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Abstract. New particle formation (NPF) in the atmosphere is
globally an important source of climate relevant aerosol par-
ticles. Occurrence of NPF events is typically analyzed by re-
searchers manually from particle size distribution data day by
day, which is time consuming and the classification of event
types may be inconsistent. To get more reliable and consis-
tent results, the NPF event analysis should be automatized.
We have developed an automatic analysis method based on
deep learning, a subarea of machine learning, for NPF event
identification. To our knowledge, this is the first time that
a deep learning method, i.e., transfer learning of a convo-
lutional neural network (CNN), has successfully been used
to automatically classify NPF events into different classes
directly from particle size distribution images, similarly to
how the researchers carry out the manual classification. The
developed method is based on image analysis of particle size
distributions using a pretrained deep CNN, named AlexNet,
which was transfer learned to recognize NPF event classes
(six different types). In transfer learning, a partial set of par-
ticle size distribution images was used in the training stage
of the CNN and the rest of the images for testing the suc-
cess of the training. The method was utilized for a 15-year-
long dataset measured at San Pietro Capofiume (SPC) in
Italy. We studied the performance of the training with dif-
ferent training and testing of image number ratios as well as
with different regions of interest in the images. The results
show that clear event (i.e., classes 1 and 2) and nonevent
days can be identified with an accuracy of ca. 80 %, when
the CNN classification is compared with that of an expert,
which is a good first result for automatic NPF event analysis.
In the event classification, the choice between different event

classes is not an easy task even for trained researchers, and
thus overlapping or confusion between different classes oc-
curs. Hence, we cross-validated the learning results of CNN
with the expert-made classification. The results show that the
overlapping occurs, typically between the adjacent or similar
type of classes, e.g., a manually classified Class 1 is cate-
gorized mainly into classes 1 and 2 by CNN, indicating that
the manual and CNN classifications are very consistent for
most of the days. The classification would be more consis-
tent, by both human and CNN, if only two different classes
are used for event days instead of three classes. Thus, we
recommend that in the future analysis, event days should be
categorized into classes of “quantifiable” (i.e., clear events,
classes 1 and 2) and “nonquantifiable” (i.e., weak events,
Class 3). This would better describe the difference of those
classes: both formation and growth rates can be determined
for quantifiable days but not both for nonquantifiable days.
Furthermore, we investigated more deeply the days that are
classified as clear events by experts and recognized as non-
events by the CNN and vice versa. Clear misclassifications
seem to occur more commonly in manual analysis than in
the CNN categorization, which is mostly due to the inconsis-
tency in the human-made classification or errors in the book-
ing of the event class. In general, the automatic CNN clas-
sifier has a better reliability and repeatability in NPF event
classification than human-made classification and, thus, the
transfer-learned pretrained CNNs are powerful tools to ana-
lyze long-term datasets. The developed NPF event classifier
can be easily utilized to analyze any long-term datasets more
accurately and consistently, which helps us to understand in
detail aerosol–climate interactions and the long-term effects
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of climate change on NPF in the atmosphere. We encourage
researchers to use the model in other sites. However, we sug-
gest that the CNN should be transfer learned again for new
site data with a minimum of ca. 150 figures per class to ob-
tain good enough classification results, especially if the size
distribution evolution differs from training data. In the future,
we will utilize the method for data from other sites, develop
it to analyze more parameters and evaluate how successfully
CNN could be trained with synthetic NPF event data.

1 Introduction

Aerosol particles have various effects on air quality, hu-
man health and the global climate (Nel, 2005; WHO, 2013;
IPCC, 2013). The air quality and health-related problems
are connected to each other, since in urban areas human
exposure to elevated levels of particulate matter has been
shown to cause respiratory problems and cardiovascular dis-
eases (Brunekreef and Holgate, 2002), and eventually in-
crease mortality (Samet et al., 2000). Very small particles
like ultra-fine particles (smaller than 100 nm in diameter) can
be particularly harmful because they can efficiently pene-
trate into the respiratory system and cause systemic effects
(Nel, 2005). Air quality also affects visibility, for example,
during smog episodes in large cities in Asia (Wang et al.,
2013). On the global scale, aerosols affect the radiative bal-
ance of the Earth and therefore the climate. They affect the
climate directly by either scattering incoming solar radiation
back to space or by absorbing radiation. Indirectly, aerosols
affect the climate via their role in cloud formation as cloud
condensation nuclei (CCN). The number concentration and
chemical properties of CCN particles affect both the bright-
ness of clouds (Twomey, 1974) and their lifetime (Albrecht,
1989). Increased number of CCN are associated to smaller
cloud droplets, which can lead to brighter and longer-lived
clouds (Andreae and Rosenfeld, 2008). It has been estimated
that both the direct and indirect aerosol climate effects cause
a net cooling of the climate, and can therefore cancel out part
of the global warming caused by greenhouse gases (IPCC,
2013).

Atmospheric new particle formation (NPF; formation and
growth of secondary aerosol particles) is observed frequently
in different environments in the planetary boundary layer
(e.g., Kulmala et al., 2004). There are direct observations
that NPF can increase the concentration of CCN particles
regionally (Kerminen et al., 2012). Based on global aerosol
model studies, it is estimated that 30–50 % of global tropo-
spheric CCN concentrations might be formed by atmospheric
NPF (Spracklen et al., 2008; Merikanto et al., 2009; Yu and
Luo, 2009). The longest continuous observational datasets
of atmospheric NPF have been collected in Finland at the
SMEAR stations in Hyytiälä and Värriö starting in 1996 and
1997, respectively (Kyrö et al., 2014; Nieminen et al., 2014),

and at the GAW station in Pallas from 2000 onwards (Asmi
et al., 2011). These three stations are located in the Northern
European boreal forest, and can be considered representative
of rural and remote environments. In more anthropogenically
influenced environments long-term NPF observations have
been performed in Central Europe at Melpitz (Wang et al.,
2017a) and in San Pietro Capofiume (SPC) at the Po Val-
ley basin in northern Italy (Laaksonen et al., 2005; Hamed
et al., 2007; Mikkonen et al., 2011). In high-altitude sites,
which are at least sometimes in the free troposphere, there are
less and shorter continuous measurements of NPF available.
However, NPF has also been observed to occur regularly in
these high-altitude sites (Kivekäs et al., 2009; Schmeissner et
al., 2011; Herrmann et al., 2015). Recently, long-term NPF
measurements have also been established in several new lo-
cations, e.g., in Beijing and Nanjing in China (Wang et al.,
2017b; Kulmala et al., 2016; Qi et al., 2015) and in Korea
(Kim et al., 2014, 2013).

