Articles | Volume 18, issue 16
https://doi.org/10.5194/acp-18-11623-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-11623-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating the open biomass burning emissions in central and eastern China from 2003 to 2015 based on satellite observation
Jian Wu
Department of Environmental Science and Technology, School of
Environmental Studies, China University of Geosciences, Wuhan, 430074, China
Shaofei Kong
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, School of Environmental Studies,
China University of Geosciences, Wuhan, 430074, China
Fangqi Wu
Department of Atmospheric Sciences, School of Environmental Studies,
China University of Geosciences, Wuhan, 430074, China
Yi Cheng
Department of Atmospheric Sciences, School of Environmental Studies,
China University of Geosciences, Wuhan, 430074, China
Shurui Zheng
Department of Atmospheric Sciences, School of Environmental Studies,
China University of Geosciences, Wuhan, 430074, China
Qin Yan
Department of Environmental Science and Technology, School of
Environmental Studies, China University of Geosciences, Wuhan, 430074, China
Huang Zheng
Department of Atmospheric Sciences, School of Environmental Studies,
China University of Geosciences, Wuhan, 430074, China
Guowei Yang
Department of Atmospheric Sciences, School of Environmental Studies,
China University of Geosciences, Wuhan, 430074, China
Mingming Zheng
Department of Environmental Science and Technology, School of
Environmental Studies, China University of Geosciences, Wuhan, 430074, China
Dantong Liu
Centre for Atmospheric Sciences, School of Earth and Environmental
Sciences, University of Manchester, Manchester M13 9PL, UK
Delong Zhao
Beijing Weather Modification Office, Beijing, 100089, China
Shihua Qi
CORRESPONDING AUTHOR
Department of Environmental Science and Technology, School of
Environmental Studies, China University of Geosciences, Wuhan, 430074, China
State Key Laboratory of Biogeology and Environmental Geology, China
University of Geosciences, Wuhan, 430074, China
Related authors
Yi Cheng, Shaofei Kong, Liquan Yao, Huang Zheng, Jian Wu, Qin Yan, Shurui Zheng, Yao Hu, Zhenzhen Niu, Yingying Yan, Zhenxing Shen, Guofeng Shen, Dantong Liu, Shuxiao Wang, and Shihua Qi
Earth Syst. Sci. Data, 14, 4757–4775, https://doi.org/10.5194/essd-14-4757-2022, https://doi.org/10.5194/essd-14-4757-2022, 2022
Short summary
Short summary
This work establishes the first emission inventory of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue, using multi-source datasets and tested emission factors. These emissions were concentrated in specific periods and areas. Positive and negative correlations between income and emissions were revealed in urban and rural regions. The dataset will be helpful for improving modeling studies and modifying corresponding emission control policies.
Mingming Zheng, Shaofei Kong, Jianguo Bao, Ke Xu, Shurui Zheng, Guowei Yang, Jihong Quan, Lianxin Yuan, Nan Chen, Yiping Tian, Huang Zheng, Jian Wu, Dantong Liu, Delong Zhao, Qin Yan, Tianliang Zhao, and Shihua Qi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-367, https://doi.org/10.5194/acp-2018-367, 2018
Preprint retracted
Short summary
Short summary
In this paper, we study the aerosol acidity for different time scales, pollution episodes and air mass directions in a megacity of central China with high ambient temperature and relative humidity, and the impacting factors of pH were identified. This research is the first study concerning the aerosol acidity based on one-year online monitoring dataset with high resolution in central China, which is an important supplementary for the current aerosol acidity study around the world.
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Yuanmou Du, Dantong Liu, Delong Zhao, Mengyu Huang, Ping Tian, Dian Wen, Wei Xiao, Wei Zhou, Baiwan Pan, Dongfei Zuo, Xiange Liu, Yingying Jing, Rong Zhang, Jiujiang Sheng, Fei Wang, Yu Huang, Yunbo Chen, and Deping Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-314, https://doi.org/10.5194/egusphere-2024-314, 2024
Short summary
Short summary
By conducting in-situ measurements of the microphysical properties, we investigated the ice production and phase transformation of stratocumulus during an extratropical cyclone over the North China Plain. We find the key factors in controlling secondary ice production, and the microphysical properties of clouds with convective cells under different stages are elucidated, which will improve the understanding of the key processes in controlling the cloud glaciation and precipitation process.
Qian Li, Dantong Liu, Xiaotong Jiang, Ping Tian, Yangzhou Wu, Siyuan Li, Kang Hu, Quan Liu, Mengyu Huang, Ruijie Li, Kai Bi, Shaofei Kong, Deping Ding, and Chenjie Yu
Atmos. Chem. Phys., 23, 9439–9453, https://doi.org/10.5194/acp-23-9439-2023, https://doi.org/10.5194/acp-23-9439-2023, 2023
Short summary
Short summary
By attributing the shortwave absorption from black carbon, primary organic aerosol and secondary organic aerosol in a suburban environment, we firstly observed that the photochemically produced nitrogen-containing secondary organic aerosol may contribute to the enhancement of brown carbon absorption, partly compensating for some bleaching effect on the absorption of primary organic aerosol, hereby exerting radiative impacts.
Qi Yuan, Yuanyuan Wang, Yixin Chen, Siyao Yue, Jian Zhang, Yinxiao Zhang, Liang Xu, Wei Hu, Dantong Liu, Pingqing Fu, Huiwang Gao, and Weijun Li
Atmos. Chem. Phys., 23, 9385–9399, https://doi.org/10.5194/acp-23-9385-2023, https://doi.org/10.5194/acp-23-9385-2023, 2023
Short summary
Short summary
This study for the first time found large amounts of liquid–liquid phase separation particles with soot redistributing in organic coatings instead of sulfate cores in the eastern Tibetan Plateau atmosphere. The particle size and the ratio of the organic matter coating thickness to soot size are two of the major possible factors that likely affect the soot redistribution process. The soot redistribution process promoted the morphological compaction of soot particles.
Yi Cheng, Shaofei Kong, Liquan Yao, Huang Zheng, Jian Wu, Qin Yan, Shurui Zheng, Yao Hu, Zhenzhen Niu, Yingying Yan, Zhenxing Shen, Guofeng Shen, Dantong Liu, Shuxiao Wang, and Shihua Qi
Earth Syst. Sci. Data, 14, 4757–4775, https://doi.org/10.5194/essd-14-4757-2022, https://doi.org/10.5194/essd-14-4757-2022, 2022
Short summary
Short summary
This work establishes the first emission inventory of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue, using multi-source datasets and tested emission factors. These emissions were concentrated in specific periods and areas. Positive and negative correlations between income and emissions were revealed in urban and rural regions. The dataset will be helpful for improving modeling studies and modifying corresponding emission control policies.
Siyuan Li, Dantong Liu, Shaofei Kong, Yangzhou Wu, Kang Hu, Huang Zheng, Yi Cheng, Shurui Zheng, Xiaotong Jiang, Shuo Ding, Dawei Hu, Quan Liu, Ping Tian, Delong Zhao, and Jiujiang Sheng
Atmos. Chem. Phys., 22, 6937–6951, https://doi.org/10.5194/acp-22-6937-2022, https://doi.org/10.5194/acp-22-6937-2022, 2022
Short summary
Short summary
The understanding of secondary organic aerosols is hindered by the aerosol–gas evolution by different oxidation mechanisms. By concurrently measuring detailed mass spectra of aerosol and gas phases in a megacity online, we identified the primary and secondary source sectors and investigated the transformation between gas and aerosol phases influenced by photooxidation and moisture. The results will help us to understand the respective evolution of major sources in a typical urban environment.
Chenjie Yu, Dantong Liu, Kang Hu, Ping Tian, Yangzhou Wu, Delong Zhao, Huihui Wu, Dawei Hu, Wenbo Guo, Qiang Li, Mengyu Huang, Deping Ding, and James D. Allan
Atmos. Chem. Phys., 22, 4375–4391, https://doi.org/10.5194/acp-22-4375-2022, https://doi.org/10.5194/acp-22-4375-2022, 2022
Short summary
Short summary
In this study, we applied a new technique to investigate the aerosol properties on both a mass and number basis and CCN abilities in Beijing suburban regions. The size-resolved aerosol chemical compositions and CCN activation measurement enable a detailed analysis of BC-containing particle hygroscopicity and its size-dependent contribution to the CCN activation. The results presented in this study will affect future models and human health studies.
Xiaoyun Sun, Tianliang Zhao, Yongqing Bai, Shaofei Kong, Huang Zheng, Weiyang Hu, Xiaodan Ma, and Jie Xiong
Atmos. Chem. Phys., 22, 3579–3593, https://doi.org/10.5194/acp-22-3579-2022, https://doi.org/10.5194/acp-22-3579-2022, 2022
Short summary
Short summary
This study revealed the impact of anthropogenic emissions and meteorological conditions on PM2.5 decline in the regional transport of air pollutants over a receptor region in central China. The meteorological drivers led to upwind accelerating and downward offsetting of the effects of emission reductions over the receptor region in regional PM2.5 transport, and the contribution of gaseous precursor emissions to PM2.5 pollution was enhanced with reduced anthropogenic emissions in recent years.
Dawei Hu, M. Rami Alfarra, Kate Szpek, Justin M. Langridge, Michael I. Cotterell, Claire Belcher, Ian Rule, Zixia Liu, Chenjie Yu, Yunqi Shao, Aristeidis Voliotis, Mao Du, Brett Smith, Greg Smallwood, Prem Lobo, Dantong Liu, Jim M. Haywood, Hugh Coe, and James D. Allan
Atmos. Chem. Phys., 21, 16161–16182, https://doi.org/10.5194/acp-21-16161-2021, https://doi.org/10.5194/acp-21-16161-2021, 2021
Short summary
Short summary
Here, we developed new techniques for investigating these properties in the laboratory and applied these to BC and BrC from different sources, including diesel exhaust, inverted propane flame and wood combustion. These have allowed us to quantify the changes in shape and chemical composition of different soots according to source and variables such as the moisture content of wood.
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021, https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary
Short summary
Through simultaneous online measurements of detailed aerosol compositions at both surface and surface-influenced mountain sites, the evolution of aerosol composition during daytime vertical transport was investigated. The results show that, from surface to the top of the planetary boundary layer, the oxidation state of organic aerosol had been significantly enhanced due to evaporation and further oxidation of these evaporated gases.
Dongfei Zuo, Deping Ding, Yichen Chen, Ling Yang, Delong Zhao, Mengyu Huang, Ping Tian, Wei Xiao, Wei Zhou, Yuanmou Du, and Dantong Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-221, https://doi.org/10.5194/amt-2021-221, 2021
Publication in AMT not foreseen
Short summary
Short summary
According to the echo attenuation analysis of mixed precipitation, the melting layer is found to be the key factor affecting the attenuation correction. This study hereby proposes an adaptive echo attenuation correction method based on the melting layer, and uses the ground-based S-band radar to extract the echo on the aircraft trajectory to verify the correction results. The results show that the echo attenuation correction value above the melting layer is related to the flight position.
