. G.: Rapid unimolecular reaction of
stabilized Criegee intermediates and implications for atmospheric chemistry,
Nat. Commun., 10, 2003, https://doi.org/10.1038/s41467-019-09948-7, 2019.
Mackenzie-Rae, F. A., Karton, A., and Saunders, S. M.: Computational
investigation into the gas-phase ozonolysis of the conjugated monoterpene
alpha-phellandrene, Phys. Chem. Chem. Phys., 18, 27991–28002, 2016.
Malkin, T. L., Goddard, A., Heard, D. E., and Seakins, P. W.: Measurements of OH and HO2 yields from the gas phase ozonolysis of isoprene, Atmos. Chem. Phys., 10, 1441–1459, https://doi.org/10.5194/acp-10-1441-2010, 2010.
McGill, C. D., Rickard, A. R., Johnson, D., and Marston, G.: Product yields
in the reactions of ozone with Z-but-2-ene, E-but-2-ene and
2-methylbut-2-ene, Chemosphere, 38, 1205–1212, 1999.
Mihelcic, D., Heitlinger, M., Kley, D., Musgen P., and Volz-Thomas, A.:
Formation of hydroxyl and hydroperoxy radicals in the gas-phase ozonolysis
of ethene, Chem. Phys. Lett., 301, 559–564, 1999.
Millet, D. B., Baasandorj, M., Farmer, D. K., Thornton, J. A., Baumann, K., Brophy, P., Chaliyakunnel, S., de Gouw, J. A., Graus, M., Hu, L., Koss, A., Lee, B. H., Lopez-Hilfiker, F. D., Neuman, J. A., Paulot, F., Peischl, J., Pollack, I. B., Ryerson, T. B., Warneke, C., Williams, B. J., and Xu, J.: A large and ubiquitous source of atmospheric formic acid, Atmos. Chem. Phys., 15, 6283–6304, https://doi.org/10.5194/acp-15-6283-2015, 2015.
Neeb, P. and Moortgat, G. K.: Formation of OH radicals in the gas-phase
reaction of propene, isobutene, and isoprene with O3: Yields and
mechanistic implications, J. Phys. Chem. A, 103, 9003–9012, 1999.
Neeb, P., Horie, O., and Moortgat, G. K.: Gas-phase ozonolysis of ethene in
the presence of hydroxylic compounds, Int. J. Chem. Kinet., 28, 721–730,
1996.
Neeb, P., Horie, O., and Moortgat, G. K.: The ethene-ozone reaction in the
gas phase, J. Phys. Chem. A, 102, 6778–6785, 1998.
Newland, M. J., Rickard, A. R., Alam, M. S., Vereecken, L., Muñoz, A.,
Ródenas, M., and Bloss, W. J.: Kinetics of stabilised Criegee
intermediates derived from alkene ozonolysis: reactions with SO2,
H2O and decomposition under boundary layer conditions, Phys. Chem.
Chem. Phys., 17, 4076–4088, 2015a.
Newland, M. J., Rickard, A. R., Vereecken, L., Muñoz, A., Ródenas, M., and Bloss, W. J.: Atmospheric isoprene ozonolysis: impacts of stabilised Criegee intermediate reactions with SO2, H2O and dimethyl sulfide, Atmos. Chem. Phys., 15, 9521–9536, https://doi.org/10.5194/acp-15-9521-2015, 2015b.
Newland, M. J., Rickard, A. R., Sherwen, T., Evans, M. J., Vereecken, L., Muñoz, A., Ródenas, M., and Bloss, W. J.: The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO2 oxidation: experiment, theory and modelling, Atmos. Chem. Phys., 18, 6095–6120, https://doi.org/10.5194/acp-18-6095-2018, 2018.
Newland, M. J., Nelson, B. S., Muñoz, A., Ródenas, M., Vera, T.,
Tárrega, J., and Rickard, A. R.: Trends in stabilisation of Criegee
intermediates from alkene ozonolysis, Phys. Chem. Chem. Phys., 22,
13698–13706, https://doi.org/10.1039/D0CP00897D, 2020.