Currently, all the NPF studies published in the literature
have utilized visually based methods to identify NPF events
from the measurement data. Typically, these methods require
1–3 researchers to analyze periods of formation and growth
of new modes in the size-distribution data. These methods
were first introduced for analyzing data from the Finnish
SMEAR stations by Dal Maso et al. (2005), and have been
later slightly modified to suit analyzing data from different
environments and measurement instruments (Hamed et al.,
2007; Hirsikko et al., 2007; Vana et al., 2008). While the vi-
sually based methods are in principle simple and straight-
forward to apply, there are certain drawbacks in using them.
First, they are very labor intensive, since the analysis of the
aerosol size-distribution data is not automated. Second, these
methods are somewhat subjective, i.e., different researchers
might interpret the same datasets in slightly different ways.
Finally, passing on the manual classification method from a
researcher to a researcher could lead to an increasing system-
atic bias.

There have been attempts at improving NPF event classi-
fication methods and making them more automatic. In their
comprehensive protocol article, Kulmala et al. (2012) intro-
duced a concept for automatic detection of NPF events. This
was based on identifying regions of interest (ROIs) from the
time series of measured aerosol size-distribution data. These
ROIs were defined as time periods when elevated concentra-
tions of sub-20 nm particles were observed compared to the
concentration of larger particles. Developing the NPF clas-
sification to also take into account other data measured at
the same site, such as meteorological data and concentrations
of trace gases, has allowed utilization of statistical methods
to search for variables which could best explain and predict
the occurrence of NPF. Hyvönen et al. (2005) and Mikko-
nen et al. (2006) applied discriminant analysis for multiyear
datasets of aerosol size distributions and several gas and me-
teorological parameters measured at Hyytiälä, Finland and
San Pietro Capofiume, Italy, respectively. Both of these stud-
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ies were able to find the characteristic conditions for NPF
event days in each site and it was seen that the conditions
differ significantly. They were also able to construct models
to predict the probability of NPF occurrence with reasonable
accuracy, and this approach has also been used in the day-to-
day planning of a complex airborne measurement campaign
(Nieminen et al., 2015). Junninen et al. (2007) introduced an
automatic algorithm based on self-organizing maps (SOMs)
and a decision tree to classify aerosol size distributions. More
recently, a preliminary attempt at utilizing machine learning
on big datasets have been reported (Zaidan et al., 2017).

There exists a long list of algorithms to automate the clas-
sification of different type of datasets (Duda et al., 2012),
such as k-means, support vector machines (SVMs), Boltz-
mann machines (BMs), decision trees, etc. Our method
choice is the deep feed-forward neural network (NN). The
idea of a NN is not new, as the idea was first brought to life by
Hebb in 1949 (Hebb, 2005). Since then, this field has drawn
the attention of many researchers (Farley and Clark, 1954;
Widrow and Hoff, 1960; Schmidhuber, 2015), probably be-
cause of its apparent simplicity and versatility. In this study,
we used a convolutional NN (CNN) because it mimics the
visual cognition process of humans. One of the main bottle-
necks in the use of the NNs is the learning stage of NN; NN
must be trained before it can be used in image recognition
or other applications. For instance, thousands of images are
typically needed for learning in image recognition applica-
tions. To overcome this problem, we used a pretrained deep
CNN, named AlexNet, which was originally trained to recog-
nize different common items (e.g., pencils, cars and different
animals) and we transfer learned it to recognize images of
different NPF event types. The transfer learning significantly
reduces the number of images needed in the training process,
from thousands to hundreds. The CNN used in this study and
transfer learning of the CNN are described in detail in the
Appendices A and B and Fig. 2.

In atmospheric science, several studies have used deep
learning or other novel machine learning methods in data
analysis. Deep learning and other machine learning algo-
rithms are commonly used in remote sensing (Zhang et al.,
2016; Lary et al., 2016; Han et al., 2017; Hu et al., 2015). Re-
mote sensing is very suitable for machine learning because
large datasets are available and the theoretical knowledge is
incomplete (Lary et al., 2016). For instance, Han et al. (2017)
introduced a modified pretrained AlexNet CNN and Hu et
al. (2015) used several CNNs (e.g., AlexNet and VGGnets)
for remote sensing image classification. Ma et al. (2015) used
transfer learning in a SVM approach for classification of dust
and clouds from satellite data. Other applications in atmo-
spheric science include, for example, air quality predictions
(Li et al., 2016; Ong et al., 2016), characterization of aerosol
particles with an ultraviolet laser-induced fluorescence (UV-
LIF) spectrometer (Ruske et al., 2017) and aerosol retrievals
from ground-based observations (Di Noia et al., 2015, 2017).
In addition, we recently applied different machine learning

methods (e.g., neural network and SVM) for aerosol optical
depth (AOD) retrieval from sun photometer data (Huttunen et
al., 2016). Although machine and deep learning approaches
have already been used in several applications in atmospheric
science, the use of those novel artificial intelligence methods
will expand rapidly in the future. Nowadays, those methods
are more efficient and easier to use due to the development of
user-friendly applications and increasing computing capacity
(e.g., graphics processing units, GPUs), and they can be ap-
plied in problems that are more complicated.

Here, we demonstrate that a novel deep learning-based
method, i.e., transfer learning of a commonly used pretrained
CNN model (AlexNet), can be efficiently and accurately used
in classifying of new particle formation (NPF) events. The
method is based on image recognition of daily-measured par-
ticle size distribution data. To our knowledge, this is the first
time when a deep learning method, i.e., transfer learning of a
deep CNN, has been successfully used in an automatic NPF
event analysis for a long-term dataset. We will show that the
deep learning-based method will increase the quality and re-
producibility of event analysis compared to manual, human-
made visual classification.

2 Materials and methods

2.1 Measurement site, instrumentation and dataset

In this study, we analyzed a long-term particle size distri-
bution (PSD) dataset measured at the San Pietro Capofiume
measurement station (44◦39′ N, 11◦37′ E, 11 m a.s.l.), Italy.
The PSD measurements started on 24 March 2002 at SPC
and have been uninterrupted, except for occasional system
malfunctions. The SPC station is located in a rural area in the
Po Valley about 30 km northeast from the city of Bologna.
The Po Valley area is the largest industrial, trading and agri-
cultural area in Italy and has a high population density, and
hence it is one of the most polluted areas in Europe. On the
average at SPC, NPF events occur on 36 % of the days whilst
33 % are clearly nonevent (NE) days and the probability for
NPF events is highest in spring and summer seasons (Hamed
et al., 2007; Nieminen et al., 2018).