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Krishnaswamy Krishna Moorthy, Sreedharan Krishnakumari Satheesh, Mukunda Madhab Gogoi, Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Dantong Liu, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021, https://doi.org/10.5194/acp-21-9173-2021, 2021
Short summary
Short summary
The first observations of refractory black carbon aerosol size distributions and mixing state in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. Size distributions indicated mixed sources of BC particles in the outflow, which are thickly coated. The coating thickness of BC is controlled mainly by the availability of condensable species in the outflow.
Yingying Yan, Yue Zhou, Shaofei Kong, Jintai Lin, Jian Wu, Huang Zheng, Zexuan Zhang, Aili Song, Yongqing Bai, Zhang Ling, Dantong Liu, and Tianliang Zhao
Atmos. Chem. Phys., 21, 3143–3162, https://doi.org/10.5194/acp-21-3143-2021, https://doi.org/10.5194/acp-21-3143-2021, 2021
Short summary
Short summary
We analyze the effectiveness of emission reduction for local and upwind regions during winter haze episodes controlled by the main potential synoptic patterns over central China, a regional pollutant transport hub with sub-basin topography. Our results provide an opportunity to effectively mitigate haze pollution via local emission control actions in coordination with regional collaborative actions according to different synoptic patterns.
Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Liang Xu, Qi Yuan, Dantong Liu, Yele Sun, Pingqing Fu, Zongbo Shi, and Weijun Li
Atmos. Chem. Phys., 21, 2251–2265, https://doi.org/10.5194/acp-21-2251-2021, https://doi.org/10.5194/acp-21-2251-2021, 2021
Short summary
Short summary
We found that large numbers of light-absorbing primary organic particles with high viscosity, especially tarballs, from domestic coal and biomass burning occurred in rural and even urban hazes in the winter of North China. For the first time, we characterized the atmospheric aging process of these burning-related primary organic particles by microscopic analysis and further evaluated their light absorption enhancement resulting from the “lensing effect” of secondary inorganic coatings.
Shuo Ding, Dantong Liu, Kang Hu, Delong Zhao, Ping Tian, Fei Wang, Ruijie Li, Yichen Chen, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 681–694, https://doi.org/10.5194/acp-21-681-2021, https://doi.org/10.5194/acp-21-681-2021, 2021
Short summary
Short summary
In this study, we for the first time characterized the detailed black carbon (BC) microphysics at a mountain site located at the top of the planetary boundary layer (PBL) influenced by surface emission over the North China Plain. We investigated the optical and hygroscopic properties of BC at this level as influenced by microphysical properties. Such information will constrain the impacts of BC in influencing the PBL dynamics and low-level cloud formation over anthropogenically polluted regions.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
Junfeng Wang, Jianhuai Ye, Dantong Liu, Yangzhou Wu, Jian Zhao, Weiqi Xu, Conghui Xie, Fuzhen Shen, Jie Zhang, Paul E. Ohno, Yiming Qin, Xiuyong Zhao, Scot T. Martin, Alex K. Y. Lee, Pingqing Fu, Daniel J. Jacob, Qi Zhang, Yele Sun, Mindong Chen, and Xinlei Ge
Atmos. Chem. Phys., 20, 14091–14102, https://doi.org/10.5194/acp-20-14091-2020, https://doi.org/10.5194/acp-20-14091-2020, 2020
Short summary
Short summary
We compared the organics in total submicron matter and those coated on BC cores during summertime in Beijing and found large differences between them. Traffic-related OA was associated significantly with BC, while cooking-related OA did not coat BC. In addition, a factor likely originated from primary biomass burning OA was only identified in BC-containing particles. Such a unique BBOA requires further field and laboratory studies to verify its presence and elucidate its properties and impacts.
Yongqing Bai, Tianliang Zhao, Yue Zhou, Jie Xiong, Weiyang Hu, Yao Gu, Lin Liu, Shaofei Kong, and Huang Zheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-708, https://doi.org/10.5194/acp-2020-708, 2020
Revised manuscript not accepted
Short summary
Short summary
Heavy air pollution over central China with regional transport of PM2.5 during January of 2015-2019 were studied by using MV-EOF with multi-source observation data. It is revealed that the 3-D meteorological structure biulding a receptor region in regional transport of air pollutants over China for improving our our understanding on meteorological mechanism of regional transport of source-receptor air pollutants.
Wanyu Zhao, Hong Ren, Kimitaka Kawamura, Huiyun Du, Xueshun Chen, Siyao Yue, Qiaorong Xie, Lianfang Wei, Ping Li, Xin Zeng, Shaofei Kong, Yele Sun, Zifa Wang, and Pingqing Fu
Atmos. Chem. Phys., 20, 10331–10350, https://doi.org/10.5194/acp-20-10331-2020, https://doi.org/10.5194/acp-20-10331-2020, 2020
Short summary
Short summary
Our observations provide detailed information on the abundance and vertical distribution of dicarboxylic acids, oxoacids and α-dicarbonyls in PM2.5 collected at three heights based on a 325 m meteorological tower in Beijing in summer. Our results demonstrate that organic acids at the ground surface are largely associated with local traffic emissions, while long-range atmospheric transport followed by photochemical ageing contributes more in the urban boundary layer than the ground surface.
Jill S. Johnson, Leighton A. Regayre, Masaru Yoshioka, Kirsty J. Pringle, Steven T. Turnock, Jo Browse, David M. H. Sexton, John W. Rostron, Nick A. J. Schutgens, Daniel G. Partridge, Dantong Liu, James D. Allan, Hugh Coe, Aijun Ding, David D. Cohen, Armand Atanacio, Ville Vakkari, Eija Asmi, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 9491–9524, https://doi.org/10.5194/acp-20-9491-2020, https://doi.org/10.5194/acp-20-9491-2020, 2020
Short summary
Short summary
We use over 9000 monthly aggregated grid-box measurements of aerosol to constrain the uncertainty in the HadGEM3-UKCA climate model. Measurements of AOD, PM2.5, particle number concentrations, sulfate and organic mass concentrations are compared to 1 million
variantsof the model using an implausibility metric. Despite many compensating effects in the model, the procedure constrains the probability distributions of many parameters, and direct radiative forcing uncertainty is reduced by 34 %.
Chao Yu, Tianliang Zhao, Yongqing Bai, Lei Zhang, Shaofei Kong, Xingna Yu, Jinhai He, Chunguang Cui, Jie Yang, Yinchang You, Guoxu Ma, Ming Wu, and Jiacheng Chang
Atmos. Chem. Phys., 20, 7217–7230, https://doi.org/10.5194/acp-20-7217-2020, https://doi.org/10.5194/acp-20-7217-2020, 2020
Short summary
Short summary
This study investigated the ambient PM2.5 variations over Wuhan, a typical urban Yangtze River middle basin (YRMB) region in central eastern China in January 2016. Through an analysis of observational data of the environment and meteorology, as well as via a FLEXPART-WRF simulation, it heavy air pollution is revealed with the unique “non-stagnant” atmospheric boundary layer in the YRMB region aggravated by regional transport of PM2.5 over central and eastern China.
Hang Liu, Xiaole Pan, Dantong Liu, Xiaoyong Liu, Xueshun Chen, Yu Tian, Yele Sun, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 20, 5771–5785, https://doi.org/10.5194/acp-20-5771-2020, https://doi.org/10.5194/acp-20-5771-2020, 2020
Short summary
Short summary
The bare black carbon (BC) was in a fractal structure. With coating thickness increasing, BC changed from a fractal structure to a core–shell structure. In the ambient atmosphere, plenty of BC particles were not in a perfect core–shell structure. This study brought attention to the combined effects of morphology and coating thickness on the absorption enhancement of BC-containing particles, which is helpful for determining the climatic effects of BC.
Jian Zhang, Lei Liu, Liang Xu, Qiuhan Lin, Hujia Zhao, Zhibin Wang, Song Guo, Min Hu, Dantong Liu, Zongbo Shi, Dao Huang, and Weijun Li
Atmos. Chem. Phys., 20, 5355–5372, https://doi.org/10.5194/acp-20-5355-2020, https://doi.org/10.5194/acp-20-5355-2020, 2020
Short summary
Short summary
Northeast China faces severe air pollution in regional haze in wintertime. In this study, we revealed a contrasting formation mechanism of two typical haze events: Haze-I was induced by adverse meteorological conditions together with residential coal burning emissions; Haze-II was caused by agricultural biomass waste burning. In particular, we observed large numbers of tar balls as the primary brown carbon in northeast China.
William T. Morgan, James D. Allan, Stéphane Bauguitte, Eoghan Darbyshire, Michael J. Flynn, James Lee, Dantong Liu, Ben Johnson, Jim Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 20, 5309–5326, https://doi.org/10.5194/acp-20-5309-2020, https://doi.org/10.5194/acp-20-5309-2020, 2020
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different environments in the Amazon basin during the 2012 biomass burning season. Smoke from fires builds up and has a significant impact on weather, climate, health and natural ecosystems. Our goal was to quantify changes in the properties of the smoke emitted by fires as it is transported through the atmosphere. We found that the major control on the properties of the smoke was due to differences in the fires themselves.
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, Trupti Das, Ramasamy Boopathy, Dantong Liu, Eoghan Darbyshire, James D. Allan, James Brooks, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 20, 3965–3985, https://doi.org/10.5194/acp-20-3965-2020, https://doi.org/10.5194/acp-20-3965-2020, 2020
Quan Liu, Dantong Liu, Qian Gao, Ping Tian, Fei Wang, Delong Zhao, Kai Bi, Yangzhou Wu, Shuo Ding, Kang Hu, Jiale Zhang, Deping Ding, and Chunsheng Zhao
Atmos. Chem. Phys., 20, 3931–3944, https://doi.org/10.5194/acp-20-3931-2020, https://doi.org/10.5194/acp-20-3931-2020, 2020
Short summary
Short summary
We present a series of aircraft-based in situ measurements of aerosol chemical components and size distributions over the North China Plain, and the hygroscopicity is derived from aerosol chemical composition. These results reveal the vertical characteristics of aerosol hygroscopicity, and we investigated their impacts on optical properties and activation under different moisture and pollution conditions over this polluted region.
Gary Lloyd, Thomas Choularton, Keith Bower, Jonathan Crosier, Martin Gallagher, Michael Flynn, James Dorsey, Dantong Liu, Jonathan W. Taylor, Oliver Schlenczek, Jacob Fugal, Stephan Borrmann, Richard Cotton, Paul Field, and Alan Blyth
Atmos. Chem. Phys., 20, 3895–3904, https://doi.org/10.5194/acp-20-3895-2020, https://doi.org/10.5194/acp-20-3895-2020, 2020
Short summary
Short summary
Measurements of liquid and ice cloud particles were made using an aircraft to penetrate fresh growing convective clouds in the tropical Atlantic. We found small ice particles at surprisingly high temperatures just below freezing. At colder temperatures secondary ice processes rapidly generated high concentrations of ice crystals.