Nguyen, T. B., Tyndall, G. S., Crounse, J. D., Teng, A. P., Bates, K. H.,
Schwantes, R. H., Coggon, M. M., Zhang, L., Feiner, P., Milller, D. O.,
Skog, K. M., Rivera-Rios, J. C., Dorris, M., Olson, K. F., Koss, A., Wild,
R. J., Brown, S. S., Goldstein, A. H., de Gouw, J. A., Brune, W. H.,
Keutsch, F. N., Seinfeld, J, H., and Wennberg, P. O.: Atmospheric fates of
Criegee intermediates in the ozonolysis of isoprene, Phys. Chem. Chem.
Phys., 18, 10241–10254, 2016.
Nguyen, T. L., Peeters, J., and Vereecken, L.: Theoretical study of the
gas-phase ozonolysis of β-pinene (C10H16), Phys. Chem.
Chem. Phys., 11, 5643–5656, 2009a.
Nguyen, T. L., Winterhalter, R., Moortgat, G., Kanawati, B., Peeters, J., and
Vereecken, L.: The gas-phase ozonolysis of β-caryophyllene
(C15H24). Part II: a theoretical study, Phys. Chem. Chem. Phys.,
11, 4173–4183, 2009b.
Niki, H., Maker, P. D., Savage, C. M., Breitenbach, L. P., and Hurley, M. D.:
FTIR spectroscopic study of the mechanism for the gas-phase reaction between
ozone and tetramethylethylene, J. Phys. Chem., 91, 941–946, 1987.
Olzmann, M., Kraka, E., Cremer, D., Gutbrod, R., and Andersson, S.:
Energetics, kinetics, and product distributions of the reactions of ozone
with ethene and 2,3-dimethyl-2-butene, J. Phys. Chem. A, 101, 9421–9429,
1997.
Orzechowska, G. and Paulson, S. E.: Production of OH radicals from the
reactions of C4-C6 internal alkenes and styrenes with ozone in the
gas phase, Atmos. Environ., 36, 571–581, 2002.
Osborn, D. L. and Taatjes, C. A.: The physical chemistry of Criegee
intermediates in the gas phase, Int. Rev. Phys. Chem., 34, 309–360, 2015.
Paulson, S. E., Chung, M., Sen, A. D., and Orzechowska, G.: Measurement of OH
radical formation from the reaction of ozone with several biogenic alkenes,
J. Geophys. Res.-Atmos., 103, 25533–25539, 1998.
Paulson, S. E., Fenske, J. D., Sen, A. D., and Callahan, T. W.: A novel
small-ratio relative-rate technique for measuring OH formation yields from
the reactions of O3 with alkenes in the gas phase, and its application
to the reactions of ethene and propene, J. Phys. Chem. A, 103, 2050–2059,
1999.
Peltola, J., Seal, P., Inkilä, A., and Eskola, A.: Time-resolved,
broadband UV-absorption spectrometry measurements of Criegee intermediate
kinetics using a new photolytic precursor: unimolecular decomposition of
CH2OO and its reaction with formic acid, Phys. Chem. Chem. Phys., 22,
11797–11808, https://doi.org/10.1039/D0CP00302F, 2020.
Presto, A. A. and Donahue, N. M.: Ozonolysis fragment quenching by nitrate
formation: The pressure dependence of prompt OH radical formation, J. Phys.
Chem. A, 108, 9096–9104, 2004.
Qi, B., Yang, B., Wang, Z. Q., Yang, H. Y., and Liu, L.: Production of
radicals in the ozonolysis of propene in air, Sci. China, Ser. B, 52,
356–361, 2009.
Ren, Y., Grosselin, B., Daële, V., and Mellouki, A.: Investigation of the
reaction of ozone with isoprene, methacrolein and methyl vinyl ketone using
the HELIOS chamber, Faraday Discuss., 200, 289–311, 2017.
Rickard, A. R., Johnson, D., McGill, C. D., and Marston, G.: OH yields in the
gas-phase reactions of ozone with alkenes, J. Phys. Chem. A, 103, 7656–7664,
1999.
Ryzhkov, A. B. and Ariya, P. A.: A theoretical study of the reactions of
parent and substituted Criegee intermediates with water and the water dimer,
Phys. Chem. Chem. Phys., 6, 5042–5050, 2004.