At SPC, PSDs are measured with a twin differential mo-
bility particle sizer (DMPS) system; the first DMPS mea-
sures PSDs between 3 and 20 nm and the second one be-
tween 15 and 600 nm. The first DMPS consists of a 10.9 cm
long Hauke-type differential mobility analyzer (DMA) (Win-
klmayr et al., 1991) and an ultrafine condensation particle
counter (CPC, TSI model 3025), whereas the second DMPS
consists of a 28 cm long Hauke-type DMA and a standard
CPC (TSI model 3010). One measurement cycle lasts for
10 min. The PSDs used in this study were calculated from the
measured data using a Tichonov regularization method with
a smoothness constraint (Voutilainen et al., 2001). The data
from two different DMPS instruments were combined in the
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data inversion. The CPC counting efficiency and diffusional
particle losses in the tubing and DMA systems were taken
into account in the data analysis. In addition to PSD mea-
surements, several gas and meteorological parameters are
continuously measured at the SPC station (e.g., SO2, NO,
NO2, NOx , O3, temperature, relative humidity, wind direc-
tion, wind speed, global radiation, precipitation and atmo-
spheric pressure). The measurement site and instrumentation
have been described in detail in previous studies (Laaksonen
et al., 2005; Hamed et al., 2007).

The analyzed dataset covers 4177 days (files) from the
start of the measurement in SPC on 24 March 2002 until 16
May 2017 (5534 days in total). The number of days at the
different NPF classes and division into training and testing
categories are summarized in Table 1.

2.2 Classification of new particle formation events
(traditional method)

Currently, a classification of NPF events is practically made
manually, i.e., researchers visually inspect contour plots of
time series of aerosol size distribution data and time evolu-
tion of nucleation-mode particles (particle diameter below
ca. 50 nm) (Kulmala et al., 2012). For the dataset of this
study, the manual classification of NPF events into differ-
ent categories is based on guidelines described by Mäkelä et
al. (2000) and Hamed et al. (2007). Figure 1 shows exam-
ples of measured time series of PSDs (time in x axis, particle
diameter in y axis and particle concentration presented by
different colors) for different event classes.

In the first step of event analysis, data are classified into
days with NPF events and days without particle formation
(nonevent days). A day is considered as a NPF event day if
the formation of new aerosol particles starts in the nucleation
mode size range (< 25 nm) and subsequently grows, and the
formation and growth is observed for several hours. The NPF
event days are further classified according to the clarity and
intensity of the events (Hamed et al., 2007):

– Class 1 events (Class_01) are characterized by high con-
centrations of 3–6 nm particles with only small fluctua-
tions of the size distribution and no or little preexisting
particles in the smallest size ranges. Class 1 events show
an intensive and clear formation of small particles with
continuous growth of particles for 7–10 h.

– Class 2 events (Class_02) show the same behavior as
Class 1 but with less clarity. The formation of new parti-
cles and their subsequent growth to larger particle sizes
can be clearly observed but, for example, fluctuations in
the size distribution are larger. Furthermore, the growth
lasts for a shorter time than for Class 1, being about 5 h
on average. In event classes 1 and 2, it is easy to follow
the trend of the nucleation mode and, hence, the for-
mation and growth rates of the formed particles can be
determined confidently.

– Class 3 events (Class_03) include days when the same
evidence of new particle formation can be observed but
growth is not clearly observed. For example, the forma-
tion of new particles and their growth to larger particle
sizes may occur for a short time but are then interrupted
(e.g., by a drop in the intensity of solar radiation, rain).
In addition, the days with weak growth are classified in
that category

The classification of nucleation events is, however, subjec-
tive and overlapping or confusion within the classes may
easily occur. To minimize the uncertainty of the classifica-
tion method, Class 1 and Class 2 events are typically referred
to as clear or intensive nucleation events (clear event class),
where all classification stages were clearly fulfilled, whilst
Class 3 events are referred to as weak events. Baranizadeh
et al. (2014) named clear event and weak event days quantifi-
able and nonquantifiable days, respectively, which describes
better the difference of those classes. Both formation and
growth rates can be determined for quantifiable days but not
both for nonquantifiable days.

Other classes of days are as follows:

– Nonevent days (NE) (Class_NE). Days with no NPF in
the nucleation mode particle size range are classified
into nonevent days. These days are also interesting be-
cause, for example, differences in conditions (meteorol-
ogy, gas concentration, precipitation) during event and
nonevent periods are often studied in order to improve
understanding of processes behind NPF.

– Class 0 (Class_00). Some of days do not fulfil the crite-
ria to be classified either event or nonevent day and they
are classified as Class 0. In that class, it is difficult to
determine whether a nucleation event has actually oc-
curred or not.

– Bad data (BD) (Class_BD). Days with some malfunc-
tion in the measurement system (e.g., too high or low
particle concentrations, missing data in part of the day)
are classified as Bad Data. In the final data analysis,
those days are typically ignored.

2.3 Event classification with a deep convolutional
neural network (CNN)

In this study, we developed a novel method to analyze
NPF events automatically. The schematic of the approach
is shown in Fig. 2 and described in detail in Appendices A
and B. We used a large, deep convolutional neural network
named AlexNet (Krizhevsky et al., 2012, 2017), which was
originally trained on millions of images, as a subset of the
ImageNet database (Deng et al., 2009), to classify images
into 1000 different categories. The AlexNet was a break-
through method in image analysis when it was introduced in
2012 and thus it is widely used in image recognition appli-
cations (LeCun et al., 2015). Since the model was originally
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Table 1. Summary of the number of days in different NPF event classes based on manual classification and division of days to three different
training (used in CNN learning) and testing (used in testing success of training) ratio categories (80 % / 20 %, 50 % / 50 % and 20 % / 80 %).

Days, Days, Training, Testing, Training, Testing, Training, Testing,
Event class Total % 80 % 20 % 50 % 50 % 20 % 80 %

Class_01 269 6 % 215 54 135 134 54 215
Class_02 431 10 % 345 86 216 215 86 345
Class_03 619 15 % 495 124 310 309 124 495
Class_NE 1416 34 % 1133 283 708 708 283 1133
Class_00 841 20 % 673 168 421 420 168 673
Class_BD 601 14 % 481 120 301 300 120 481

Total 4177 100 % 3342 835 2091 2086 835 3342

Figure 1. Examples of particle size distributions (time in x axis, particle diameter in y axis and particle concentration presented by different
colors) for different NPF event classes. Name of event class is indicated in plot title and date of measurement in brackets.

trained to recognize images of very common objects, e.g.,
keyboards, mice, pencils, cars and many animals, it has to be
fine-tuned to recognize other images.