Chenjie Yu, Dantong Liu, Kurtis Broda, Rutambhara Joshi, Jason Olfert, Yele Sun, Pingqing Fu, Hugh Coe, and James D. Allan
Atmos. Chem. Phys., 20, 3645–3661, https://doi.org/10.5194/acp-20-3645-2020, https://doi.org/10.5194/acp-20-3645-2020, 2020
Short summary
Short summary
This study presents the first atmospheric application of a new morphology-independent measurement for the quantification of the mixing state of rBC-containing particles in urban Beijing as part of the UK–China APHH campaign. An inversion method has been applied for better quantification of rBC mixing state. The mass-resolved rBC mixing state information presented here has implications for detailed models of BC, its optical properties and its atmospheric life cycle.
Ping Tian, Dantong Liu, Delong Zhao, Chenjie Yu, Quan Liu, Mengyu Huang, Zhaoze Deng, Liang Ran, Yunfei Wu, Shuo Ding, Kang Hu, Gang Zhao, Chunsheng Zhao, and Deping Ding
Atmos. Chem. Phys., 20, 2603–2622, https://doi.org/10.5194/acp-20-2603-2020, https://doi.org/10.5194/acp-20-2603-2020, 2020
Short summary
Short summary
This study paints a full picture of the evolution of vertical characteristics of aerosol optical properties and shortwave heating impacts of carbonaceous aerosols during different stages of pollution events over the Beijing region and highlights the increased contribution of brown carbon absorption, especially at higher levels, during pollution.
James Brooks, Dantong Liu, James D. Allan, Paul I. Williams, Jim Haywood, Ellie J. Highwood, Sobhan K. Kompalli, S. Suresh Babu, Sreedharan K. Satheesh, Andrew G. Turner, and Hugh Coe
Atmos. Chem. Phys., 19, 13079–13096, https://doi.org/10.5194/acp-19-13079-2019, https://doi.org/10.5194/acp-19-13079-2019, 2019
Short summary
Short summary
Our study presents an analysis of the vertical and horizontal black carbon properties across northern India using aircraft measurements. The Indo-Gangetic Plain saw the greatest black carbon mass concentrations during the pre-monsoon season. Two black carbon modes were recorded: a small black carbon mode (traffic emissions) in the north-west and a moderately coated mode (solid-fuel emissions) in the Indo-Gangetic Plain. In the vertical profile, absorption properties increase with height.
Duncan Watson-Parris, Nick Schutgens, Carly Reddington, Kirsty J. Pringle, Dantong Liu, James D. Allan, Hugh Coe, Ken S. Carslaw, and Philip Stier
Atmos. Chem. Phys., 19, 11765–11790, https://doi.org/10.5194/acp-19-11765-2019, https://doi.org/10.5194/acp-19-11765-2019, 2019
Short summary
Short summary
The vertical distribution of aerosol in the atmosphere affects its ability to act as cloud condensation nuclei and changes the amount of sunlight it absorbs or reflects. Common global measurements of aerosol provide no information about this vertical distribution. Using a global collection of in situ aircraft measurements to compare with an aerosol–climate model (ECHAM-HAM), we explore the key processes controlling this distribution and find that wet removal plays a key role.
Michael Hollaway, Oliver Wild, Ting Yang, Yele Sun, Weiqi Xu, Conghui Xie, Lisa Whalley, Eloise Slater, Dwayne Heard, and Dantong Liu
Atmos. Chem. Phys., 19, 9699–9714, https://doi.org/10.5194/acp-19-9699-2019, https://doi.org/10.5194/acp-19-9699-2019, 2019
Short summary
Short summary
This study, for the first time, uses combinations of aerosol and lidar data to drive an offline photolysis scheme. Absorbing species are shown to have the greatest impact on photolysis rate constants in the winter and scattering aerosol are shown to dominate responses in the summer. During haze episodes, aerosols are shown to produce a greater impact than cloud cover. The findings demonstrate the potential photochemical impacts of haze pollution in a highly polluted urban environment.
Jamie M. Kelly, Ruth M. Doherty, Fiona M. O'Connor, Graham W. Mann, Hugh Coe, and Dantong Liu
Geosci. Model Dev., 12, 2539–2569, https://doi.org/10.5194/gmd-12-2539-2019, https://doi.org/10.5194/gmd-12-2539-2019, 2019
Short summary
Short summary
This study develops the representation of secondary organic aerosol (SOA) within a global chemistry–climate model (UKCA). Both dry and wet deposition within the UKCA model are extended to consider precursors of SOA. The oxidation mechanism describing SOA formation is also extended by adding a reaction intermediate, with SOA yields that are dependent on oxidant concentrations.
Weijun Li, Lei Liu, Qi Yuan, Liang Xu, Yanhong Zhu, Bingbing Wang, Hua Yu, Xiaokun Ding, Jian Zhang, Dao Huang, Dantong Liu, Wei Hu, Daizhou Zhang, Pingqing Fu, Maosheng Yao, Min Hu, Xiaoye Zhang, and Zongbo Shi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-539, https://doi.org/10.5194/acp-2019-539, 2019
Preprint withdrawn
Short summary
Short summary
The real state of individual primary biological aerosol particles (PBAPs) derived from natural sources is under mystery, although many studies well evaluate the morphology, mixing state, and elemental composition of anthropogenic particles. It induces that some studies mislead some anthropogenic particles into biological particles through electron microscopy. Here we firstly estimate the full database of individual PBAPs through two microscopic instruments. The database is good for research.
Dantong Liu, Rutambhara Joshi, Junfeng Wang, Chenjie Yu, James D. Allan, Hugh Coe, Michael J. Flynn, Conghui Xie, James Lee, Freya Squires, Simone Kotthaus, Sue Grimmond, Xinlei Ge, Yele Sun, and Pingqing Fu
Atmos. Chem. Phys., 19, 6749–6769, https://doi.org/10.5194/acp-19-6749-2019, https://doi.org/10.5194/acp-19-6749-2019, 2019
Short summary
Short summary
This study provides source attribution and characterization of BC in the Beijing urban environment in both winter and summer. For the first time, the physically and chemically based source apportionments are compared to evaluate the primary source contribution and secondary processing of BC-containing particles. A method is proposed to isolate the BC from the transportation sector and coal combustion sources.
Eoghan Darbyshire, William T. Morgan, James D. Allan, Dantong Liu, Michael J. Flynn, James R. Dorsey, Sebastian J. O'Shea, Douglas Lowe, Kate Szpek, Franco Marenco, Ben T. Johnson, Stephane Bauguitte, Jim M. Haywood, Joel F. Brito, Paulo Artaxo, Karla M. Longo, and Hugh Coe
Atmos. Chem. Phys., 19, 5771–5790, https://doi.org/10.5194/acp-19-5771-2019, https://doi.org/10.5194/acp-19-5771-2019, 2019
Short summary
Short summary
A novel analysis of aerosol and gas-phase vertical profiles shows a marked regional pollution contrast: composition is driven by the fire regime and vertical distribution is driven by thermodynamics. These drivers ought to be well represented in simulations to ensure realistic prediction of climate and air quality impacts. The BC : CO ratio in haze and plumes increases with altitude – long-range transport or fire stage coupled to plume dynamics may be responsible. Further enquiry is advocated.
James Brooks, James D. Allan, Paul I. Williams, Dantong Liu, Cathryn Fox, Jim Haywood, Justin M. Langridge, Ellie J. Highwood, Sobhan K. Kompalli, Debbie O'Sullivan, Suresh S. Babu, Sreedharan K. Satheesh, Andrew G. Turner, and Hugh Coe
Atmos. Chem. Phys., 19, 5615–5634, https://doi.org/10.5194/acp-19-5615-2019, https://doi.org/10.5194/acp-19-5615-2019, 2019
Short summary
Short summary
Our study, for the first time, presents measurements of aerosol chemical composition and physical characteristics across northern India in the pre-monsoon and monsoon seasons of 2016 using the FAAM BAe-146 UK research aircraft. Across northern India, an elevated aerosol layer dominated by sulfate aerosol exists that diminishes with monsoon arrival. The Indo-Gangetic Plain (IGP) boundary layer is dominated by organics, whereas outside the IGP sulfate dominates with increased scattering aerosol.
Huang Zheng, Shaofei Kong, Fangqi Wu, Yi Cheng, Zhenzhen Niu, Shurui Zheng, Guowei Yang, Liquan Yao, Qin Yan, Jian Wu, Mingming Zheng, Nan Chen, Ke Xu, Yingying Yan, Dantong Liu, Delong Zhao, Tianliang Zhao, Yongqing Bai, Shuanglin Li, and Shihua Qi
Atmos. Chem. Phys., 19, 4499–4516, https://doi.org/10.5194/acp-19-4499-2019, https://doi.org/10.5194/acp-19-4499-2019, 2019
Short summary
Short summary
This study simultaneously observed black carbon (BC) at five sites in central China and on the south edge of North China Plain, which have the most serious air pollution issues in China. The differences in BC properties between different air quality conditions and the property changes during transportation were studied. The main findings of this study were that during the downwind transportation of air, the BC mass concentration increased, whereas the absorption Ångström exponent decreased.
Nicholas A. Marsden, Romy Ullrich, Ottmar Möhler, Stine Eriksen Hammer, Konrad Kandler, Zhiqiang Cui, Paul I. Williams, Michael J. Flynn, Dantong Liu, James D. Allan, and Hugh Coe
Atmos. Chem. Phys., 19, 2259–2281, https://doi.org/10.5194/acp-19-2259-2019, https://doi.org/10.5194/acp-19-2259-2019, 2019
Short summary
Short summary
The composition of airborne dust influences climate and ecosystems but its measurements presents a huge analytical challenge. Using online single-particle mass spectrometry, we demonstrate differences in mineralogy and mixing state can be detected in real time in both laboratory studies and ambient measurements. The results provide insights into the temporal and spatial evolution of dust properties that will be useful for aerosol–cloud interaction studies and dust cycle modelling.
Junfeng Wang, Dantong Liu, Xinlei Ge, Yangzhou Wu, Fuzhen Shen, Mindong Chen, Jian Zhao, Conghui Xie, Qingqing Wang, Weiqi Xu, Jie Zhang, Jianlin Hu, James Allan, Rutambhara Joshi, Pingqing Fu, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 19, 447–458, https://doi.org/10.5194/acp-19-447-2019, https://doi.org/10.5194/acp-19-447-2019, 2019
Short summary
Short summary
This work is part of the UK-China APHH campaign. We used a laser-only Aerodyne soot particle aerosol mass spectrometer, for the first time, to investigate the concentrations, size distributions and chemical compositions for those ambient submicron aerosol particles only with black carbon as cores. Our findings are valuable to understand the BC properties and processes in the densely populated megacities.