Samanta, K., Beames, J. M., Lester M. I., and Subotnik, J. E.: Quantum
dynamical investigation of the simplest Criegee intermediate CH2OO and
its O–O photodissociation channels, J. Chem. Phys. 141, 134303,
https://doi.org/10.1063/1.4894746, 2014.
Sheps, L.: Absolute ultraviolet absorption spectrum of a Criegee
intermediate CH2OO, J. Phys. Chem. Lett., 4, 4201–4205, 2013.
Sheps, L., Scully, A. M., and Au, K.: UV absorption probing of the
conformer-dependent reactivity of a Criegee intermediate
CH3CHOO Phys. Chem. Chem. Phys., 16, 26701–26706, 2014.
Shu, Y. and Atkinson, R.: Rate constants for the gas-phase reactions of
O3 with a series of terpenes and OH radical formation from the O3
reactions with sesquiterpenes at 296 ± 2 K, Int. J. Chem. Kinet., 26,
1193–1205, 1994.
Siese, M., Becker, K. H., Brockmann, K. J., Geiger, H., Hofzumahaus, A.,
Holland, F., Mihelcic, D., and Wirtz, K.: Direct measurement of OH radicals
from ozonolysis of selected alkenes: A EUPHORE simulation chamber study,
Environ. Sci. Technol., 35, 4660–4667, 2001.
Sipilä, M., Jokinen, T., Berndt, T., Richters, S., Makkonen, R., Donahue, N. M., Mauldin III, R. L., Kurtén, T., Paasonen, P., Sarnela, N., Ehn, M., Junninen, H., Rissanen, M. P., Thornton, J., Stratmann, F., Herrmann, H., Worsnop, D. R., Kulmala, M., Kerminen, V.-M., and Petäjä, T.: Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids, Atmos. Chem. Phys., 14, 12143–12153, https://doi.org/10.5194/acp-14-12143-2014, 2014.
Stephenson, T. A. and Lester, M. I.: Unimolecular decay dynamics of Criegee
intermediates: Energy-resolved rates, thermal rates, and their atmospheric
impact, Int. Rev. Phys. Chem., 39, 1–33, https://doi.org/10.1080/0144235X.2020.1688530, 2020.
Su, F., Calvert, J. G., and Shaw, J. H.: A FT-IR Spectroscopic study of the
ozone-ethene reaction mechanism in O2-rich mixtures, J. Phys. Chem.,
84, 239–246, 1980.
Taatjes, C. A., Welz, O., Eskola, A. J., Savee, J. D., Osborn, D. L., Lee,
E. P. F., Dyke, J. M., Mok, D. W. K., Shallcross, D. E., and Percival, C.
J.: Direct measurement of Criegee intermediate (CH2OO) reactions with
acetone, acetaldehyde, and hexafluoroacetone, Phys. Chem. Chem. Phys., 14,
10391–10400, 2012.
Taatjes, C. A., Welz, C. A.; Eskola, A. J., Savee, J. D., Scheer, A. M.,
Shallcross, D. E., Rotavera, B., Lee, E. P. F., Dyke, J. M., Mok, D. K. W.,
Osborn, D. L., and Percival, C. J.: Direct measurements of
conformer-dependent reactivity of the Criegee intermediate CH3CHOO,
Science, 340, 177–181, 2013.
Taatjes, C. A., Shallcross, D. E., and Percival, C. J.: Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis, Phys. Chem. Chem. Phys., 16, 1704–1718, https://doi.org/10.1039/c3cp52842a, 2014.
Taatjes, C. A., Khan, M. A. H., Eskola, A. J., Percival, C. J., Osborn, D.
L., Wallington, T. J., and Shallcross, D. E.: Reaction with Criegee
intermediates: An important atmospheric fate of perfluorocarboxylic acids,
Environ. Sci. Technol., 53, 1245–1251, 2019.
Ting, W.-L, Chen, Y.-H., Chao, W., Smith, M. C., and Lin Jr., J.-M.: The UV
absorption spectrum of the simplest Criegee intermediate CH2OO, Phys.