The AlexNet itself cannot recognize NPF events so we
used a transfer-learning technique for fine-tuning the model
for PSD images (daily contour plots of time series of aerosol
size distributions). In the fine-tuning of CNN by transfer-
learning, the new features are quickly learned by modifying
a few of the last layers using a much smaller number of im-

ages than in the training of the original CNN (Weiss et al.,
2016; Shin et al., 2016; Yosinski et al., 2014; Pan and Yang,
2010). This strategy is very efficient for images because of
the structure of the CNN; the first layers process the image
by extracting some features so that it becomes more abstract
and the last layers attribute the probabilities of the classes. In
our setup, we modified only a few of the last layers because
of the low number of available training data.
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Figure 2. Visual summary of the classification method: (a) a typical dataset with a NPF event, (b) the learning process of the optimization
problem, (c) the classification flow of the convolutional neural network (CNN) and the two types of layers of the CNN, (d) the convolutional
layer (CL), and (e) the deep neural network (DNN), involved in the total CNN. The classification flow (c) is from the AlexNet CNN
(Krizhevsky et al., 2012), composed of 5 CL intertwined with max pooling (MP) layers followed by a fully connected DNN of three layers.
The method and variables in the figure are described in detail in Sect. 2.3 and Appendices A and B.

In a transfer learning process of our dataset, we catego-
rized PSD images into six different classes based on the man-
ual event classification (Class 1, Class 2, Class 3, NE, Class 0
and BD; see Fig. 1) and used a subset of images for train-
ing and the rest of the images for evaluation of the training
(testing). Three different fractions of images were used in the
training stage (80, 50 and 20 %; see Table 1) in order to study
the effect of image set size on the NPF event classification.
Images for training and testing were selected randomly (cer-
tain percent of each category) and this was repeated 10 times
to evaluate the statistical accuracy of the training and data
classification. The transfer learning process and data analysis
were computed using a MATLAB program (version R2016b)
with the support of the package Neural Network Toolbox
Model for the AlexNet network (version 17.2.0.0) using a
Linux server (CPU: 2x Intel Xeon E5-2630 v3, 2.40 GHz,

16 cores; RAM 264.0 GB; GPU: Nvidia Tesla K40c, CUDA
ver. 3.5, 12 GB). We used the standard procedures (trainNet-
work, classify) and options (solver: sgdm, initial learn rate:
0.001, max Epochs: 20, mini-batch size: 64), as described
in an example for deep learning by MATLAB (MathWorks,
2017). In the transfer learning of MATLAB AlexNet, we
changed two layers of the net to fit our data: the number of
recognized classes was reduced to six in the last fully con-
nected layer (fc8) and the category’s names in the classifica-
tion output layer (output) were charged to the names of our
event classes. One training session lasted about from 0.5 to
1 h with the used server and programs. The AlexNet CNN
has been originally implemented in CUDA, but it is also
available in MATLAB. Other programming languages pro-
vide also good libraries for implementing the AlexNet such
as Python or C++, and dedicated frameworks such as Ten-
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soFlow, Theano or Caffe are good candidates for an easy im-
plementation of the NN and the learning stage.

To find out the best performance for the NPF event clas-
sification, we tested three different sets of particle size dis-
tribution images (Image Set, JPEG file format with bit depth
of 24 bits) with different plotting areas of the daily-measured
size distributions:

– Image Set 1. Original image (see Fig. 1) without the
title, axis labels and numbers (i.e., axes of the plot
and data inside them), size 1801× 951 pixels (file size
ca. 180 kB).

– Image Set 2. Only colored, measured part of original
images (i.e., time 00:00–24:00, particle diameter 3–
630 nm), size 1646× 751 pixels (file size ca. 120 kB).

– Image Set 3. As previous but only an active time for
NPF events is considered (i.e., 06:00–18:00, diameter
3–630 nm), size 831× 746 pixels (file size ca. 60 kB).

Image sets with the different sizes were tested because all
images have to resize to 227× 227 pixels, which is an in-
put image size of the AlexNet. Resizing of images’ pixels
was conducted by a MATLAB imresize-function using de-
fault bicubic interpolation (MathWorks, 2018). Resizing of
images can cause the loss of some information on measured
PSDs needed in the NPF identification.

After transfer learning each dataset (three image sets with
three different training–testing fractions of images, repeated
10 times), the accuracy and training success were evalu-
ated. We calculated the average success rate (accuracy) of
the transfer-learned CNNs by comparing CNN-based and
human-made classifications of the test images. We also com-
bined some classes together in the result analysis since over-
lapping of the classes could have easily occurred in the clas-
sification, e.g., Class 1 and 2 were combined to a clear event
class (Cl_1-2).

2.4 Statistical methods

The performance of the classification between different im-
age sets and training rates in different event classes was
compared with the Kruskal–Wallis test and with multivariate
analysis of variance (ANOVA). The ANOVA was conducted
with a robust fit function (rlm; Venables and Ripley, 2002;
Huber, 1981) because the normality and homoscedasticity
assumptions of the ordinary least squares method were not
completely fulfilled. All statistical analyses were performed
in R software (R Core Team, 2017).

3 Results and discussion

The success of the transfer learning process of CNN was
evaluated by confusion matrices, which showed a classifi-
cation accuracy of the CNN method over visual inspection,

i.e., how a certain class classified by a human (visually) were
categorized in the CNN classification. An example of the
confusion matrices for one training–testing run (Image Set 1,
training–testing ratio of 50 % / 50 %) is presented in Fig. 3.
When the training dataset was analyzed with the trained
CNN (same data), the overall classification accuracy (i.e., a
fraction of days with an equal classification) was ca. 98 %
and accuracies at certain event classes varied between 94 and
100 % (see Fig. 3a). For all cases (all image sets and training
ratios), mean accuracies of 10 different runs varied from 93
to 98 %. The results show that the method can easily classify
training datasets with very high accuracy, indicating that the
training process of CNN was very successful.

Table 2 shows a summary of the classification accuracy for
all cases when the method was applied for testing datasets
(different days). The overall accuracy (all classes) is about
63 % for all studied cases. If we consider individual classes
in more detail, the highest accuracies are in classes of NE
and BD (ca. 80 %), whereas the lowest accuracies are in
classes 2, 3 and 0 (ca. 45 %), followed by Class 1 (ca. 53 %).
The highest accuracies in NE and BD classes are apparently
due to easier classification compared to other classes, e.g.,
no particles at low particles size ranges, no intensive par-
ticle growth or the complete absence of particles, and un-
usually high particle concentration in a part of the data (see
Fig. 1). The classification of other days is more challenging
because differences between classes are not so distinct and
the choice between classes can be difficult. When the clear
event classes (Class 1 and 2) are combined into one category
(clear event class, Cl_01–02), the classification accuracy in-
creased to ca. 75 %. Overall, a classification accuracy for
clear events and nonevent categories is ca. 75–80 %, which
can be considered a very good first result for automatic NPF
event classification. In general, the classification would be
more consistent, by both human and CNN, if only two dif-
ferent classes are used for event days: Clear and Weak events
or quantifiable and nonquantifiable events as described by
Baranizadeh et al. (2014). From quantifiable days, it is pos-
sible to quantify basic parameters of NPF event, e.g., particle
formation and growth rates. Thus, we recommend that NPF
event days should be categorized into classes of quantifiable
and nonquantifiable events, in addition to nonevent, unde-
fined (Class 0) and bad-data classes in the future analysis.
This would also increase the number of images of the event
classes in the training of CNNs.