Conghui Xie, Weiqi Xu, Junfeng Wang, Qingqing Wang, Dantong Liu, Guiqian Tang, Ping Chen, Wei Du, Jian Zhao, Yingjie Zhang, Wei Zhou, Tingting Han, Qingyun Bian, Jie Li, Pingqing Fu, Zifa Wang, Xinlei Ge, James Allan, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 19, 165–179, https://doi.org/10.5194/acp-19-165-2019, https://doi.org/10.5194/acp-19-165-2019, 2019
Short summary
Short summary
We present the first simultaneous real-time online measurements of aerosol optical properties at ground level and at 260 m on a meteorological tower in urban Beijing in winter. The vertical similarities and differences in scattering and absorption coefficients were characterized. The increases in MAC of BC were mainly associated with the coating materials on rBC. Coal combustion was the dominant source contribution of brown carbon followed by biomass burning and SOA in winter in Beijing.
Claire L. Ryder, Franco Marenco, Jennifer K. Brooke, Victor Estelles, Richard Cotton, Paola Formenti, James B. McQuaid, Hannah C. Price, Dantong Liu, Patrick Ausset, Phil D. Rosenberg, Jonathan W. Taylor, Tom Choularton, Keith Bower, Hugh Coe, Martin Gallagher, Jonathan Crosier, Gary Lloyd, Eleanor J. Highwood, and Benjamin J. Murray
Atmos. Chem. Phys., 18, 17225–17257, https://doi.org/10.5194/acp-18-17225-2018, https://doi.org/10.5194/acp-18-17225-2018, 2018
Short summary
Short summary
Every year, millions of tons of Saharan dust particles are carried across the Atlantic by the wind, where they can affect weather patterns and climate. Their sizes span orders of magnitude, but the largest (over 10 microns – around the width of a human hair) are difficult to measure and few observations exist. Here we show new aircraft observations of large dust particles, finding more than we would expect, and we quantify their properties which allow them to interact with atmospheric radiation.
Mingming Zheng, Shaofei Kong, Jianguo Bao, Ke Xu, Shurui Zheng, Guowei Yang, Jihong Quan, Lianxin Yuan, Nan Chen, Yiping Tian, Huang Zheng, Jian Wu, Dantong Liu, Delong Zhao, Qin Yan, Tianliang Zhao, and Shihua Qi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-367, https://doi.org/10.5194/acp-2018-367, 2018
Preprint retracted
Short summary
Short summary
In this paper, we study the aerosol acidity for different time scales, pollution episodes and air mass directions in a megacity of central China with high ambient temperature and relative humidity, and the impacting factors of pH were identified. This research is the first study concerning the aerosol acidity based on one-year online monitoring dataset with high resolution in central China, which is an important supplementary for the current aerosol acidity study around the world.
Amy K. Hodgson, William T. Morgan, Sebastian O'Shea, Stéphane Bauguitte, James D. Allan, Eoghan Darbyshire, Michael J. Flynn, Dantong Liu, James Lee, Ben Johnson, Jim M. Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 18, 5619–5638, https://doi.org/10.5194/acp-18-5619-2018, https://doi.org/10.5194/acp-18-5619-2018, 2018
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different biomass burning environments in the Amazon Basin in September and October 2012. In this paper, we focus on smoke sampled very close to fresh fires (only 600–900 m above the fires and smoke that was 4–6 min old) to examine the chemical components that make up the smoke and their abundance. We found substantial differences in the emitted smoke that are due to the fuel type and combustion processes driving the fires.
Huang Zheng, Shaofei Kong, Xinli Xing, Yao Mao, Tianpeng Hu, Yang Ding, Gang Li, Dantong Liu, Shuanglin Li, and Shihua Qi
Atmos. Chem. Phys., 18, 4567–4595, https://doi.org/10.5194/acp-18-4567-2018, https://doi.org/10.5194/acp-18-4567-2018, 2018
Short summary
Short summary
This research is the first study concerning the 1-year online monitoring of volatile organic compounds in an oil–gas field in China. The VOC concentrations, compositions and ozone formation potential in this study are quite different from other research. The contributions of natural gas and the other four sources to total VOCs are quantified. The different timescale variations in different sources are described. This research broadens our knowledge of VOC behavior in this type of region.
Dantong Liu, Jonathan W. Taylor, Jonathan Crosier, Nicholas Marsden, Keith N. Bower, Gary Lloyd, Claire L. Ryder, Jennifer K. Brooke, Richard Cotton, Franco Marenco, Alan Blyth, Zhiqiang Cui, Victor Estelles, Martin Gallagher, Hugh Coe, and Tom W. Choularton
Atmos. Chem. Phys., 18, 3817–3838, https://doi.org/10.5194/acp-18-3817-2018, https://doi.org/10.5194/acp-18-3817-2018, 2018
Short summary
Short summary
This article presents measurements of aerosol properties off the coast of west Africa during August 2015. For the first time, an airborne laser-induced incandescence instrument was deployed to measure the hematite content of dust. The single scattering albedo of dust was found to be influenced by the hematite content, but depended on the dust source and potential dust age. This highlights the importance of size-dependent composition in determining the optical properties of dust.
Lei Zhang, Tianliang Zhao, Sunling Gong, Shaofei Kong, Lili Tang, Duanyang Liu, Yongwei Wang, Lianji Jin, Yunpeng Shan, Chenghao Tan, Yingjie Zhang, and Xiaomei Guo
Atmos. Chem. Phys., 18, 2065–2079, https://doi.org/10.5194/acp-18-2065-2018, https://doi.org/10.5194/acp-18-2065-2018, 2018
Short summary
Short summary
An updated emission inventory of coal-fired power plants (UEIPP) based on online monitoring data in Jiangsu Province in China for the year of 2012 was implemented in the Multi-resolution Emission Inventory for China (MEIC). By employing the model WRF-Chem, two simulations were executed to assess the atmospheric environmental change by using the original MEIC and the MEIC with the UEIPP. Interestingly, when the UEIPP was used, the atmospheric oxidizing capacity significantly reinforced.
Sophie L. Haslett, J. Chris Thomas, William T. Morgan, Rory Hadden, Dantong Liu, James D. Allan, Paul I. Williams, Sekou Keita, Cathy Liousse, and Hugh Coe
Atmos. Chem. Phys., 18, 385–403, https://doi.org/10.5194/acp-18-385-2018, https://doi.org/10.5194/acp-18-385-2018, 2018
Short summary
Short summary
Wood burning is chaotic, so the particles emitted can be difficult to study in a repeatable way. Here, we addressed this problem by carefully controlling small wood fires in the lab. We saw three burning phases, which could be told apart chemically; we also saw evidence of these in measurements of wood burning in London in 2012. Controlled experiments like this help us to understand why emissions are so variable and to recognise burning conditions just from the particles seen in the atmosphere.
Delong Zhao, Mengyu Huang, Dantong Liu, Deping Ding, Ping Tian, Quan Liu, Wei Zhou, Jiujiang Sheng, Fei Wang, Kai Bi, Yan Yang, Xia Li, Yaqiong Hu, Xin Guo, Yang Gao, Hui He, Yunbo Chen, Shaofei Kong, and Jiayi Huang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1118, https://doi.org/10.5194/acp-2017-1118, 2018
Preprint withdrawn
Short summary
Short summary
This study for the first time reports the 3D distributions of black carbon and detailed physical properties in the boundary layer over the North China Plain, using intensive aircraft measurements in both hot and cold seasons. The BC mass in the planetary boundary layer (PBL) was found to be largely influenced by meteorology which modulated the local emission and regional transport.
Gillian Young, Hazel M. Jones, Thomas W. Choularton, Jonathan Crosier, Keith N. Bower, Martin W. Gallagher, Rhiannon S. Davies, Ian A. Renfrew, Andrew D. Elvidge, Eoghan Darbyshire, Franco Marenco, Philip R. A. Brown, Hugo M. A. Ricketts, Paul J. Connolly, Gary Lloyd, Paul I. Williams, James D. Allan, Jonathan W. Taylor, Dantong Liu, and Michael J. Flynn
Atmos. Chem. Phys., 16, 13945–13967, https://doi.org/10.5194/acp-16-13945-2016, https://doi.org/10.5194/acp-16-13945-2016, 2016
Short summary
Short summary
Clouds are intricately coupled to the Arctic sea ice. Our inability to accurately model cloud fractions causes large uncertainties in predicted radiative interactions in this region, therefore, affecting sea ice forecasts. Here, we present measurements of cloud microphysics, aerosol properties, and thermodynamic structure over the transition from sea ice to ocean to improve our understanding of the relationship between the Arctic atmosphere and clouds which develop in this region.
D. Liu, B. Quennehen, E. Darbyshire, J. D. Allan, P. I. Williams, J. W. Taylor, S. J.-B. Bauguitte, M. J. Flynn, D. Lowe, M. W. Gallagher, K. N. Bower, T. W. Choularton, and H. Coe
Atmos. Chem. Phys., 15, 11537–11555, https://doi.org/10.5194/acp-15-11537-2015, https://doi.org/10.5194/acp-15-11537-2015, 2015
Short summary
Short summary
We show that during the springtime of 2013, the anthropogenic pollution particularly from sources in Asia, contributed significantly to black carbon across the European Arctic free troposphere. In contrast to previous studies, the contribution from open wildfires was minimal. Given that Asian pollution is likely to continue to rise over the coming years, it is likely that the radiative forcing in the Arctic will also continue to increase.
J. D. Allan, P. I. Williams, J. Najera, J. D. Whitehead, M. J. Flynn, J. W. Taylor, D. Liu, E. Darbyshire, L. J. Carpenter, R. Chance, S. J. Andrews, S. C. Hackenberg, and G. McFiggans
Atmos. Chem. Phys., 15, 5599–5609, https://doi.org/10.5194/acp-15-5599-2015, https://doi.org/10.5194/acp-15-5599-2015, 2015
Short summary
Short summary
New particle formation (NPF) is an important contributor to aerosol number concentrations in the Arctic and thus has a major role in dictating cloud properties and climate in this region. Here we present direct evidence that the oxidation of iodine in the atmosphere causes NPF in the Greenland Sea. This is important because this is a NPF mechanism that has not previously been considered in modelling studies at these latitudes.
J. W. Taylor, J. D. Allan, D. Liu, M. Flynn, R. Weber, X. Zhang, B. L. Lefer, N. Grossberg, J. Flynn, and H. Coe
Atmos. Meas. Tech., 8, 1701–1718, https://doi.org/10.5194/amt-8-1701-2015, https://doi.org/10.5194/amt-8-1701-2015, 2015
Short summary
Short summary
When using the SP2 to report black carbon core/shell coating thickness, the core density and refractive index must be estimated from literature values. We systematically vary the assumed parameters and the instrument calibration, and quantify the effects in the derived coatings. The technique is highly sensitive to the core refractive index but has only a minor sensitivity to the core density and coating refractive index. We identify the most appropriate values to use in future analysis.
