Articles | Volume 19, issue 23
https://doi.org/10.5194/acp-19-14741-2019
https://doi.org/10.5194/acp-19-14741-2019
Research article
 | 
09 Dec 2019
Research article |  | 09 Dec 2019

Variability in a four-network composite of atmospheric CO2 differences between three primary baseline sites

Roger J. Francey, Jorgen S. Frederiksen, L. Paul Steele, and Ray L. Langenfelds

Related authors

Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica
Mauro Rubino, David M. Etheridge, David P. Thornton, Russell Howden, Colin E. Allison, Roger J. Francey, Ray L. Langenfelds, L. Paul Steele, Cathy M. Trudinger, Darren A. Spencer, Mark A. J. Curran, Tas D. van Ommen, and Andrew M. Smith
Earth Syst. Sci. Data, 11, 473–492, https://doi.org/10.5194/essd-11-473-2019,https://doi.org/10.5194/essd-11-473-2019, 2019
Short summary
The Macquarie Island (LoFlo2G) high-precision continuous atmospheric carbon dioxide record
Ann R. Stavert, Rachel M. Law, Marcel van der Schoot, Ray L. Langenfelds, Darren A. Spencer, Paul B. Krummel, Scott D. Chambers, Alistair G. Williams, Sylvester Werczynski, Roger J. Francey, and Russell T. Howden
Atmos. Meas. Tech., 12, 1103–1121, https://doi.org/10.5194/amt-12-1103-2019,https://doi.org/10.5194/amt-12-1103-2019, 2019
Short summary
Unprecedented strength of Hadley circulation in 2015–2016 impacts on CO2 interhemispheric difference
Jorgen S. Frederiksen and Roger J. Francey
Atmos. Chem. Phys., 18, 14837–14850, https://doi.org/10.5194/acp-18-14837-2018,https://doi.org/10.5194/acp-18-14837-2018, 2018
Short summary
The 2009–2010 step in atmospheric CO2 interhemispheric difference
R. J. Francey and J. S. Frederiksen
Biogeosciences, 13, 873–885, https://doi.org/10.5194/bg-13-873-2016,https://doi.org/10.5194/bg-13-873-2016, 2016
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Atmospheric NH3 in urban Beijing: long-term variations and implications for secondary inorganic aerosol control
Ziru Lan, Xiaoyi Zhang, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Jun Jin, Lingyan Wu, and Yangmei Zhang
Atmos. Chem. Phys., 24, 9355–9368, https://doi.org/10.5194/acp-24-9355-2024,https://doi.org/10.5194/acp-24-9355-2024, 2024
Short summary
How rainfall events modify trace gas mixing ratios in central Amazonia
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024,https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Uncertainty in continuous ΔCO-based ΔffCO2 estimates derived from 14C flask and bottom-up ΔCO ∕ ΔffCO2 ratios
Fabian Maier, Ingeborg Levin, Sébastien Conil, Maksym Gachkivskyi, Hugo Denier van der Gon, and Samuel Hammer
Atmos. Chem. Phys., 24, 8205–8223, https://doi.org/10.5194/acp-24-8205-2024,https://doi.org/10.5194/acp-24-8205-2024, 2024
Short summary
Dynamical drivers of free-tropospheric ozone increases over equatorial Southeast Asia
Ryan M. Stauffer, Anne M. Thompson, Debra E. Kollonige, Ninong Komala, Habib Khirzin Al-Ghazali, Dian Yudha Risdianto, Ambun Dindang, Ahmad Fairudz bin Jamaluddin, Mohan Kumar Sammathuria, Norazura Binti Zakaria, Bryan J. Johnson, and Patrick D. Cullis
Atmos. Chem. Phys., 24, 5221–5234, https://doi.org/10.5194/acp-24-5221-2024,https://doi.org/10.5194/acp-24-5221-2024, 2024
Short summary
Air mass transport to the tropical western Pacific troposphere inferred from ozone and relative humidity balloon observations above Palau
Katrin Müller, Peter von der Gathen, and Markus Rex
Atmos. Chem. Phys., 24, 4693–4716, https://doi.org/10.5194/acp-24-4693-2024,https://doi.org/10.5194/acp-24-4693-2024, 2024
Short summary

Cited articles

Bowman, K. P. and Cohen, P. J.: Interhemispheric exchange by seasonal modulation of the Hadley Circulation, J. Atmos. Sci., 54, 2045–2059, 1997. 
Chambers, S. D., Williams, A. G., Conen, F., Griffiths, A. D., Reimann, S., Steinbacher, M., Krummel, P. B., Steele, L. P., van der Schoot, M. V., Galbally, I. E., Molloy, S. B., and Barnes J. E.: Towards a Universal “Baseline” Characterisation of Air Masses for High- and Low-Altitude Observing Stations Using Radon-222, Aerosol Air Qual. Res., 16, 885–899, 2016, https://doi.org/10.4209/aaqr.2015.06.0391, 2016. 
CSIRO: CSIRO Oceans and Atmosphere GASLAB data October 2018, Commonwealth Scientific and Industrial Research Organisation, available at: ftp://gaspublic:gaspublic@pftp.csiro.au/pub/data/gaslab/ (last access: 28 January 2019), 2018. 
Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R., Masarie, K. A., and Zhang, N.: Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network, J. Geophys. Res., 99, 22831–22855, 1994. 
Download
Short summary
25-year composites of interhemispheric baseline CO2 differences demonstrate close agreement between 4 monitoring networks. Variability from monthly to multiyear time frames mostly reflects variability in upper troposphere dynamical indices chosen to represent eddy and mean transport interhemispheric exchange. Monthly interhemispheric atmospheric fluxes are much larger than air–surface terrestrial exchanges. The composite differences offer unusual constraints on transport in global carbon models.
Altmetrics
Final-revised paper
Preprint