Articles | Volume 19, issue 19
https://doi.org/10.5194/acp-19-12569-2019
https://doi.org/10.5194/acp-19-12569-2019
Research article
 | 
09 Oct 2019
Research article |  | 09 Oct 2019

Enhanced heterogeneous uptake of sulfur dioxide on mineral particles through modification of iron speciation during simulated cloud processing

Zhenzhen Wang, Tao Wang, Hongbo Fu, Liwu Zhang, Mingjin Tang, Christian George, Vicki H. Grassian, and Jianmin Chen

Related authors

Significant formation of sulfate aerosols contributed by the heterogeneous drivers of dust surface
Tao Wang, Yangyang Liu, Hanyun Cheng, Zhenzhen Wang, Hongbo Fu, Jianmin Chen, and Liwu Zhang
Atmos. Chem. Phys., 22, 13467–13493, https://doi.org/10.5194/acp-22-13467-2022,https://doi.org/10.5194/acp-22-13467-2022, 2022
Short summary
Measurement report: Saccharide composition in atmospheric fine particulate matter during spring at the remote sites of southwest China and estimates of source contributions
Zhenzhen Wang, Di Wu, Zhuoyu Li, Xiaona Shang, Qing Li, Xiang Li, Renjie Chen, Haidong Kan, Huiling Ouyang, Xu Tang, and Jianmin Chen
Atmos. Chem. Phys., 21, 12227–12241, https://doi.org/10.5194/acp-21-12227-2021,https://doi.org/10.5194/acp-21-12227-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Particulate emissions from cooking: emission factors, emission dynamics, and mass spectrometric analysis for different cooking methods
Julia Pikmann, Frank Drewnick, Friederike Fachinger, and Stephan Borrmann
Atmos. Chem. Phys., 24, 12295–12321, https://doi.org/10.5194/acp-24-12295-2024,https://doi.org/10.5194/acp-24-12295-2024, 2024
Short summary
Nocturnal atmospheric synergistic oxidation reduces the formation of low-volatility organic compounds from biogenic emissions
Han Zang, Zekun Luo, Chenxi Li, Ziyue Li, Dandan Huang, and Yue Zhao
Atmos. Chem. Phys., 24, 11701–11716, https://doi.org/10.5194/acp-24-11701-2024,https://doi.org/10.5194/acp-24-11701-2024, 2024
Short summary
The interplay between aqueous replacement reaction and the phase state of internally mixed organic/ammonium aerosols
Hui Yang, Fengfeng Dong, Li Xia, Qishen Huang, Shufeng Pang, and Yunhong Zhang
Atmos. Chem. Phys., 24, 11619–11635, https://doi.org/10.5194/acp-24-11619-2024,https://doi.org/10.5194/acp-24-11619-2024, 2024
Short summary
Measurement report: The Fifth International Workshop on Ice Nucleation phase 1 (FIN-01): intercomparison of single-particle mass spectrometers
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024,https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Enhanced Sulfate Formation in Mixed Biomass Burning and Sea-salt Particles Mediated by Photosensitization: Effects of Chloride and Nitrogen-containing Compounds
Rongzhi Tang, Jialiang Ma, Ruifeng Zhang, Weizhen Cui, Yuanyuan Qin, Yangxi Chu, Yiming Qin, Alexander L. Vogel, and Chak K. Chan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2633,https://doi.org/10.5194/egusphere-2024-2633, 2024
Short summary

Cited articles

Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget, J. Geophys. Res., 114, D02309, https://doi.org/10.1029/2008JD010486, 2009. 
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008. 
Baker, A. R. and Croot, P. L.: Atmospheric and marine controls on aerosol iron solubility in seawater, Mar. Chem., 120, 4–13, https://doi.org/10.1016/j.marchem.2008.09.003, 2010. 
Behra, P., Sigg, L., and Stumm, W.: Dominating influence of NH3 on the oxidation of aqueous SO2: the coupling of NH3 and SO2 in atmospheric water, Atmos. Environ., 23, 2691–2707, https://doi.org/10.1016/0004-6981(89)90549-0, 1989. 
Download
Short summary
This study confirmed that SO2 uptake on mineral particles could be greatly enhanced during cloud processing. The large pH fluctuations between the cloud-aerosol modes could significantly modify the microphysical properties of particles, and triggered the formation of reactive Fe particles to accelerate sulfate formation via a self-amplifying process. Results of this study could partly explain the missing source of sulfate and improve agreement between models and field observations.
Altmetrics
Final-revised paper
Preprint