S. F. Kong, L. Li, X. X. Li, Y. Yin, K. Chen, D. T. Liu, L. Yuan, Y. J. Zhang, Y. P. Shan, and Y. Q. Ji
Atmos. Chem. Phys., 15, 2167–2184, https://doi.org/10.5194/acp-15-2167-2015, https://doi.org/10.5194/acp-15-2167-2015, 2015
Y. J. Zhang, L. L. Tang, Z. Wang, H. X. Yu, Y. L. Sun, D. Liu, W. Qin, F. Canonaco, A. S. H. Prévôt, H. L. Zhang, and H. C. Zhou
Atmos. Chem. Phys., 15, 1331–1349, https://doi.org/10.5194/acp-15-1331-2015, https://doi.org/10.5194/acp-15-1331-2015, 2015
Short summary
Short summary
The chemical composition, sources, and evolution processes of PM1 were investigated with an Aerodyne ACSM during harvest seasons in the Yangtze River delta, China. Two biomass burning organic aerosol (BBOA) factors derived from PMF model were assessed. The oxidized BBOA contributes ~80% of the total BBOA loadings in the BB plumes. Evidence that BBOA may be oxidized to more aged and less volatile organics during the aging process was suggested.
X. Wang, C. L. Heald, D. A. Ridley, J. P. Schwarz, J. R. Spackman, A. E. Perring, H. Coe, D. Liu, and A. D. Clarke
Atmos. Chem. Phys., 14, 10989–11010, https://doi.org/10.5194/acp-14-10989-2014, https://doi.org/10.5194/acp-14-10989-2014, 2014
D. Liu, J. D. Allan, D. E. Young, H. Coe, D. Beddows, Z. L. Fleming, M. J. Flynn, M. W. Gallagher, R. M. Harrison, J. Lee, A. S. H. Prevot, J. W. Taylor, J. Yin, P. I. Williams, and P. Zotter
Atmos. Chem. Phys., 14, 10061–10084, https://doi.org/10.5194/acp-14-10061-2014, https://doi.org/10.5194/acp-14-10061-2014, 2014
D. Liu, J. Allan, J. Whitehead, D. Young, M. Flynn, H. Coe, G. McFiggans, Z. L. Fleming, and B. Bandy
Atmos. Chem. Phys., 13, 2015–2029, https://doi.org/10.5194/acp-13-2015-2013, https://doi.org/10.5194/acp-13-2015-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Quantifying the effects of the microphysical properties of black carbon on the determination of brown carbon using measurements at multiple wavelengths
An emerging aerosol climatology via remote sensing over Metro Manila, the Philippines
Ozone Monitoring Instrument (OMI) UV aerosol index data analysis over the Arctic region for future data assimilation and climate forcing applications
Monitoring multiple satellite aerosol optical depth (AOD) products within the Copernicus Atmosphere Monitoring Service (CAMS) data assimilation system
Comparisons between the distributions of dust and combustion aerosols in MERRA-2, FLEXPART, and CALIPSO and implications for deposition freezing over wintertime Siberia
Atmospheric oxidation mechanism and kinetics of indole initiated by ●OH and ●Cl: a computational study
Identifying the spatiotemporal variations in ozone formation regimes across China from 2005 to 2019 based on polynomial simulation and causality analysis
Aerosol vertical distribution and interactions with land/sea breezes over the eastern coast of the Red Sea from lidar data and high-resolution WRF-Chem simulations
Improved inversion of aerosol components in the atmospheric column from remote sensing data
Retrieval of aerosol components directly from satellite and ground-based measurements
Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance
Retrieval of desert dust and carbonaceous aerosol emissions over Africa from POLDER/PARASOL products generated by the GRASP algorithm
Intra-annual variations of regional aerosol optical depth, vertical distribution, and particle types from multiple satellite and ground-based observational datasets
Chemical composition of ambient PM2. 5 over China and relationship to precursor emissions during 2005–2012
Synergistic use of Lagrangian dispersion and radiative transfer modelling with satellite and surface remote sensing measurements for the investigation of volcanic plumes: the Mount Etna eruption of 25–27 October 2013
Climatology of the aerosol optical depth by components from the Multi-angle Imaging SpectroRadiometer (MISR) and chemistry transport models
A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances
Simulation of GOES-R ABI aerosol radiances using WRF-CMAQ: a case study approach
Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations
The global 3-D distribution of tropospheric aerosols as characterized by CALIOP
A unified approach to infrared aerosol remote sensing and type specification
Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events
Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010
Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data
Mixing of dust and NH3 observed globally over anthropogenic dust sources
The composition and variability of atmospheric aerosol over Southeast Asia during 2008
NASA A-Train and Terra observations of the 2010 Russian wildfires
The Eyjafjallajökull eruption in April 2010 – detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles
Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic – comparison to MODIS and CALIPSO
Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition
Jie Luo, Dan Li, Yuanyuan Wang, Dandan Sun, Weizhen Hou, Jinghe Ren, Hailing Wu, Peng Zhou, and Jibing Qiu
Atmos. Chem. Phys., 24, 427–448, https://doi.org/10.5194/acp-24-427-2024, https://doi.org/10.5194/acp-24-427-2024, 2024
Short summary
Short summary
Remote sensing of brown carbon is very important for climate research, and current optical methods rely mainly on spectral properties for inversion. However, the influence of the microscopic properties of black carbon has rarely been considered by previous studies. This paper shows how the remote sensing of brown carbon is affected by the microphysical properties of black carbon and highlights the adaptability of remote sensing methods.
Genevieve Rose Lorenzo, Avelino F. Arellano, Maria Obiminda Cambaliza, Christopher Castro, Melliza Templonuevo Cruz, Larry Di Girolamo, Glenn Franco Gacal, Miguel Ricardo A. Hilario, Nofel Lagrosas, Hans Jarett Ong, James Bernard Simpas, Sherdon Niño Uy, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10579–10608, https://doi.org/10.5194/acp-23-10579-2023, https://doi.org/10.5194/acp-23-10579-2023, 2023
Short summary
Short summary
Aerosol and weather interactions in Southeast Asia are complex and understudied. An emerging aerosol climatology was established in Metro Manila, the Philippines, from aerosol particle physicochemical properties and meteorology, revealing five sources. Even with local traffic, transported smoke from biomass burning, aged dust, and cloud processing, background marine particles dominate and correspond to lower aerosol optical depth in Metro Manila compared to other Southeast Asian megacities.
Blake T. Sorenson, Jianglong Zhang, Jeffrey S. Reid, Peng Xian, and Shawn L. Jaker
Atmos. Chem. Phys., 23, 7161–7175, https://doi.org/10.5194/acp-23-7161-2023, https://doi.org/10.5194/acp-23-7161-2023, 2023
Short summary
Short summary
We quality-control Ozone Monitoring Instrument (OMI) aerosol index data by identifying row anomalies and removing systematic biases, using the data to quantify trends in UV-absorbing aerosols over the Arctic region. We found decreasing trends in UV-absorbing aerosols in spring months and increasing trends in summer months. For the first time, observational evidence of increasing trends in UV-absorbing aerosols over the North Pole is found using the OMI data, especially over the last half decade.
Sebastien Garrigues, Samuel Remy, Julien Chimot, Melanie Ades, Antje Inness, Johannes Flemming, Zak Kipling, Istvan Laszlo, Angela Benedetti, Roberto Ribas, Soheila Jafariserajehlou, Bertrand Fougnie, Shobha Kondragunta, Richard Engelen, Vincent-Henri Peuch, Mark Parrington, Nicolas Bousserez, Margarita Vazquez Navarro, and Anna Agusti-Panareda
Atmos. Chem. Phys., 22, 14657–14692, https://doi.org/10.5194/acp-22-14657-2022, https://doi.org/10.5194/acp-22-14657-2022, 2022
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service (CAMS) provides global monitoring of aerosols using the ECMWF forecast model constrained by the assimilation of satellite aerosol optical depth (AOD). This work aims at evaluating two new satellite AODs to enhance the CAMS aerosol global forecast. It highlights the spatial and temporal differences between the satellite AOD products at the model spatial resolution, which is essential information to design multi-satellite AOD data assimilation schemes.
Lauren M. Zamora, Ralph A. Kahn, Nikolaos Evangeliou, Christine D. Groot Zwaaftink, and Klaus B. Huebert
Atmos. Chem. Phys., 22, 12269–12285, https://doi.org/10.5194/acp-22-12269-2022, https://doi.org/10.5194/acp-22-12269-2022, 2022
Short summary
Short summary
Arctic dust, smoke, and pollution particles can affect clouds and Arctic warming. The distributions of these particles were estimated in three different satellite, reanalysis, and model products. These products showed good agreement overall but indicate that it is important to include local dust in models. We hypothesize that mineral dust effects on ice processes in the Arctic atmosphere might be highest over Siberia, where it is cold, moist, and subject to relatively high dust levels.
Jingwen Xue, Fangfang Ma, Jonas Elm, Jingwen Chen, and Hong-Bin Xie
Atmos. Chem. Phys., 22, 11543–11555, https://doi.org/10.5194/acp-22-11543-2022, https://doi.org/10.5194/acp-22-11543-2022, 2022
Short summary
Short summary
·OH/·Cl initiated indole reactions mainly form organonitrates, alkoxy radicals and hydroperoxide products, showing a varying mechanism from previously reported amines reactions. This study reveals carcinogenic nitrosamines cannot be formed in indole oxidation reactions despite radicals formed from -NH- H abstraction. The results are important to understand the atmospheric impact of indole oxidation and extend current understanding on the atmospheric chemistry of organic nitrogen compounds.
Ruiyuan Li, Miaoqing Xu, Manchun Li, Ziyue Chen, Na Zhao, Bingbo Gao, and Qi Yao
Atmos. Chem. Phys., 21, 15631–15646, https://doi.org/10.5194/acp-21-15631-2021, https://doi.org/10.5194/acp-21-15631-2021, 2021
Short summary
Short summary
We employed ground observations of ozone and satellite products of HCHO and NO2 to investigate spatiotemporal variations of ozone formation regimes across China. Two different models were employed for determining the crucial thresholds that separate three ozone formation regimes, including NOx-limited, VOC-limited, and transitional regimes. The close output from two different models provides a reliable reference for better understanding ozone formation regimes.
Sagar P. Parajuli, Georgiy L. Stenchikov, Alexander Ukhov, Illia Shevchenko, Oleg Dubovik, and Anton Lopatin
Atmos. Chem. Phys., 20, 16089–16116, https://doi.org/10.5194/acp-20-16089-2020, https://doi.org/10.5194/acp-20-16089-2020, 2020
Short summary
Short summary
Both natural (dust, sea salt) and anthropogenic (sulfate, organic and black carbon) aerosols are common over the Red Sea coastal plains. King Abdullah University of Science and Technology (KAUST), located on the eastern coast of the Red Sea, hosts the only operating lidar system in the Arabian Peninsula, which measures atmospheric aerosols day and night. We use these lidar data and high-resolution WRF-Chem model simulations to study the potential effect of dust aerosols on Red Sea environment.
