Articles | Volume 18, issue 19
https://doi.org/10.5194/acp-18-14695-2018
https://doi.org/10.5194/acp-18-14695-2018
Research article
 | 
12 Oct 2018
Research article |  | 12 Oct 2018

A comparison of plume rise algorithms to stack plume measurements in the Athabasca oil sands

Mark Gordon, Paul A. Makar, Ralf M. Staebler, Junhua Zhang, Ayodeji Akingunola, Wanmin Gong, and Shao-Meng Li

Related authors

Aerosol deposition to the boreal forest in the vicinity of the Alberta Oil Sands
Timothy Jiang, Mark Gordon, Paul A. Makar, Ralf M. Staebler, and Michael Wheeler
Atmos. Chem. Phys., 23, 4361–4372, https://doi.org/10.5194/acp-23-4361-2023,https://doi.org/10.5194/acp-23-4361-2023, 2023
Short summary
Ozone in the boreal forest in the Alberta oil sands region
Xuanyi Zhang, Mark Gordon, Paul A Makar, Timothy Jiang, Jonathan Davies, and David Tarasick
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2023-26,https://doi.org/10.5194/acp-2023-26, 2023
Preprint under review for ACP
Short summary
Passive Tracer Modelling at Super-Resolution with WRF-ARW to Assess Mass-Balance Schemes
Sepehr Fathi, Mark Gordon, and Yongsheng Chen
EGUsphere, https://doi.org/10.5194/egusphere-2022-1125,https://doi.org/10.5194/egusphere-2022-1125, 2022
Short summary
The measurement of mean wind, variances, and covariances from an instrumented mobile car in a rural environment
Stefan J. Miller and Mark Gordon
Atmos. Meas. Tech., 15, 6563–6584, https://doi.org/10.5194/amt-15-6563-2022,https://doi.org/10.5194/amt-15-6563-2022, 2022
Short summary
High sulphur dioxide deposition velocities measured with the flux/gradient technique in a boreal forest in the Alberta oil sands region
Mark Gordon, Dane Blanchard, Timothy Jiang, Paul A. Makar, Ralf M. Staebler, Julian Aherne, Cris Mihele, and Xuanyi Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-668,https://doi.org/10.5194/acp-2022-668, 2022
Revised manuscript accepted for ACP
Short summary

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Turbulent structure of the Arctic boundary layer in early summer driven by stability, wind shear and cloud-top radiative cooling: ACLOUD airborne observations
Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, André Ehrlich, and Manfred Wendisch
Atmos. Chem. Phys., 23, 4685–4707, https://doi.org/10.5194/acp-23-4685-2023,https://doi.org/10.5194/acp-23-4685-2023, 2023
Short summary
Dependency of vertical velocity variance on meteorological conditions in the convective boundary layer
Noviana Dewani, Mirjana Sakradzija, Linda Schlemmer, Ronny Leinweber, and Juerg Schmidli
Atmos. Chem. Phys., 23, 4045–4058, https://doi.org/10.5194/acp-23-4045-2023,https://doi.org/10.5194/acp-23-4045-2023, 2023
Short summary
Triggering effects of large topography and boundary layer turbulence on convection over the Tibetan Plateau
Xiangde Xu, Yi Tang, Yinjun Wang, Hongshen Zhang, Ruixia Liu, and Mingyu Zhou
Atmos. Chem. Phys., 23, 3299–3309, https://doi.org/10.5194/acp-23-3299-2023,https://doi.org/10.5194/acp-23-3299-2023, 2023
Short summary
A change in the relation between the Subtropical Indian Ocean Dipole and the South Atlantic Ocean Dipole indices in the past four decades
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 23, 345–353, https://doi.org/10.5194/acp-23-345-2023,https://doi.org/10.5194/acp-23-345-2023, 2023
Short summary
Characterising the dynamic movement of thunderstorms using very low- and low-frequency (VLF/LF) total lightning data over the Pearl River Delta region
Si Cheng, Jianguo Wang, Li Cai, Mi Zhou, Rui Su, Yijun Huang, and Quanxin Li
Atmos. Chem. Phys., 22, 10045–10059, https://doi.org/10.5194/acp-22-10045-2022,https://doi.org/10.5194/acp-22-10045-2022, 2022
Short summary

Cited articles

Akingunola, A., Makar, P. A., Zhang, J., Darlington, A., Li, S.-M., Gordon, M., Moran, M. D., and Zheng, Q.: A chemical transport model study of plume-rise and particle size distribution for the Athabasca oil sands, Atmos. Chem. Phys., 18, 8667–8688, https://doi.org/10.5194/acp-18-8667-2018, 2018. 
Arya, S. P.: Air Pollution Meteorology and Dispersion, 1st edn., Oxford University Press, UK, 1998. 
Beychok, M. R.: Fundamentals Of Stack Gas Dispersion, 4th Edn., available at: https://en.wikipedia.org/wiki/Fundamentals_of_Stack_Gas_Dispersion (last access: October 2018), 2005. 
Bieser, J., Aulinger, A., Matthias, V., Quante, M., and Builtjes, P.: SMOKE for Europe – adaptation, modification and evaluation of a comprehensive emission model for Europe, Geosci. Model Dev., 4, 47–68, https://doi.org/10.5194/gmd-4-47-2011, 2011a. 
Bieser, J., Aulinger, A., Matthias, V., Quante, M., Builtjes, P., and Denier van der Gon, H. A. C.: Vertical emission profiles for Europe based on plume rise calculations, Environ. Pollut., 159, 2935–2946. https://doi.org/10.1016/j.envpol.2011.04.030, 2011b. 
Short summary
This work uses aircraft-based measurements of smokestack plumes carried out in northern Alberta in 2013. These measurements are used to test equations used to predict how high in the air smokestack plumes rise. It is important to predict plume rise height accurately as it tells us how far downwind pollutants are carried and what air quality can be expected at the surface. We found that the equations that are typically used significantly underestimate the plume rise at this location.
Altmetrics
Final-revised paper
Preprint