If we look at the results in more detail, we can see vari-
ation in results between different training fractions (number
of days in training in different event classes are shown in Ta-
ble 1). In the cases of the training fractions of 80 and 50 %,
the classification accuracy values are quite similar but the
accuracy decreases when the training fraction is only 20 %
(especially for clear event days). Statistical analysis between
different training–testing ratios shows that the 50 and 80 %
training rates are equally precise in all comparisons. This
means that we could get adequate classification performance
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Figure 3. Confusion matrices of (a) training and (b) testing datasets from one run of Image Set 1 with a training–testing ratio of 50 % / 50 %.
Numbers (percent and absolute number of days) in rows indicate how a certain class classified by a human (visually) were categorized in the
CNN classification.

Table 2. Summary of classification accuracy (%) of the transfer-learned CNN when applied for test datasets (mean value±SD from 10 model
simulations) for three image sets with three different percentages of training images. Some classes have been merged together: CL_01–02 is
a combination of Class_01 and Class_02, etc.

Image Set 1 Image Set 2 Image Set 3

Event class 80 % 50 % 20 % 80 % 50 % 20 % 80 % 50 % 20 % Overall

All_Class 65± 1 64± 1 61± 1 65± 1 64± 1 60± 3 62± 3 63± 1 60± 2 63± 2
Class_01 57± 17 54± 20 51± 15 63± 11 38± 10 53± 27 54± 17 54± 10 47± 22 52± 7
Class_02 52± 9 51± 15 31± 17 40± 17 57± 14 27± 19 47± 20 45± 14 45± 21 44± 10
Class_03 47± 11 32± 11 50± 14 46± 12 42± 14 48± 14 40± 10 44± 10 40± 16 43± 6
Class_NE 83± 9 80± 8 81± 13 80± 10 80± 10 81± 18 77± 12 81± 10 79± 11 80± 2
Class_00 44± 16 53± 13 38± 18 51± 13 48± 12 36± 28 49± 12 43± 14 41± 14 45± 6
Class_BD 84± 3 85± 3 83± 3 85± 4 86± 2 80± 2 83± 4 84± 2 80± 2 83± 2
Cl_01-02 81± 11 85± 9 62± 19 76± 11 78± 12 62± 19 81± 11 77± 13 71± 24 75± 8
Cl_01-02-03 84± 6 79± 6 81± 6 82± 3 81± 5 80± 8 83± 6 82± 5 82± 3 81± 2
Cl_03-NE 77± 10 69± 10 78± 12 74± 8 73± 7 77± 18 70± 10 75± 10 72± 10 74± 3
Cl_03-00 63± 10 60± 7 61± 13 66± 10 63± 13 60± 18 62± 10 60± 9 58± 14 61± 2
Cl_NE-00 90± 5 93± 3 90± 4 92± 2 91± 3 91± 5 91± 3 90± 4 90± 2 91± 1
Cl_03-NE-00 93± 4 91± 4 94± 4 93± 3 93± 3 95± 3 92± 4 93± 3 91± 6 93± 1

already with 50 % training fraction (i.e., 135–708 images per
class). However, when the size of the training set was low-
ered to 20 % (54–283 images per class), the classification
became more uncertain in many comparisons. At 20 %, sta-
tistically significant differences were found when all classes
were analyzed together and with classes Cl-01–02, Class 00,
Class 02 and Class BD, indicating that the number of train-
ing days was too low for precise classification (e.g., Class 1
had only 54 days for training). In summary, a training frac-
tion of 50 % (minimum 135 images per class) is a good com-

promise between accuracy, reliability and number of training
days for the used dataset.

We also studied the effect of image size (Image Sets 1–
3) for classification accuracy. Only when all event classes
were inspected together was there a statistically significant
difference between the image sets. Image Set 3 had a slightly
lower performance rate than the two other sets. When lim-
iting the classes to smaller subgroups the differences were
not statistically significant anymore. The result indicates that
image sets including all daily-measured size distribution data
(Image Sets 1 and 2) are more suitable for CNN analysis
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than Image Set 3 with a reduced analysis period (06:00–
18:00 UTC+1). Although images have to resize to the fixed
input size (227× 227 pixels) for CNN analysis, there is no
need to reduce the analyzed period to cover only the active
time for NPF. In fact, it is better to use all daily measured
data in the analysis, although the resizing of images might
cause the loss of some of the information.

As described earlier, a choice between different event
classes is somewhat arbitrary and not an easy task even for
trained researchers, and thus overlapping between different
classes may occur. To analyze this overlapping in more de-
tail, we plotted how a manually classified class is distributed
into different classes by CNN classification. Figure 4 shows
an example of CNN classification distributions for Image Set
1 with a training–testing ratio of 80 % / 20 %. Similar clas-
sification distribution into different classes can also be ob-
served from the confusion matrix for Image Set 1 with a
training–testing ratio of 50 % / 50 % (only one computing
run) in Fig. 3b. The results show that an overlapping occurs
typically between the adjacent or similar type of classes. For
instance, a manually classified Class 1 is categorized mainly
into classes 1 and 2, Class 2 into classes 1, 2 and 3, etc. The
minimum overlapping is for classes NE and BD, which are
the easiest classes to categorize by researchers. Similar over-
lapping is also observed in other analyzed cases (image sets
and training–testing ratios).

To study overlapping or misclassification between differ-
ent classes, we look in more detail at cases when clear event
days (classes 1 and 2) by human-made classification are cat-
egorized to nonevent days by CNN-based classification and
vice versa. Figure 5 shows examples of those days; the left-
hand plots are categorized to Clear events by a human and
right-hand plots by CNN; the first row shows examples of
human-made misclassifications, the second row CNN mis-
classifications and the third row difficult situations for clas-
sification. For instance, Fig. 5f shows a case when the initial
stage of NPF has not been observed (probably due to change
of wind or a mixing of boundary layer) but clear growth of
particles is observed later. In that case, CNN-based classifi-
cation does not “recognize” the missing of initial particle for-
mation in the smallest particle sizes (ca. 3–4 nm) and there-
fore the day is classified as a clear event day (Class 1 and 2).
An opposite situation is shown in Fig. 5e where a Class 1 day
(classified by a human) was categorized 2 times into non-
event and once into Class 2 day by CNN in different com-
puting runs. In that day, NPF is clear but the concentration
of formed particles is lower than for typical event days, and
this probably affects the accuracy of the CNN-based classi-
fication. A similar misclassification can be seen in Fig. 5c.
In contrast, Figure 5a and b show examples of misclassi-
fications, which are due to clear human errors – probably
that the researcher has just written down a wrong event class
number. A general overview is that clear misclassifications
seem to occur more commonly in human-made analysis than
CNN-based categorization, which indicates that the devel-

oped CNN-based method has a better reliability and repeata-
bility than manual human-made classification.

