Articles | Volume 18, issue 13
https://doi.org/10.5194/acp-18-9597-2018
https://doi.org/10.5194/acp-18-9597-2018
Research article
 | 
09 Jul 2018
Research article |  | 09 Jul 2018

Identification of new particle formation events with deep learning

Jorma Joutsensaari, Matthew Ozon, Tuomo Nieminen, Santtu Mikkonen, Timo Lähivaara, Stefano Decesari, M. Cristina Facchini, Ari Laaksonen, and Kari E. J. Lehtinen

Related authors

Aerosol–stratocumulus interactions: towards a better process understanding using closures between observations and large eddy simulations
Silvia M. Calderón, Juha Tonttila, Angela Buchholz, Jorma Joutsensaari, Mika Komppula, Ari Leskinen, Liqing Hao, Dmitri Moisseev, Iida Pullinen, Petri Tiitta, Jian Xu, Annele Virtanen, Harri Kokkola, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 12417–12441, https://doi.org/10.5194/acp-22-12417-2022,https://doi.org/10.5194/acp-22-12417-2022, 2022
Short summary
Intercomparison of holographic imaging and single-particle forward light scattering in situ measurements of liquid clouds in changing atmospheric conditions
Petri Tiitta, Ari Leskinen, Ville A. Kaikkonen, Eero O. Molkoselkä, Anssi J. Mäkynen, Jorma Joutsensaari, Silvia Calderon, Sami Romakkaniemi, and Mika Komppula
Atmos. Meas. Tech., 15, 2993–3009, https://doi.org/10.5194/amt-15-2993-2022,https://doi.org/10.5194/amt-15-2993-2022, 2022
Short summary
New particle formation event detection with Mask R-CNN
Peifeng Su, Jorma Joutsensaari, Lubna Dada, Martha Arbayani Zaidan, Tuomo Nieminen, Xinyang Li, Yusheng Wu, Stefano Decesari, Sasu Tarkoma, Tuukka Petäjä, Markku Kulmala, and Petri Pellikka
Atmos. Chem. Phys., 22, 1293–1309, https://doi.org/10.5194/acp-22-1293-2022,https://doi.org/10.5194/acp-22-1293-2022, 2022
Short summary
Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new particle formation periods
Liqing Hao, Olga Garmash, Mikael Ehn, Pasi Miettinen, Paola Massoli, Santtu Mikkonen, Tuija Jokinen, Pontus Roldin, Pasi Aalto, Taina Yli-Juuti, Jorma Joutsensaari, Tuukka Petäjä, Markku Kulmala, Kari E. J. Lehtinen, Douglas R. Worsnop, and Annele Virtanen
Atmos. Chem. Phys., 18, 17705–17716, https://doi.org/10.5194/acp-18-17705-2018,https://doi.org/10.5194/acp-18-17705-2018, 2018
Short summary
Biotic stress accelerates formation of climate-relevant aerosols in boreal forests
J. Joutsensaari, P. Yli-Pirilä, H. Korhonen, A. Arola, J. D. Blande, J. Heijari, M. Kivimäenpää, S. Mikkonen, L. Hao, P. Miettinen, P. Lyytikäinen-Saarenmaa, C. L. Faiola, A. Laaksonen, and J. K. Holopainen
Atmos. Chem. Phys., 15, 12139–12157, https://doi.org/10.5194/acp-15-12139-2015,https://doi.org/10.5194/acp-15-12139-2015, 2015
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Measurement report: Optical and structural properties of atmospheric water-soluble organic carbon in China – insights from multi-site spectroscopic measurements
Haibiao Chen, Caiqing Yan, Liubin Huang, Lin Du, Yang Yue, Xinfeng Wang, Qingcai Chen, Mingjie Xie, Junwen Liu, Fengwen Wang, Shuhong Fang, Qiaoyun Yang, Hongya Niu, Mei Zheng, Yan Wu, and Likun Xue
Atmos. Chem. Phys., 25, 3647–3667, https://doi.org/10.5194/acp-25-3647-2025,https://doi.org/10.5194/acp-25-3647-2025, 2025
Short summary
Measurement report: The variation properties of aerosol hygroscopic growth related to chemical composition during new particle formation days in a coastal city of Southeast China
Lingjun Li, Mengren Li, Xiaolong Fan, Yuping Chen, Ziyi Lin, Anqi Hou, Siqing Zhang, Ronghua Zheng, and Jinsheng Chen
Atmos. Chem. Phys., 25, 3669–3685, https://doi.org/10.5194/acp-25-3669-2025,https://doi.org/10.5194/acp-25-3669-2025, 2025
Short summary
In situ vertical observations of the layered structure of air pollution in a continental high-latitude urban boundary layer during winter
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
Atmos. Chem. Phys., 25, 3687–3715, https://doi.org/10.5194/acp-25-3687-2025,https://doi.org/10.5194/acp-25-3687-2025, 2025
Short summary
Size-resolved hygroscopicity and volatility properties of ambient urban aerosol particles measured by a volatility hygroscopicity tandem differential mobility analyzer system in Beijing
Aoyuan Yu, Xiaojing Shen, Qianli Ma, Jiayuan Lu, Xinyao Hu, Yangmei Zhang, Quan Liu, Linlin Liang, Lei Liu, Shuo Liu, Hongfei Tong, Huizheng Che, Xiaoye Zhang, and Junying Sun
Atmos. Chem. Phys., 25, 3389–3412, https://doi.org/10.5194/acp-25-3389-2025,https://doi.org/10.5194/acp-25-3389-2025, 2025
Short summary
Terrestrial runoff is an important source of biological ice-nucleating particles in Arctic marine systems
Corina Wieber, Lasse Z. Jensen, Leendert Vergeynst, Lorenz Meire, Thomas Juul-Pedersen, Kai Finster, and Tina Šantl-Temkiv
Atmos. Chem. Phys., 25, 3327–3346, https://doi.org/10.5194/acp-25-3327-2025,https://doi.org/10.5194/acp-25-3327-2025, 2025
Short summary

Cited articles

Alam, A., Shi Ji, P., and Harrison Roy, M.: Observations of new particle formation in urban air, J. Geophys. Res.-Atmos., 108, https://doi.org/10.1029/2001JD001417, 2003. 
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Amari, S.-I.: Natural Gradient Works Efficiently in Learning, Neural Comput., 10, 251–276, https://doi.org/10.1162/089976698300017746, 1998. 
Andreae, M. O. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions Part 1, The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008. 
Asmi, E., Kivekäs, N., Kerminen, V.-M., Komppula, M., Hyvärinen, A.-P., Hatakka, J., Viisanen, Y., and Lihavainen, H.: Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010, Atmos. Chem. Phys., 11, 12959–12972, https://doi.org/10.5194/acp-11-12959-2011, 2011. 
Download
Short summary
New particle formation (NPF) in the atmosphere is globally an important source of aerosol particles. NPF events are typically identified and analyzed manually by researchers from particle size distribution data day by day, which is time consuming and might be inconsistent. We have developed an automatic analysis method based on deep learning for NPF event identification. The developed method can be easily utilized to analyze any long-term datasets more accurately and consistently.
Share
Altmetrics
Final-revised paper
Preprint