Articles | Volume 19, issue 15
Atmos. Chem. Phys., 19, 9903–9911, 2019
https://doi.org/10.5194/acp-19-9903-2019
Atmos. Chem. Phys., 19, 9903–9911, 2019
https://doi.org/10.5194/acp-19-9903-2019

Research article 07 Aug 2019

Research article | 07 Aug 2019

Quantifying the contribution of anthropogenic influence to the East Asian winter monsoon in 1960–2012

Xin Hao et al.

Related authors

Decadal changes of connections among late-spring snow cover in West Siberia, summer Eurasia teleconnection and O3-related meteorology in North China
Zhicong Yin, Yu Wan, and Huijun Wang
Atmos. Chem. Phys., 21, 11519–11530, https://doi.org/10.5194/acp-21-11519-2021,https://doi.org/10.5194/acp-21-11519-2021, 2021
Short summary
Evident PM2.5 drops in the east of China due to the COVID-19 quarantine measures in February
Zhicong Yin, Yijia Zhang, Huijun Wang, and Yuyan Li
Atmos. Chem. Phys., 21, 1581–1592, https://doi.org/10.5194/acp-21-1581-2021,https://doi.org/10.5194/acp-21-1581-2021, 2021
Short summary
Roles of climate variability on the rapid increases of early winter haze pollution in North China after 2010
Yijia Zhang, Zhicong Yin, and Huijun Wang
Atmos. Chem. Phys., 20, 12211–12221, https://doi.org/10.5194/acp-20-12211-2020,https://doi.org/10.5194/acp-20-12211-2020, 2020
Short summary
Pathway dependence of ecosystem responses in China to 1.5 °C global warming
Xu Yue, Hong Liao, Huijun Wang, Tianyi Zhang, Nadine Unger, Stephen Sitch, Zhaozhong Feng, and Jia Yang
Atmos. Chem. Phys., 20, 2353–2366, https://doi.org/10.5194/acp-20-2353-2020,https://doi.org/10.5194/acp-20-2353-2020, 2020
Short summary
Dominant patterns of summer ozone pollution in eastern China and associated atmospheric circulations
Zhicong Yin, Bufan Cao, and Huijun Wang
Atmos. Chem. Phys., 19, 13933–13943, https://doi.org/10.5194/acp-19-13933-2019,https://doi.org/10.5194/acp-19-13933-2019, 2019
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Dispersion of particulate matter (PM2.5) from wood combustion for residential heating: optimization of mitigation actions based on large-eddy simulations
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021,https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Measurement report: Effect of wind shear on PM10 concentration vertical structure in the urban boundary layer in a complex terrain
Piotr Sekuła, Anita Bokwa, Jakub Bartyzel, Bogdan Bochenek, Łukasz Chmura, Michał Gałkowski, and Mirosław Zimnoch
Atmos. Chem. Phys., 21, 12113–12139, https://doi.org/10.5194/acp-21-12113-2021,https://doi.org/10.5194/acp-21-12113-2021, 2021
Short summary
The effect of forced change and unforced variability in heat waves, temperature extremes, and associated population risk in a CO2-warmed world
Jangho Lee, Jeffrey C. Mast, and Andrew E. Dessler
Atmos. Chem. Phys., 21, 11889–11904, https://doi.org/10.5194/acp-21-11889-2021,https://doi.org/10.5194/acp-21-11889-2021, 2021
Short summary
Convective self–aggregation in a mean flow
Hyunju Jung, Ann Kristin Naumann, and Bjorn Stevens
Atmos. Chem. Phys., 21, 10337–10345, https://doi.org/10.5194/acp-21-10337-2021,https://doi.org/10.5194/acp-21-10337-2021, 2021
Short summary
The potential for geostationary remote sensing of NO2 to improve weather prediction
Xueling Liu, Arthur P. Mizzi, Jeffrey L. Anderson, Inez Fung, and Ronald C. Cohen
Atmos. Chem. Phys., 21, 9573–9583, https://doi.org/10.5194/acp-21-9573-2021,https://doi.org/10.5194/acp-21-9573-2021, 2021
Short summary

Cited articles

Boyle, J. S. and Chen, T. J.: Synoptic aspects of the wintertime East Asian monsoon, in: Monsoon Meteorology, edited by: Chang, C. P. and Krishnamurti, T. N., Oxford University Press, 125–160, 1987. 
Chang, C. P., Wang, Z., and Hendong, H.: The Asian winter monsoon, in: The Asian Monsoon, edited by: Wang, B., Springer Press, Berlin, Heidelberg, 89–127, 2006. 
Christidis, N., Stott, P. A., Scaife, A. A., Arribas, A., Jones, G. S., Copsey, D., Knight, J. R., and Tennant, W. J.: A new HadGEM3-A-based system for attribution of weather- and climate-related extreme events, J. Climate, 26, 2756–2783, https://doi.org/10.1175/JCLI-D-12-00169.1, 2013. 
Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term climate change: projections, commitments and irreversibility, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, 2013. 
Cui, X. P. and Sun, Z. B.: East Asian winter monsoon index and its variation analysis, J. Nanjing Inst. Meteo., 22, 321–325, 1999 (in Chinese). 
Download
Short summary
The East Asian winter monsoon (EAWM) can be greatly influenced by many factors that can be classified as anthropogenic forcing and natural forcing. Our results show that the increasing anthropogenic emissions in the past decades may have contributed to the weakening of the EAWM, the frequency of occurrence of strong EAWM may have decreased by 45 % due to the anthropogenic forcing, and the anthropogenic forcing is a dominant contributor to the occurrence of a weak EAWM.
Altmetrics
Final-revised paper
Preprint