Ying Zhang, Zhengqiang Li, Yu Chen, Gerrit de Leeuw, Chi Zhang, Yisong Xie, and Kaitao Li
Atmos. Chem. Phys., 20, 12795–12811, https://doi.org/10.5194/acp-20-12795-2020, https://doi.org/10.5194/acp-20-12795-2020, 2020
Short summary
Short summary
Observation of atmospheric aerosol components plays an important role in reducing uncertainty in climate assessment. In this study, an improved remote sensing method which can better distinguish scattering components is developed, and the aerosol components in the atmospheric column over China are retrieved based on the Sun–sky radiometer Observation NETwork (SONET). The component distribution shows there could be a sea salt component in northwest China from a paleomarine source in desert land.
Lei Li, Oleg Dubovik, Yevgeny Derimian, Gregory L. Schuster, Tatyana Lapyonok, Pavel Litvinov, Fabrice Ducos, David Fuertes, Cheng Chen, Zhengqiang Li, Anton Lopatin, Benjamin Torres, and Huizheng Che
Atmos. Chem. Phys., 19, 13409–13443, https://doi.org/10.5194/acp-19-13409-2019, https://doi.org/10.5194/acp-19-13409-2019, 2019
Short summary
Short summary
A novel methodology to monitor atmospheric aerosol components using remote sensing is presented. The concept is realized within the GRASP (Generalized Retrieval of Aerosol and Surface Properties) project. Application to POLDER/PARASOL and AERONET observations yielded the spatial and temporal variability of absorbing and non-absorbing insoluble and soluble aerosol species in the fine and coarse size fractions. This presents the global-scale aerosol component derived from satellite measurements.
Jin Liao, Thomas F. Hanisco, Glenn M. Wolfe, Jason St. Clair, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Alan Fried, Eloise A. Marais, Gonzalo Gonzalez Abad, Kelly Chance, Hiren T. Jethva, Thomas B. Ryerson, Carsten Warneke, and Armin Wisthaler
Atmos. Chem. Phys., 19, 2765–2785, https://doi.org/10.5194/acp-19-2765-2019, https://doi.org/10.5194/acp-19-2765-2019, 2019
Short summary
Short summary
Organic aerosol (OA) intimately links natural and anthropogenic emissions with air quality and climate. Direct OA measurements from space are currently not possible. This paper describes a new method to estimate OA by combining satellite HCHO and in situ OA and HCHO. The OA estimate is validated with the ground network. This new method has a potential for mapping observation-based global OA estimate.
Cheng Chen, Oleg Dubovik, Daven K. Henze, Tatyana Lapyonak, Mian Chin, Fabrice Ducos, Pavel Litvinov, Xin Huang, and Lei Li
Atmos. Chem. Phys., 18, 12551–12580, https://doi.org/10.5194/acp-18-12551-2018, https://doi.org/10.5194/acp-18-12551-2018, 2018
Short summary
Short summary
This paper introduces a method to use satellite-observed spectral AOD and AAOD to derive three types of aerosol emission sources simultaneously based on inverse modelling at a high spatial and temporal resolution. This study shows it is possible to estimate aerosol emissions and improve the atmospheric aerosol simulation using detailed aerosol optical and microphysical information from satellite observations.
Bin Zhao, Jonathan H. Jiang, David J. Diner, Hui Su, Yu Gu, Kuo-Nan Liou, Zhe Jiang, Lei Huang, Yoshi Takano, Xuehua Fan, and Ali H. Omar
Atmos. Chem. Phys., 18, 11247–11260, https://doi.org/10.5194/acp-18-11247-2018, https://doi.org/10.5194/acp-18-11247-2018, 2018
Short summary
Short summary
We combine satellite-borne and ground-based observations to investigate the intra-annual variations of regional aerosol column loading, vertical distribution, and particle types. Column aerosol optical depth (AOD), as well as AOD > 800 m, peaks in summer/spring. However, AOD < 800 m and surface PM2.5 concentrations mostly peak in winter. The aerosol intra-annual variations differ significantly according to aerosol types characterized by different sizes, light absorption, and emission sources.
Guannan Geng, Qiang Zhang, Dan Tong, Meng Li, Yixuan Zheng, Siwen Wang, and Kebin He
Atmos. Chem. Phys., 17, 9187–9203, https://doi.org/10.5194/acp-17-9187-2017, https://doi.org/10.5194/acp-17-9187-2017, 2017
Short summary
Short summary
We presented the characteristics of PM2.5 chemical composition over China during 2005–2012 by synthesis of in situ measurement data and satellite-based estimates. We also investigated the driving forces behind the changes by examining the changes in precursor emissions. We found that the decrease in sulfate is partly offset by the increase in nitrate. The results indicate that the synchronized abatement of emissions for multipollutants is necessary for reducing ambient PM2.5 over China.
Pasquale Sellitto, Alcide di Sarra, Stefano Corradini, Marie Boichu, Hervé Herbin, Philippe Dubuisson, Geneviève Sèze, Daniela Meloni, Francesco Monteleone, Luca Merucci, Justin Rusalem, Giuseppe Salerno, Pierre Briole, and Bernard Legras
Atmos. Chem. Phys., 16, 6841–6861, https://doi.org/10.5194/acp-16-6841-2016, https://doi.org/10.5194/acp-16-6841-2016, 2016
Short summary
Short summary
We combine plume dispersion and radiative transfer modelling, and satellite and surface remote sensing observations to study the regional influence of a relatively weak volcanic eruption from Mount Etna (25–27 October 2013) on the optical/micro-physical properties of Mediterranean aerosols. Our results indicate that even relatively weak volcanic eruptions may produce an observable effect on the aerosol properties at the regional scale, with a significant impact on the regional radiative balance.
Huikyo Lee, Olga V. Kalashnikova, Kentaroh Suzuki, Amy Braverman, Michael J. Garay, and Ralph A. Kahn
Atmos. Chem. Phys., 16, 6627–6640, https://doi.org/10.5194/acp-16-6627-2016, https://doi.org/10.5194/acp-16-6627-2016, 2016
Short summary
Short summary
The Multi-angle Imaging SpectroRadiometer (MISR) on NASA's TERRA satellite has provided a global distribution of aerosol amount and type information for each month over 16+ years since March 2000. This study analyzes, for the first time, characteristics of observed and simulated distributions of aerosols for three broad classes of aerosols: spherical nonabsorbing, spherical absorbing, and nonspherical – near or downwind of their major source regions.
M. J. M. Penning de Vries, S. Beirle, C. Hörmann, J. W. Kaiser, P. Stammes, L. G. Tilstra, O. N. E. Tuinder, and T. Wagner
Atmos. Chem. Phys., 15, 10597–10618, https://doi.org/10.5194/acp-15-10597-2015, https://doi.org/10.5194/acp-15-10597-2015, 2015
S. A. Christopher
Atmos. Chem. Phys., 14, 3183–3194, https://doi.org/10.5194/acp-14-3183-2014, https://doi.org/10.5194/acp-14-3183-2014, 2014
M. Mallet, O. Dubovik, P. Nabat, F. Dulac, R. Kahn, J. Sciare, D. Paronis, and J. F. Léon
Atmos. Chem. Phys., 13, 9195–9210, https://doi.org/10.5194/acp-13-9195-2013, https://doi.org/10.5194/acp-13-9195-2013, 2013
D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers
Atmos. Chem. Phys., 13, 3345–3361, https://doi.org/10.5194/acp-13-3345-2013, https://doi.org/10.5194/acp-13-3345-2013, 2013
L. Clarisse, P.-F. Coheur, F. Prata, J. Hadji-Lazaro, D. Hurtmans, and C. Clerbaux
Atmos. Chem. Phys., 13, 2195–2221, https://doi.org/10.5194/acp-13-2195-2013, https://doi.org/10.5194/acp-13-2195-2013, 2013
P. Wang, O. N. E. Tuinder, L. G. Tilstra, M. de Graaf, and P. Stammes
Atmos. Chem. Phys., 12, 9057–9077, https://doi.org/10.5194/acp-12-9057-2012, https://doi.org/10.5194/acp-12-9057-2012, 2012
N. C. Hsu, R. Gautam, A. M. Sayer, C. Bettenhausen, C. Li, M. J. Jeong, S.-C. Tsay, and B. N. Holben
Atmos. Chem. Phys., 12, 8037–8053, https://doi.org/10.5194/acp-12-8037-2012, https://doi.org/10.5194/acp-12-8037-2012, 2012
A. Lana, R. Simó, S. M. Vallina, and J. Dachs
Atmos. Chem. Phys., 12, 7977–7993, https://doi.org/10.5194/acp-12-7977-2012, https://doi.org/10.5194/acp-12-7977-2012, 2012
P. Ginoux, L. Clarisse, C. Clerbaux, P.-F. Coheur, O. Dubovik, N. C. Hsu, and M. Van Damme
Atmos. Chem. Phys., 12, 7351–7363, https://doi.org/10.5194/acp-12-7351-2012, https://doi.org/10.5194/acp-12-7351-2012, 2012
W. Trivitayanurak, P. I. Palmer, M. P. Barkley, N. H. Robinson, H. Coe, and D. E. Oram
Atmos. Chem. Phys., 12, 1083–1100, https://doi.org/10.5194/acp-12-1083-2012, https://doi.org/10.5194/acp-12-1083-2012, 2012
J. C. Witte, A. R. Douglass, A. da Silva, O. Torres, R. Levy, and B. N. Duncan
Atmos. Chem. Phys., 11, 9287–9301, https://doi.org/10.5194/acp-11-9287-2011, https://doi.org/10.5194/acp-11-9287-2011, 2011
H. Flentje, H. Claude, T. Elste, S. Gilge, U. Köhler, C. Plass-Dülmer, W. Steinbrecht, W. Thomas, A. Werner, and W. Fricke
Atmos. Chem. Phys., 10, 10085–10092, https://doi.org/10.5194/acp-10-10085-2010, https://doi.org/10.5194/acp-10-10085-2010, 2010
S. Peyridieu, A. Chédin, D. Tanré, V. Capelle, C. Pierangelo, N. Lamquin, and R. Armante
Atmos. Chem. Phys., 10, 1953–1967, https://doi.org/10.5194/acp-10-1953-2010, https://doi.org/10.5194/acp-10-1953-2010, 2010
P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa
Atmos. Chem. Phys., 10, 1155–1169, https://doi.org/10.5194/acp-10-1155-2010, https://doi.org/10.5194/acp-10-1155-2010, 2010
Cited articles
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S.,
Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and
domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys.,
11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Andela, N., Schultz, M., Van, der W., Van Leeuwen, T. T., Kaiser, J. W.,
Wooster, M. J., Heil, A., and Remy, S.: Assessment of the Global Fire
Assimilation System (GFASv1), MACC-II Deliverable D_31.2, 2013.
Andreae, M. O. and Merlet, P: Emission of trace gases and aerosols from
biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001.
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud precipitation interactions.
Part 1, The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89,
13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
Ao, H. J., Zou, Y. B., Shen, J. B., Peng, S. B., Tang, Q. Y., and Feng, Y.
h.: Effects of fertilizer-N application for double early rice on the yield,
nitrogen use efficiency and soil nitrogen content of double rice, Plant Nutr.
Fert. Sci., 13, 772–780, 2007 (in Chinese).