Only a few reports on automatic data analysis of NPF
events have been published so far. In very recent conference
proceedings, Zaidan et al. (2017) introduced a machine learn-
ing method based on a neural network. Their method utilized
particle size distribution data preprocessing (fitting of log-
normal distributions to the data), feature calculations and ex-
tractions (e.g., mean size, standard deviation) and principal
component analysis (PCA) before the final classification by
the neural network. Their preliminary results show a classi-
fication accuracy of ca. 83 % for Hyytiälä (Finland) data in
1996–2014 when only event and nonevent days were con-
sidered. When compared to our method, they used several
preprocessing steps before classification by the neural net-
work and they did not use pretrained CNNs or image recog-
nition in their classifier. Kulmala et al. (2012) introduced a
procedure for automatic detection of regional new particle
formation. The procedure is based on monitoring the evo-
lution of particle size distributions and it includes several
steps, e.g., data noise cleaning and smoothing, excluding data
larger than 20 nm, and calculating regions of high particle
concentration in particle size distributions. In the final step,
the method automatically recognizes event regions from size
distributions (i.e., regions of interest) and determines, for ex-
ample, NFP event start times as well as particle formation
and growth rates. This method is very straightforward and
does not include any data analysis methods based on artifi-
cial intelligence. To our knowledge, this method has not been
used routinely in NPF event analysis for large datasets. Jun-
ninen et al. (2007) used an automatic algorithm based on self-
organizing maps and a decision tree to classify NPF events in
Hyytiälä for 11-year data. They taught five SOMs by tuning
them for specific event types and used a decision tree to get
the probability for the day to belong to three different event
classes (Event, Nonevent and undefined). The overall accu-
racy of the method was ca. 80 %. When comparing to our
method, they preprocessed the data by decreasing the size
resolution to 15 bins with variable width size bins in log-
scale (higher resolution in smaller particles) and time reso-
lution to 24 steps (1 h average). Furthermore, they weighted
small particles (diameter < 20 nm) by a factor of 10 in one
of the SOMs. To our knowledge, this method has not been
used routinely in NPF event analysis. Hyvönen et al. (2005)
used data mining techniques to analyze aerosol formation in
Hyytiälä, Finland, and Mikkonen et al. (2006, 2011) applied
similar methods to datasets recorded in SPC (2006) and in
Melpitz and Hohenpeißenberg, Germany (2011). They stud-
ied different variables and parameters that may be behind
NPF but they did not make automatic classification for NPF
events. Furthermore, Vuollekoski et al. (2012) introduced an
idea on an eigenvector-based approach for automatic NPF
event classification but they did not report any results because
the method was still under development and its performance
was uncertain.
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Figure 4. Probability plots of distribution of CNN classification (x axis labels) for different human-made classifications (indicated in a title
of the plot), for Image Set 1 with a training–testing ratio of 80 % / 20 %. Histograms are mean values of 10 different training–testing runs
and error bars indicate standard deviations of the results.

We have not yet tested the method at other sites. Basically,
“banana-type” events, nonevent days and bad data should be
recognized from other site data if figures are plotted roughly
in a similar way (1-day plot, same size ranges and axes, and
color map). The method analyses features from size distribu-
tion plots, which are quite similar at different sites in many
cases. However, we suggest that the CNN should be trans-
fer learned again for new sites in order to get best results,
especially if the shapes of size distributions are different
compared to those of training data, e.g., low-tide events in
coastal sites (O’Dowd et al., 2010; Vaattovaara et al., 2006)
or rush hour episodes in urban environments (Jeong et al.,
2004; Alam et al., 2003). We encourage researchers to use
the method in other sites and report results in order to de-
velop the method. The accuracy of classification could be
improved, e.g., by tuning training parameters, optimizing a
number of classes used in analysis (e.g., merging classes 1
and 2) and using synthetic training data.

4 Conclusions

We have developed a novel method based on deep learning
to analyze new particle formation (NPF) events. The method
utilizes a commonly available pretrained convolutional neu-
ral network (CNN) called AlexNet that has been trained by
transfer learning to classify particle size distribution images.

To our knowledge, this is the first time when a deep lean-
ing method, i.e., transfer learning of a deep CNNs, has suc-
cessfully been used to classify automatically NPF events
into different classes, including several event and nonevent
classes, directly from particle size distribution images, as the
researchers do in a typical manual classification. Although
there are general guidelines for human-made NPF event clas-
sification, the classification is always subjective and, there-
fore, it can vary between researchers or even within one re-
searcher. In many ambiguous cases, it is not easy to attribute
an event to the “correct” event class, even for an experienced
researcher. The quality of the classification can vary, espe-
cially for long-term datasets, which have been analyzed by
several researchers at different times. Furthermore, a wrong
event class can be listed to database due to a human error,
which reduces reliability of the classification. Therefore, an
automatic method, which can manage the whole dataset at
once with a high reproducibility, is desired for NPF event
analysis.

Our results show that transfer learning of a pretrained
CNN to recognize images of particle size distributions is a
very powerful tool to analyze NPF events. The event clas-
sification can be done directly from existing data (figures)
without any preprocessing of the data. Although an average
classification accuracy of certain classes is ca. 65 %, the over-
all accuracy is ca. 80 % for nonevent (NE) and clear event
classes (classes 1 and 2 combined), which is a good first
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Figure 5. Examples of particle size distributions for different days when visually categorized clear event days (classes 1 and 2) are classified
nonevent days by CNN classification or vice versa. In title, numbers after Obs and Pred show NPF event classes determined with visual and
CNN-based classification, respectively (date of measurement in brackets). Several event class numbers in Pred cases are results from different
calculation runs. The first row (a, b) contains examples of human-made misclassifications, the second row (c, d) CNN misclassifications
and the third row (e, f) ambiguous situations (low particle concentrations and change in air masses during the day, respectively). CNN
classification is from Image Set 1 with a training–testing ratio of 80 % / 20 %.

result for automatic NPF event analysis. Most of misclas-
sified days have been categorized into the adjacent classes,
which can be ambiguous to distinguish from each other. A
comparison between CNN-based and human-made classifi-
cation also showed that often the difference in categorization
is due to a wrong or an incorrectly listed classification by a
researcher. Human-made classification can easily vary from
person to person and can change over time, whereas CNN-
based classification is consistent at all times. The CNN-based
categorization seems, at least, to be as reliable as human-
made categorization and it could be even more reliable if
training image sets are selected carefully. Typically, an anal-
ysis of a large size distribution dataset requires manual la-
bor and training for several researchers, which is very time
consuming, and the quality of analysis may vary. The devel-
oped automatic CNN-based NPF event analysis can be used
to study long-term effects of climate change on NPF more
efficiently, accurately and consistently, which helps us to un-
derstand aerosol–climate interactions in detail.

