Articles | Volume 19, issue 23
Atmos. Chem. Phys., 19, 14741–14754, 2019
https://doi.org/10.5194/acp-19-14741-2019

Special issue: The 10th International Carbon Dioxide Conference (ICDC10)...

Atmos. Chem. Phys., 19, 14741–14754, 2019
https://doi.org/10.5194/acp-19-14741-2019

Research article 09 Dec 2019

Research article | 09 Dec 2019

Variability in a four-network composite of atmospheric CO2 differences between three primary baseline sites

Roger J. Francey et al.

Related authors

Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica
Mauro Rubino, David M. Etheridge, David P. Thornton, Russell Howden, Colin E. Allison, Roger J. Francey, Ray L. Langenfelds, L. Paul Steele, Cathy M. Trudinger, Darren A. Spencer, Mark A. J. Curran, Tas D. van Ommen, and Andrew M. Smith
Earth Syst. Sci. Data, 11, 473–492, https://doi.org/10.5194/essd-11-473-2019,https://doi.org/10.5194/essd-11-473-2019, 2019
Short summary
The Macquarie Island (LoFlo2G) high-precision continuous atmospheric carbon dioxide record
Ann R. Stavert, Rachel M. Law, Marcel van der Schoot, Ray L. Langenfelds, Darren A. Spencer, Paul B. Krummel, Scott D. Chambers, Alistair G. Williams, Sylvester Werczynski, Roger J. Francey, and Russell T. Howden
Atmos. Meas. Tech., 12, 1103–1121, https://doi.org/10.5194/amt-12-1103-2019,https://doi.org/10.5194/amt-12-1103-2019, 2019
Short summary
Unprecedented strength of Hadley circulation in 2015–2016 impacts on CO2 interhemispheric difference
Jorgen S. Frederiksen and Roger J. Francey
Atmos. Chem. Phys., 18, 14837–14850, https://doi.org/10.5194/acp-18-14837-2018,https://doi.org/10.5194/acp-18-14837-2018, 2018
Short summary
The 2009–2010 step in atmospheric CO2 interhemispheric difference
R. J. Francey and J. S. Frederiksen
Biogeosciences, 13, 873–885, https://doi.org/10.5194/bg-13-873-2016,https://doi.org/10.5194/bg-13-873-2016, 2016
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The CO2 integral emission by the megacity of St Petersburg as quantified from ground-based FTIR measurements combined with dispersion modelling
Dmitry V. Ionov, Maria V. Makarova, Frank Hase, Stefani C. Foka, Vladimir S. Kostsov, Carlos Alberti, Thomas Blumenstock, Thorsten Warneke, and Yana A. Virolainen
Atmos. Chem. Phys., 21, 10939–10963, https://doi.org/10.5194/acp-21-10939-2021,https://doi.org/10.5194/acp-21-10939-2021, 2021
Short summary
Anthropogenic and natural controls on atmospheric δ13C-CO2 variations in the Yangtze River delta: insights from a carbon isotope modeling framework
Cheng Hu, Jiaping Xu, Cheng Liu, Yan Chen, Dong Yang, Wenjing Huang, Lichen Deng, Shoudong Liu, Timothy J. Griffis, and Xuhui Lee
Atmos. Chem. Phys., 21, 10015–10037, https://doi.org/10.5194/acp-21-10015-2021,https://doi.org/10.5194/acp-21-10015-2021, 2021
Short summary
Quantifying variability, source, and transport of CO in the urban areas over the Himalayas and Tibetan Plateau
Youwen Sun, Hao Yin​​​​​​​, Yuan Cheng, Qianggong Zhang, Bo Zheng, Justus Notholt, Xiao Lu, Cheng Liu, Yuan Tian, and Jianguo Liu
Atmos. Chem. Phys., 21, 9201–9222, https://doi.org/10.5194/acp-21-9201-2021,https://doi.org/10.5194/acp-21-9201-2021, 2021
Short summary
New methodology shows short atmospheric lifetimes of oxidized sulfur and nitrogen due to dry deposition
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021,https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Uncertainties in eddy covariance air–sea CO2 flux measurements and implications for gas transfer velocity parameterisations
Yuanxu Dong, Mingxi Yang, Dorothee C. E. Bakker, Vassilis Kitidis, and Thomas G. Bell
Atmos. Chem. Phys., 21, 8089–8110, https://doi.org/10.5194/acp-21-8089-2021,https://doi.org/10.5194/acp-21-8089-2021, 2021
Short summary

Cited articles

Bowman, K. P. and Cohen, P. J.: Interhemispheric exchange by seasonal modulation of the Hadley Circulation, J. Atmos. Sci., 54, 2045–2059, 1997. 
Chambers, S. D., Williams, A. G., Conen, F., Griffiths, A. D., Reimann, S., Steinbacher, M., Krummel, P. B., Steele, L. P., van der Schoot, M. V., Galbally, I. E., Molloy, S. B., and Barnes J. E.: Towards a Universal “Baseline” Characterisation of Air Masses for High- and Low-Altitude Observing Stations Using Radon-222, Aerosol Air Qual. Res., 16, 885–899, 2016, https://doi.org/10.4209/aaqr.2015.06.0391, 2016. 
CSIRO: CSIRO Oceans and Atmosphere GASLAB data October 2018, Commonwealth Scientific and Industrial Research Organisation, available at: ftp://gaspublic:gaspublic@pftp.csiro.au/pub/data/gaslab/ (last access: 28 January 2019), 2018. 
Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R., Masarie, K. A., and Zhang, N.: Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network, J. Geophys. Res., 99, 22831–22855, 1994. 
Download
Short summary
25-year composites of interhemispheric baseline CO2 differences demonstrate close agreement between 4 monitoring networks. Variability from monthly to multiyear time frames mostly reflects variability in upper troposphere dynamical indices chosen to represent eddy and mean transport interhemispheric exchange. Monthly interhemispheric atmospheric fluxes are much larger than air–surface terrestrial exchanges. The composite differences offer unusual constraints on transport in global carbon models.
Altmetrics
Final-revised paper
Preprint