Aragao, L. E. O. C. and Shimabukuro, Y. E.: The Incidence of Fire in
Amazonian Forests with Implications for REDD, Science, 328, 1275–1278,
https://doi.org/10.1126/science.1186925, 2010.
Arino, O., Casadio, S., and Serpe, D.: Global night-time fire season timing
and fire count trends using the ATSR instrument series, Remote. Sens.
Environ., 116, 226–238, https://doi.org/10.1016/j.rse.2011.05.025, 2012.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., and Klimont, Z.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res., 109, D14203, https://doi.org/10.1029/2003JD003697,
2004.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G. and Zender, C. S.:
Bounding the role of black carbon in the climate system: A scientific
assessment: black carbon in the climate system, J. Geophys. Res.-Atmos., 118,
5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A.,
D'Antonio, C. M., DeFries, R., Johnston, F. H., Keeley, J. E., Krawchuk, M.
A., Kull, C. A., Mack, M., Moritz, M. A., Pyne, S., Roos, C. I., Scott, A.
C., Sodhi, N. S., and Swetnam, T. W.: The human dimension of fire regimes on
Earth: The human dimension of fire regimes on Earth, J. Biogeogr., 38,
2223–2236, https://doi.org/10.1111/j.1365-2699.2011.02595.x, 2011.
Burling, I. R., Yokelson, R. J., Griffith, D. W. T., Johnson, T. J., Veres,
P., Roberts, J. M., Warneke, C., Urbanski, S. P., Reardon, J., Weise, D. R.,
Hao, W. M., and de Gouw, J.: Laboratory measurements of trace gas emissions
from biomass burning of fuel types from the southeastern and southwestern
United States, Atmos. Chem. Phys., 10, 11115–11130,
https://doi.org/10.5194/acp-10-11115-2010, 2010.
Cao, G. L., Zhang, X. Y., Wang, D., and Deng, F. C.: Inventory of Atmospheric
Pollutants Discharged from Biomass Burning in China Continent, China Environ.
Sci., 25, 389–393, 2005 (in Chinese).
Cao, G. L., Zhang, X. Y., Gong, S. L., and Zheng, F. C.: Investigation on
emission factors of particulate matter and gaseous pollutants from crop
residue burning, J. Environ. Sci., 20, 50–55, 2008.
Chang, D. and Song, Y.: Estimates of biomass burning emissions in tropical
Asia based on satellite-derived data, Atmos. Chem. Phys., 10, 2335–2351,
https://doi.org/10.5194/acp-10-2335-2010, 2010.
Cao, Y., Li, Y. P., and Wang, L.: Cause Analysis and Control Countermeasures
of forest fires, Journal of Green Science and Technology, 8, 267–269, 2015
(in Chinese).
Chang, D., Song, Y., and Liu, B.: Visibility trends in six megacities in
China 1973–2007, Atmos. Res., 94, 161–167,
https://doi.org/10.1016/j.atmosres.2009.05.006, 2009.
Chen, C., Wang, H., Zhang, W., Hu, D., Chen, L., and Wang, X.:
High-resolution inventory of mercury emissions from biomass burning in China
for 2000–2010 and a projection for 2020: Mercury emission from biomass
burning, J. Geophys. Res.-Atmos., 118, 248–212, https://doi.org/10.1002/2013JD019734,
2013.
Chen, C. L., Yang, Y., and Xie, G. H.: Study of the development of crop straw
management policy in China, J. China Agric. Univ., 21, 1–11, 2016 (in
Chinese).
Chen, H. F., Lin, R. Y., Liang, Y. Y., Zheng, L. D., Liang, K. J., and Lin,
W. X.: Dry-matter accumulation and transportation in first-rice crop of early
rice-ratoon rice under different cultivation patterns, Chin. J. Eco. Agric.,
16, 129–133, 2008 (in Chinese).
Cheng, Z., Wang, S., Fu, X., Watson, J. G., Jiang, J., Fu, Q., Chen, C., Xu,
B., Yu, J., Chow, J. C., and Hao, J.: Impact of biomass burning on haze
pollution in the Yangtze River delta, China: a case study in summer 2011,
Atmos. Chem. Phys., 14, 4573–4585, https://doi.org/10.5194/acp-14-4573-2014,
2014.
Chuvieco, E., Giglio, L., and Justice, C.: Global characterization of fire
activity: toward defining fire regimes from Earth observation data, Glob.
Change Biol., 14, 1488–1502, https://doi.org/10.1111/j.1365-2486.2008.01585.x, 2008.
Cooke, W. F., Koffi, B., and Grégoire, J. M.: Seasonality of vegetation
fires in Africa from remote sensing data and application to a global
chemistry model, J. Geophys. Res.-Atmos., 101, 21051–21066, 1996.
Crutzen, P. J. and Andreae, M. O.: Biomass burning in the tropics: impact on
atmospheric chemistry and biogeochemical cycles, Science, 250, 1669–1678,
1990.
Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H. and Seiler, W.:
Biomass burning as a source of atmospheric gases CO, H2,
N2O, NO, CH3Cl and COS, Nature, 282, 253–256,
https://doi.org/10.1038/282253a0, 1979.
Deng, C. R.: Identification of biomass burning source in aerosols and the
formation mechanism of haze, PhD dissertation, Fudan University, Shanghai,
2011 (in Chinese).
Duncan, B. N., Martin, R. V., Staudt, A. C., Yevich, R. and Logan, J. A.: Interannual and seasonal variability of biomass burning
emissions constrained by satellite observations, J. Geophys. Res., 108, 4100,
https://doi.org/10.1029/2002JD002378, 2003.
EPD: Guide for compiling atmospheric pollutant emission inventory for
biomass burning, Environmental Protection Department, available at:
http://www.zhb.gov.cn/gkml/hbb/bgg/201501/t20150107 293955.htm (last access: 7 August 2018), 2014
(in Chinese).
Eva, H. and Lambin, E. F.: Remote sensing of biomass burning in tropical
regions: Sampling issues and multisensor approach, Remote. Sens. Environ.,
64, 292–315, 1998.
Fang, J. Y., Liu, G. H., and Xu, S. L.: Biomass and net production of forest
vegetation in China, Acta. Eco. Sin., 16, 497–508, 1996 (in Chinese).
Fang, S., Qi, Y., Han, G., Zhou, G., and Cammarano, D.: Meteorological
drought trend in winter and spring from 1961 to 2010 and its possible impacts
on wheat in wheat planting area of China, Sci. Agric. Sin., 47, 1754–1763,
2014 (in Chinese).
Freitas, S. R., Longo, K. M., Dias, M. A. F. S., Dias, P. L. S., Chatfield,
R., Prins, E., Artaxo, P., Grell, G. A., and Recuero, F. S.: Monitoring the
transport of biomass burning emissions in South America, Environ. Fluid.
Mech., 5, 135–167, 2005.
Fu, X., Wang, S., Zhao, B., Xing, J., Cheng, Z., Liu, H., and Hao, J.:
Emission inventory of primary pollutants and chemical speciation in 2010 for
the Yangtze River Delta region, China, Atmos. Environ., 70, 39–50,
https://doi.org/10.1016/j.atmosenv.2012.12.034, 2013.
Gadde, B., Bonnet, S., Menke, C., and Garivait, S.: Air pollutant emissions
from rice straw open field burning in India, Thailand and the Philippines,
Environ. Pollut., 157, 1554–1558, https://doi.org/10.1016/j.envpol.2009.01.004, 2009.
Giglio, L., Csiszar, I., and Justice, C. O.: Global distribution and
seasonality of active fires as observed with the Terra and Aqua Moderate
Resolution Imaging Spectroradiometer (MODIS) sensors: Global fire
distribution and seasonality, J. Geophys. Res.-Biogeo., 111, G02016,
https://doi.org/10.1029/2005JG000142, 2006.
Giglio, L., Csiszar, I., Restás, Á., Morisette, J. T., Schroeder, W.,
Morton, D. and Justice, C. O.: Active fire detection and characterization
with the advanced spaceborne thermal emission and reflection radiometer
(ASTER), Remo. Sens. Environ., 112, 3055–3063,
https://doi.org/10.1016/j.rse.2008.03.003, 2008.
Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily,
monthly, and annual burned area using the fourth-generation global fire
emissions database (GFED4): ANALYSIS OF BURNED AREA, J. Geophys.
Res.-Biogeo., 118, 317–328, https://doi.org/10.1002/jgrg.20042, 2013.
He, M., Wang, X. R., Han, L., Feng, X. Q., and Mao, X.: Emission Inventory of
Crop Residues Field Burning and Its Temporal and Spatial Distribution in
Sichuan Province, Environ. Sci., 36, 1208–1216, 2015 (in Chinese).
Hoelzemann, J. J., Schultz, M. G., Brasseur, G. P., Granier, C., and Simon,
M.: Global Wildland Fire Emission Model (GWEM): Evaluating the use of global
area burnt satellite data, J. Geophys. Res.-Atmos., 109, D14S04,
https://doi.org/10.1029/2003JD003666, 2004.
Hu, H. F., Wang, Z. H., Liu, G. H., and Fu, B. J.: Vegetation carbon storage
of major shrublands in China, Chin. J. Plant Ecol., 30, 539–544, 2006 (in
Chinese).
Huang, G. B.: Evaluation and Trend Analysis of Crop straw comprehensive
utilization in Fujian province, China Rural Science Technology, 10, 66–67,
2014 (in Chinese).
Huang, X., Li, M., Friedli, H. R., Song, Y., Chang, D., and Zhu, L.: Mercury
Emissions from Biomass Burning in China, Environ. Sci. Technol., 45,
9442–9448, https://doi.org/10.1021/es202224e, 2011.
Huang, X., Li, M., Li, J., and Song, Y.: A high-resolution emission inventory
of crop burning in fields in China based on MODIS Thermal Anomalies/Fire
products, Atmos. Environ., 50, 9–15, https://doi.org/10.1016/j.atmosenv.2012.01.017,
2012a.
Huang, X., Song, Y., Li, M., Li, J., and Zhu, T.: Harvest season, high
polluted season in East China, Environ. Res. Lett., 7, 044033,
https://doi.org/10.1088/1748-9326/7/4/044033, 2012b.
Ito, A. and Akimoto, H.: Seasonal and interannual variations in CO and BC
emissions from OBB in Southern Africa during 1998–2005: seasonal CO/BC
emissions, Global Biogeochem. Cy., 21, GB2011, https://doi.org/10.1029/2006GB002848,
2007.
Ito, A. and Penner, J. E.: Global estimates of biomass burning emissions based on satellite
imagery for the year 2000, J. Geophys. Res., 109, D14S05, https://doi.org/10.1029/2003JD004423,
2004.
Jin, Q. F., Ma, X. Q. A., Wang, W. H., Yang, S. Y., and Guo, F. T.: Temporal
and spatial dynamics of pollutants emission from forest fires in Fujian
during 2000–2010, China Environ. Sci., 37, 476–485, 2017a (in Chinese).