The transfer learning of pretrained CNNs (like AlexNet
and GooLeNet) allows us to make automatic event classifi-
cation systems effectively without long-lasting design, train-
ing and computing of CNNs. Typically, a training of a CNN
needs from thousands up to a million images, but in the trans-
fer learning of a pretrained CNN, a hundred images can be
enough for a precise classification. The pretrained CNNs, as
well as other novel machine learning and artificial intelli-
gence methods, and the increased computing capacity due to
graphics processing units (GPUs) enable us to analyze very
complex and large datasets that are typical in atmospheric
science.

Instead of the transfer learning of a pretrained CNN, sev-
eral other artificial intelligence methods could also be uti-
lized in NPF analysis. The recurrent neural network (RNN)
is a good candidate for the classification and predication of
time series (Pascanu et al., 2013); however, the data are not
viewed as surface plots but as a sequence of particle size dis-
tributions. This allows more variability in the NPF classes,
e.g., a continuum of NPF event intensity, and determining
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time-dependent processes like particle formation and growth.
Furthermore, the underlying weights of NNs would give in-
sights into the size distribution evolution and this could be
potentially used as an evolution model by substituting or
complementing the general dynamic equation (GDE). In ad-
dition, the use of an unsupervised learning method can help
us describe new NPF event classes or merge classes based
on humanly imperceptible features. Reinforcement learning
(Kaelbling et al., 1996) is an interesting technique, especially
for the cases for which the classification is not well defined,
e.g., if the classification varies from one human to another,
because it only requires a rewarding system or policy. The
rewards need to be positive if the prediction is satisfying and
negative if not; hence, the reward values can be the difference
between the number of people that classified in the predicted
class and those who did not. However, it should be men-
tioned that this technique works best for prediction models,
such as RNN. Currently, the state of the art in artificial intel-
ligence algorithms are deep CNN-based AlphaGo Zero and
AlphaZero developed by DeepMind (Silver et al., 2017b, a).
Those algorithms achieved superhuman performance by tab-
ula rasa reinforcement learning without human data or guid-
ance and defeated a human in the game of Go and the most
dedicated program Stockfish in chess.

In summary, we encourage researchers to use the CNN-
based NPF identification method for their own data because
of the better reliability and repeatability compared to human-
made classification. However, there are still some weak-
nesses that should be kept in mind, e.g., quality and quantity
of data are crucial in the training process, supervised learn-
ing is needed, the method still needs quite a lot of computing
power (GPU), the identification is not perfect, and particle
formation and growth rates cannot be determined using the
current model. Furthermore, the CNN should likely be trans-
fer learned again for new sites in order to the get best results,
especially if the size distribution evolution is very different
compared to that of the site of the training data. We suggest
that in training, ca. 150 days per class should be enough to get
reasonable classification. Alternatively, simulated data could
be used for training (Lähivaara et al., 2018) but we have not
tested how well it works in practice. The method is, how-
ever, very easy to use and results are accurate and consistent,
especially for long-term data, if the CNN has been trained
carefully with high quality and a reasonable amount of data.
Finally, experiences and data obtained from other sites can be
used in the further development of the method, e.g., to find
suitable learning parameters, more data for training and the
possibility of a cross-validation of the method.

In the near future, we will analyze long-term changes in
NPF in San Pietro Capofiume and utilize the method for other
field stations (e.g., Puijo in Kuopio, Finland). We are includ-
ing more parameters in automatized NPF analysis (e.g., par-
ticle formation and growth rates, event start and end times)
and are developing methods to predict NPF events based on
meteorological and other atmospheric data. In addition, the
simulation-based deep learning is a potential research topic
in the future (Lähivaara et al., 2018).

Data availability. Particle size distribution data have not yet been
moved into any long-term storage. However, the data are available
from the authors on request (jorma.joutsensaari@uef.fi).
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Appendix A: General description of neural networks
and training process

We used a deep feed-forward neural network (NN) to analyze
NPF events in this study. Figure 2 shows a schematic of the
used method and detailed descriptions of the method can be
found in the textbooks of the subject (e.g., Buduma and Lo-
cascio, 2017; Duda et al., 2012). In general, the NNs are built
by stacking interconnected layers of atomic units, or neurons.
In each layer, each neuron computes one very simple oper-
ation – often named activation – which consists of comput-
ing the weighted sum of the input variables plus a threshold
and then passing the results to a function – e.g., tanh func-
tion or rectified linear unit (ReLU, i.e., max(0,x) function)
(Buduma and Locascio, 2017). To put it simply, a neuron
emits a signal if the excitation signal – the input variable –
reaches a threshold otherwise it is inactive. A single neuron
cannot do much on its own, merely a linear discrimination;
however, a set of connected and trained neurons, such as a
NN, can mimic human cognition abilities – the emergence
property. The depth – or number of layers – and the topol-
ogy of a NN will determine what it can be used for. For
instance, the recurrent NNs (RNNs) are well designed for
speech, text and time series classification or prediction (Pas-
canu et al., 2013) and convolutional NNs (CNNs) outperform
any other architecture at classifying visual data, i.e., images
(Krizhevsky et al., 2012).

Before it can start classifying, a NN – of any kind – must
be trained for the specific task, e.g., to recognize a car or a
keyboard in an image. While the topology is, for most cases,
assigned a priori, the parameters – weights and thresholds
– are to be learned. The learning stage is crucial because it
determines the efficiency of the classifier and, therefore, the
machine learning community has dedicated much effort to
providing solutions for the issue – e.g., the back-propagation
algorithm (Rumelhart et al., 1986) – and is still focusing on it
decades after it all started (LeCun et al., 2015; Schmidhuber,
2015). There are as many learning methods as there are NN
topologies; however, they can be sorted in a few categories.
For instance, the learning method may require a labeled train-
ing set, falling into the supervised learning (SL) category
(Duda et al., 2012; Amari, 1998), or it may learn by itself
without an already classified set, in which case the method
is referred to as unsupervised learning (UL) (Le, 2013; Rad-
ford et al., 2016). Another relevant classification of the learn-
ing methods is the depth of the NN. Even though there is no
common consensus to define the limit between shallow and
deep NN (DNN), it is commonly accepted to refer to deep
NN as NNs with at least two layers and very deep NNs as
those with more than 10 layers (Schmidhuber, 2015).

