Articles | Volume 19, issue 23
https://doi.org/10.5194/acp-19-14741-2019
https://doi.org/10.5194/acp-19-14741-2019
Research article
 | 
09 Dec 2019
Research article |  | 09 Dec 2019

Variability in a four-network composite of atmospheric CO2 differences between three primary baseline sites

Roger J. Francey, Jorgen S. Frederiksen, L. Paul Steele, and Ray L. Langenfelds

Related authors

Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica
Mauro Rubino, David M. Etheridge, David P. Thornton, Russell Howden, Colin E. Allison, Roger J. Francey, Ray L. Langenfelds, L. Paul Steele, Cathy M. Trudinger, Darren A. Spencer, Mark A. J. Curran, Tas D. van Ommen, and Andrew M. Smith
Earth Syst. Sci. Data, 11, 473–492, https://doi.org/10.5194/essd-11-473-2019,https://doi.org/10.5194/essd-11-473-2019, 2019
Short summary
The Macquarie Island (LoFlo2G) high-precision continuous atmospheric carbon dioxide record
Ann R. Stavert, Rachel M. Law, Marcel van der Schoot, Ray L. Langenfelds, Darren A. Spencer, Paul B. Krummel, Scott D. Chambers, Alistair G. Williams, Sylvester Werczynski, Roger J. Francey, and Russell T. Howden
Atmos. Meas. Tech., 12, 1103–1121, https://doi.org/10.5194/amt-12-1103-2019,https://doi.org/10.5194/amt-12-1103-2019, 2019
Short summary
Unprecedented strength of Hadley circulation in 2015–2016 impacts on CO2 interhemispheric difference
Jorgen S. Frederiksen and Roger J. Francey
Atmos. Chem. Phys., 18, 14837–14850, https://doi.org/10.5194/acp-18-14837-2018,https://doi.org/10.5194/acp-18-14837-2018, 2018
Short summary
The 2009–2010 step in atmospheric CO2 interhemispheric difference
R. J. Francey and J. S. Frederiksen
Biogeosciences, 13, 873–885, https://doi.org/10.5194/bg-13-873-2016,https://doi.org/10.5194/bg-13-873-2016, 2016
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Fingerprints of the COVID-19 economic downturn and recovery on ozone anomalies at high-elevation sites in North America and western Europe
Davide Putero, Paolo Cristofanelli, Kai-Lan Chang, Gaëlle Dufour, Gregory Beachley, Cédric Couret, Peter Effertz, Daniel A. Jaffe, Dagmar Kubistin, Jason Lynch, Irina Petropavlovskikh, Melissa Puchalski, Timothy Sharac, Barkley C. Sive, Martin Steinbacher, Carlos Torres, and Owen R. Cooper
Atmos. Chem. Phys., 23, 15693–15709, https://doi.org/10.5194/acp-23-15693-2023,https://doi.org/10.5194/acp-23-15693-2023, 2023
Short summary
Ozone in the boreal forest in the Alberta Oil Sands Region
Xuanyi Zhang, Mark Gordon, Paul A. Makar, Timothy Jiang, Jonathan Davies, and David Tarasick
Atmos. Chem. Phys., 23, 13647–13664, https://doi.org/10.5194/acp-23-13647-2023,https://doi.org/10.5194/acp-23-13647-2023, 2023
Short summary
Zugspitze ozone 1970–2020: the role of stratosphere–troposphere transport
Thomas Trickl, Cédric Couret, Ludwig Ries, and Hannes Vogelmann
Atmos. Chem. Phys., 23, 8403–8427, https://doi.org/10.5194/acp-23-8403-2023,https://doi.org/10.5194/acp-23-8403-2023, 2023
Short summary
Atmospheric turbulence observed during a fuel-bed-scale low intensity surface fire
Joseph Seitz, Shiyuan Zhong, Joseph Charney, Warren Heilman, Kenneth Clark, Xindi Bian, Nicholas Skowronski, Michael Gallagher, Matthew Patterson, Jason Cole, Mike Kiefer, Rory Hadden, and Eric Mueller
EGUsphere, https://doi.org/10.5194/egusphere-2022-1021,https://doi.org/10.5194/egusphere-2022-1021, 2023
Short summary
High sulfur dioxide deposition velocities measured with the flux–gradient technique in a boreal forest in the Alberta Oil Sands Region
Mark Gordon, Dane Blanchard, Timothy Jiang, Paul A. Makar, Ralf M. Staebler, Julian Aherne, Cris Mihele, and Xuanyi Zhang
Atmos. Chem. Phys., 23, 7241–7255, https://doi.org/10.5194/acp-23-7241-2023,https://doi.org/10.5194/acp-23-7241-2023, 2023
Short summary

Cited articles

Bowman, K. P. and Cohen, P. J.: Interhemispheric exchange by seasonal modulation of the Hadley Circulation, J. Atmos. Sci., 54, 2045–2059, 1997. 
Chambers, S. D., Williams, A. G., Conen, F., Griffiths, A. D., Reimann, S., Steinbacher, M., Krummel, P. B., Steele, L. P., van der Schoot, M. V., Galbally, I. E., Molloy, S. B., and Barnes J. E.: Towards a Universal “Baseline” Characterisation of Air Masses for High- and Low-Altitude Observing Stations Using Radon-222, Aerosol Air Qual. Res., 16, 885–899, 2016, https://doi.org/10.4209/aaqr.2015.06.0391, 2016. 
CSIRO: CSIRO Oceans and Atmosphere GASLAB data October 2018, Commonwealth Scientific and Industrial Research Organisation, available at: ftp://gaspublic:gaspublic@pftp.csiro.au/pub/data/gaslab/ (last access: 28 January 2019), 2018. 
Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R., Masarie, K. A., and Zhang, N.: Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network, J. Geophys. Res., 99, 22831–22855, 1994. 
Download
Short summary
25-year composites of interhemispheric baseline CO2 differences demonstrate close agreement between 4 monitoring networks. Variability from monthly to multiyear time frames mostly reflects variability in upper troposphere dynamical indices chosen to represent eddy and mean transport interhemispheric exchange. Monthly interhemispheric atmospheric fluxes are much larger than air–surface terrestrial exchanges. The composite differences offer unusual constraints on transport in global carbon models.
Altmetrics
Final-revised paper
Preprint