Chem. Chem. Phys., 16, 10438–10443, 2014.
Tobias, H. J. and Ziemann, P. J.:
Kinetics of the gas-phase reactions of alcohols, aldehydes, carboxylic
acids, and water with the C13 stabilized Criegee intermediate formed
from ozonolysis of 1-tetradecene, J. Phys. Chem. A, 105, 6129–6135,
2001.
Vansco, M. F., Li, H., and Lester, M. I.: Prompt release of O1D products
upon UV excitation of CH2OO Criegee intermediates, J. Chem. Phys. 147,
013907, https://doi.org/10.1063/1.4977987, 2017.
Vansco, M. F., Marchetti, B., and Lester, M. I.: Electronic spectroscopy of
methyl vinyl ketone oxide: A four-carbon unsaturated
Criegee intermediate from isoprene ozonolysis, J. Chem. Phys., 149, 244309,
https://doi.org/10.1063/1.5064716, 2018.
Vansco, M. F., Marchetti, B. Trongsiriwat, N., Bhagde, T., Wang, G., Walsh,
P. J., Klippenstein, S. J., and Lester, M. I.: Synthesis, electronic
spectroscopy, and photochemistry of methacrolein oxide: A four-carbon
unsaturated Criegee intermediate from isoprene ozonolysis, J. Am. Chem.
Soc., 141, 15058–15069, https://doi.org/10.1021/jacs.9b05193, 2019.
Vereecken, L. and Nguyen, H. M. T.: Theoretical study on the reaction of carbonyl oxide with nitrogen dioxide: CH2OO + NO2, Int. J. Chem. Kinet., 49, 752–760, 2017.
Vereecken, L., Harder, H., and Novelli, A.: The reaction of Criegee
intermediates with NO, RO2, and SO2, and their fate in the
atmosphere, Phys. Chem. Chem. Phys., 14, 14682–14695,
https://doi.org/10.1039/C2CP42300F, 2012.
Vereecken, L., Novelli, A., and Taraborrelli, D.: Unimolecular decay strongly
limits the atmospheric impact of Criegee intermediates, Phys. Chem. Chem.
Phys., 19, 31599–31612, https://doi.org/10.1039/c7cp05541b, 2017.
Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J.,
Shallcross, D. E., and Taatjes, C. A.: Direct kinetic measurements of Criegee
intermediate (CH2OO) formed by reaction of CH2I with O2,
Science, 335, 204–207, 2012.
Winterhalter, R., Neeb, P., Grossmann, D., Kolloff, A., Horie, O., and
Moortgat, G. K.: Products and mechanism of the gas phase-reaction of ozone
with β-pinene, J. Atmos. Chem., 35, 165–197, 2000.
Winterhalter, R., Herrmann, F., Kanawati, B., Nguyen, T. L., Peeters, J.,
Vereecken, L., and Moortgat, G. K.: The gas-phase ozonolysis of β-caryophyllene (C15H24). Part I: an experimental study, Phys.
Chem. Chem. Phys., 11, 4152–4172, 2009.
Yao, L., Ma, Y., Wang, L., Zheng, J., Khalizov, A., Chen, M., Zhou, Y., Qi,
L., and Cui, F.: Role of stabilized Criegee intermediate in secondary
organic aerosol formation from the ozonolysis of α-cedrene, Atmos.
Environ., 94, 448–457, 2014.
Zhang, D., Lei, W., and Zhang, R.: Mechanism of OH formation from ozonolysis
of isoprene: kinetics and product yields, Chem. Phys. Lett., 358, 171–179, 2002.
Short summary
Criegee intermediates, formed from alkene–ozone reactions, play a potentially important role as tropospheric oxidants. Evaluated kinetic data are provided for reactions governing their formation and removal for use in atmospheric models. These include their formation from reactions of simple and complex alkenes and removal by decomposition and reaction with a number of atmospheric species (e.g. H2O, SO2). An overview of the tropospheric chemistry of Criegee intermediates is also provided.
Criegee intermediates, formed from alkene–ozone reactions, play a potentially important role as...
Altmetrics
Final-revised paper
Preprint