The learning stage is one of the main bottlenecks in an arti-
ficial intelligence, especially for NN. For instance, thousands
of images are typically needed for learning in image recog-
nition applications. Therefore, instead of relearning the com-
plete structure if a new class is introduced or merged with

another one, a less expensive strategy has emerged, namely
transfer learning; it consists of using part of the existing
learned parameters and learning only a subset of the struc-
ture. The pretraining method consists of first training the net-
work with an UL algorithm and then continuing the training
with SL (Bengio et al., 2006). Another solution is reinforce-
ment learning, which is a technique involving an agent that
learns policies based on interaction with its environment us-
ing trial and error. For this method, the correct states are not
known – therefore it is an UL – but a system of rewards gives
hints as to whether the predictions are correct or not (Mnih et
al., 2013; Sutton, 1988; Kaelbling et al., 1996; Schmidhuber,
2015). Finally, the transfer learning method, which we have
used in this study, consists of learning the weights of an NN
that contains a lot of classes (see “General” frame of Fig.
2b) and then using those weights either as a starting point
for other learning sets with less classes or partially using the
weights – e.g., for the first layers of the NN – and training
only one part in order to specialize the NN as it is depicted
the frame “Specialization” of Fig. 2b. (Yosinski et al., 2014;
Cireşan et al., 2012; Pan and Yang, 2010; Mesnil et al., 2012;
Krizhevsky et al., 2012; Weiss et al., 2016). For all kinds
of NNs, the learning process is prone to learning too much
detail – missing the generality of a semantic class – about
the examples. This phenomenon is known as overfitting and
several methods have been developed to overcome this such
as dropout (i.e., ignoring randomly some neurons by setting
them to zero during training) (Srivastava et al., 2014; Hinton
et al., 2012).

Appendix B: Convolutional neural network AlexNet
and its transfer learning

In this study, we used a CNN because it mimics the visual
cognition process of the human. Figure 2c illustrates the
structure of the whole CNN and Fig. 2d and e show some
layers of the CNN in detail. Instead of being fully connected,
the CNN is only locally connected; in other words, a neu-
ron of a layer is connected to a compact subset of neurons of
the previous layer. For every subset, the neurons compute the
same operation – the parameters are shared across the neu-
rons of a layer – resulting in a convoluted version of the input
signal; hence the name. It is a good model for human vision,
because it applies the convolution operation throughout the
image field – thus, it has drawn a lot of attention in the im-
age processing community (e.g., LeCun et al., 1998; Cireşan
et al., 2011; Chellapilla et al., 2006). CNN became popular
when the large, deep CNN named AlexNet outperformed by
far all the other pattern recognition algorithms during the Im-
ageNet Large Scale Visual Recognition Challenge, ILSVRC,
2012 (Krizhevsky et al., 2012). Since then, CNN has been
improved for each classification challenge, starting with the
ZFnet (Zeiler and Fergus, 2014), then followed by the deeper
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GoogleNet (Szegedy et al., 2015) and finally by the deepest
Microsoft ResNet (He et al., 2016).

AlexNet was used to identify NPF events in this study. The
architecture of the AlexNet, shown in Fig. 2c, consists of five
convolutional layers (CLs, Fig. 2d), some of which are fol-
lowed by max-pooling (MP) layers (a down-sampling layer
that extracts the maximum values of predefined subregion)
and three fully connected layers (DNN, Fig. 2e) with a final
1000-way softmax (an output layer), which assigns a prob-
ability (P(l)) to each of the classes’ labels (l) for the input
image (using a normalized exponential function, softmax).
The first five layers of the AlexNet extract abstract features
that are easier to classify than the original input image. This
abstraction is computed by chaining up CL and MP layers.
The CL (depicted in Fig. 2d) computes several convolutions
of the image by several kernels (i.e., matrices used in the
convolution) – that must be learnt – and generates a mul-
tidimensional output of one dimension per kernel. For in-
stance, in Fig. 2d the two kernels v1 and v2 are applied to
two compact subregions of the data (field 1 and field 2) by
two units (unit 1 and unit 2), which generate two 2-D outputs(
y1 =

(
x1

1 ,x2
1
)

and y2 =
(
x1

2 ,x2
2
))

. The CL is what makes
the CNN similar to the human visualization system, because
it applies the same transformation throughout the field of
view – making the classification shift invariant. The MP layer
merely computes a smaller image from each output image
of the CL, e.g., an image of 256× 256 pixels generated by
CL will be reduced to smaller image of 64× 64 by calcu-
lating maximum values of the 4× 4 patches of the original
image. The last layers of the AlexNet is a DNN as depicted
in Fig. 2e, i.e., a NN whose input and output layers are con-
nected by hidden layers of neurons. Contrary to the CL, each
neuron of a DNN’s layer is connected to all the neurons of
the previous layer and the parameters (weights and thresh-
old) are not shared across the layer; this is the most general
setting for a feed-forward NN. In the AlexNet, the output
DNN is the decision-making center, which would be the ana-
log to the abstraction stage created by the brain as the output
of the visual system of a human. To speed up the learning
process and reduce overfitting in the fully connected layers
(DNN), batch normalization and dropout regularization are
employed in the AlexNet as well as the activation function
ReLU.

The transfer learning process of the AlexNet (see Fig. 2b)
is a two-stage optimization method. At first, the network is
trained for a learning dataset (Sg) composed of the data them-
selves (xk) and its labels (dk). This is achieved by solving an
optimization problem for all the NN’s parameters that are
represented by the vector sets V and W , the first layers and
the last layers, respectively. The optimization problem is de-
fined so that the cost function E reaches a minimum for some
optimal sets of parameters V̂ and Ŵ . Once the optimal pa-
rameters are known, for the most of elements xk ∈ Sg , the

output of the NN, i.e., J
(
xk|V̂ ,Ŵ

)
, predicts the actual la-

bel dk , which means that the NN is ready to classify data of
the same semantic field as those of the learning set. The sec-
ond stage of transfer learning consists of optimizing only a
few layers amongst the last ones – or possibly all the layers –
using as an initial guess the optimal sets of the general learn-
ing problem. For instance, the cost function E in Fig. 2b may
be the same for the general and specialized learning step, but
for the first stage, all the parameters are allowed to vary while
only the W may vary during the specialization. This strategy
is very efficient for images because of the structure of the
CNN; the first layers process the image by extracting some
features so that it becomes more abstract and the last layers
attribute the probabilities of belonging to the classes. In our
setup, we modified only a few of the last layers, because of
the low number of available training data Ss , and used origi-
nal weights and thresholds in the other layers.
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