Jin, Q. F., Ma, X. Q. A., Wang, W. H., Yang, S. Y., and Guo, F. T.: Temporal
and spatial variations of PM2.5 emissions from crop straw burning in
eastern China during 2000–2014, Acta. Sci. Circum., 37, 460–468, 2017b (in
Chinese).
Kaiser, J. W., Benedetti, A., Detmers, R., Heil, A., Morcrette, J. J.,
Schultz, M. G., Van, der W., Wooster, M. J., and Xu, W.: Assimilation of FRP
observations for global fire emission estimation in MACC-II,
Geophys. Res. Abstr., EGU General
Assembly 2012, Vienna, Austria, p. 10521, 2012.
Korontzi, S.: Seasonal patterns in biomass burning emissions from southern
African vegetation fires for the year 2000, Glob. Change Biol., 11,
1680–1700, 2005.
Klimont, Z. and Streets, D.: Emission inventories and projections for
assessing hemispheric or intercontinental transport, Hemispheric Transport of
Air Pollution, UNECE Information Service, Switzerland, Geneva, 2007.
Kondo, Y., Matsui, H., Moteki, N., Sahu, L., Takegawa, N., Kajino, M., Zhao,
Y., Cubison, M. J., Jimenez, J. L., Vay, S., Diskin, G. S., Anderson, B.,
Wisthaler, A., Mikoviny, T., Fuelberg, H. E., Blake, D. R., Huey, G.,
Weinheimer, A. J., Knapp, D. J., and Brune, W. H.: Emissions of black carbon,
organic, and inorganic aerosols from biomass burning in North America and
Asia in 2008, J. Geophys. Res.-Atmos., 116, D08204,
https://doi.org/10.1029/2010JD015152,
2011.
Koopmans, A. and Koppejan, J.: Agricultural and Forest Residues: Generation, Utilization and Availability, Paper presented at the Regional Consultation on Modern Applications of Biomass Energy, FAO, Kuala Lumpur, Malaysia, 1997.
Laris, P. S.: Spatiotemporal problems with detecting and mapping mosaic fire
regimes with coarse-resolution satellite data in savanna environments,
Remote. Sens. Environ., 99, 412–424, https://doi.org/10.1016/j.rse.2005.09.012, 2005.
Lei, E., Tang, Q. Y., Luo, H. B., and Chen, L. J.: Comparison of late
maturing spring maize varieties in paddy field and its correlation analysis,
Crop. Res., 23, 24–29, 2009 (in Chinese).
Levine, J. S., Cofer, W. R., Cahoon, D. R., and Winstead, E. L.: A driver for
global change, Environ. Sci. Technol., 29, 120–125, 1995.
Li, C., Hu, Y., Zhang, F., Chen, J., Ma, Z., Ye, X., Yang, X., Wang, L.,
Tang, X., Zhang, R., Mu, M., Wang, G., Kan, H., Wang, X., and Mellouki, A.:
Multi-pollutant emissions from the burning of major agricultural residues in
China and the related health-economic effects, Atmos. Chem. Phys., 17,
4957–4988, https://doi.org/10.5194/acp-17-4957-2017, 2017.
Li, J., Li, Y., Bo, Y., and Xie, S.: High-resolution historical emission
inventories of crop residue burning in fields in China for the period
1990–2013, Atmos. Environ., 138, 152–161,
https://doi.org/10.1016/j.atmosenv.2016.05.002, 2016.
Li, L., Liu, W. D., Zou, D. S., and Liu, F.: The correlation between main
characteristics and pod yield in peanut genotypes under natural waterlogging
stress, Chin. J. Oil Crop Sci., 30, 62–70, 2008 (in Chinese).
Li, S. M., Yang C. Q., Wang, H. N., and Ge, L. Q.: Carbon storage of forest
stands in Shandong Province estimated by forestry inventory data, Chin. J.
Appl. Ecol., 25, 2215–2220, 2014 (in Chinese).
Li, X. H., Wang, S. X., Duan, L., Hao, J., Li, C., Chen, Y. S., and Yang, L.:
Particulate and trace gas emissions from open burning of wheat straw and corn
stover in China, Environ. Sci. Technol., 41, 6052–6058,
https://doi.org/10.1021/es0705137, 2007.
Li, Y. P., Wang, J. S., Li Y. H., Wang, S. P., and Sha, S.: Study of the
sustainability of droughts in China, J. Glaciol. Geocryol., 36, 1131–1142,
2014 (in Chinese).
Li, W. J., Zuo, J. Q., Song, Y. L., Liu, J. P., Li, Y., Shen, Y. Y., and Li,
J. X.: Changes in spatio-temporal distribution of drought/flood disaster in
Southern China under global climate warming, Meteor. Mon., 3, 261–271, 2015
(in Chinese).
Lin, H. W., Jin, Y. F., Giglio, L., Foley, J. A., and Randerson, J. T.:
Evaluating greenhouse gas emissions inventories for agricultural burning
using satellite observations of active fires, Ecol. Appl., 22, 1345–1364,
2012.
Liousse, C., Devaux, C., Dulac, F., and Cachier, H.: Aging of savanna biomass
burning aerosols: Consequences on their optical properties, J. Atmos. Chem.,
22, 1–17, 1995.
Liousse, C., Guillaume, B., Grégoire, J. M., Mallet, M., Galy, C., Pont,
V., Akpo, A., Bedou, M., Castéra, P., Dungall, L., Gardrat, E., Granier,
C., Konaré, A., Malavelle, F., Mariscal, A., Mieville, A., Rosset, R.,
Serça, D., Solmon, F., Tummon, F., Assamoi, E., Yoboué, V., and Van
Velthoven, P.: Updated African biomass burning emission inventories in the
framework of the AMMA-IDAF program, with an evaluation of combustion
aerosols, Atmos. Chem. Phys., 10, 9631–9646,
https://doi.org/10.5194/acp-10-9631-2010, 2010.
Liu, D. M., Liu, Q., Rong, X. M., Peng, J. W., Xie, G. X., Zhang, Y. P., and
Song, H. X.: Influences of photosynthesis and dry matter accumulation of
different oilseed rape cultivars on nitrogen use efficiency, Hunan Agric.
Sci., 34, 29–31, 2010 (in Chinese).
Liu, M., Song, Y., Yao, H., Kang, Y., Li, M., Huang, X., and Hu, M.:
Estimating emissions from agricultural fires in the North China Plain based
on MODIS fire radiative power, Atmos. Environ., 112, 326–334,
https://doi.org/10.1016/j.atmosenv.2015.04.058, 2015.
Lu, B., Kong, S. F., Han, B., Wang, X. Y., and Bai, Z. P.: Inventory of
atmospheric pollutants discharged from biomass burning in China continent in
2007, China Environ. Sci., 31, 186–194, 2011 (in Chinese).
Lu, J. L., Liang, S. L., and Liu, J.: Study on estimation of forest biomass
and carbon storage of Shanxi Province, Chin. Agric. Sci. Bull., 31, 51–56,
2012 (in Chinese).
McCarty, J. L., Korontzi, S., Justice, C. O., and Loboda, T.: The spatial and
temporal distribution of crop residue burning in the contiguous United
States, Sci. Total. Environ., 407, 5701–5712,
https://doi.org/10.1016/j.scitotenv.2009.07.009, 2009.
MEPC: Ministry of Environmental Protection of China, Crop residue burning
report, available at: http://www.zhb.gov.cn/ (last access: 7 August 2018), 2015 (in
Chinese).
NBSC (National Bureau of Statistics of China): China Statistical Yearbook
2004–2016, China Statistics Press, Beijing, available at:
http://www.stats.gov.cn/tjsj/ndsj/ (last access: 7 August 2018), 2004–2016 (in
Chinese).
Peng, L., Qiang, Z., and Kebin, H. E.: Emissions inventory of atmospheric
pollutants from open burning of crop residues in China based on a national
questionnaire, Res. Environ. Sci., 29, 1109–1118, 2016 (in Chinese).
Prins, E. M. and Menzel, W. P.: Geostationary satellite detection of bio
mass burning in South America, Int. J. Remote. Sens., 13, 2783–2799, 1992.
Pu, S. L., Fang, J. Y., He, J. S., and Xiao, Y.: Spatial distribution of
grassland biomass in China, Acta. Phyt. Sci., 28, 491–498, 2004 (in
Chinese).
Qiu, X., Duan, L., Chai, F., Wang, S., Yu, Q., and Wang, S.: Deriving
high-resolution emission inventory of OBB in China based on satellite
observations, Environ. Sci. Technol., 50, 11779–11786,
https://doi.org/10.1021/acs.est.6b02705, 2016.
Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., and Morton,
D. C.: Global burned area and biomass burning emissions from small fires:
burned area from small fires, J. Geophys. Res.-Biogeo., 117, G04012,
https://doi.org/10.1029/2012JG002128, 2012.
Reid, J. S., Hyer, E. J., Prins, E. M., Westphal, D. L., Zhang, J., Wang,
J., Christopher, S. A., Curtis, C. A., Schmidt, C. C., Eleuterio, D. P.,
Richardson, K. A., and Hoffman, J. P.: Global monitoring and forecasting of
biomass-burning smoke: Description of and lessons from the fire locating and
modeling of burning emissions (FLAMBE) program, IEEE J.-Stars, 2, 144–162,
https://doi.org/10.1109/JSTARS.2009.2027443, 2009.
Roberts, G., Wooster, M. J., and Lagoudakis, E.: Annual and diurnal african
biomass burning temporal dynamics, Biogeosciences, 6, 849–866,
https://doi.org/10.5194/bg-6-849-2009, 2009.
Roy, D. P. and Boschetti, L.: Southern Africa Validation of the MODIS,
L3JRC, and Glob Carbon Burned-Area Products, IEEE T. Geosci. Remote, 47,
1032–1044, https://doi.org/10.1109/TGRS.2008.2009000, 2009.
Roy, D. P., Ju, J., Lewis, P., Schaaf, C., Gao, F., Hansen, M., and
Lindquist, E.: Multi-temporal MODIS-Landsat data fusion for relative
radiometric normalization, gap filling, and prediction of Landsat data,
Remote Sens. Environ., 112, 3112–3130, https://doi.org/10.1016/j.rse.2008.03.009, 2008.
Seiler, W. and Crutzen, P. J.: Estimates of gross and net fluxes of carbon
between the biosphere and the atmosphere from biomass burning, Climatic
Change, 2, 207–247, 1980.
Setzer, A. W. and Pereira, M. C.: Amazonia biomass burnings in 1987 and an
estimate of their tropospheric emissions, Ambio, 20, 19–22, 1991.
Shi, Y., Matsunaga, T., Saito, M., Yamaguchi, Y., and Chen, X.: Comparison of
global inventories of CO2 emissions from biomass burning during
2002–2011 derived from multiple satellite products, Environ. Pollut., 206,
479-0487, https://doi.org/10.1016/j.envpol.2015.08.009, 2015a.
Shi, Y., Matsunaga, T., and Yamaguchi, Y.: High-resolution mapping of biomass
burning emissions in three tropical regions, Environ. Sci. Technol., 49,
10806–10814, https://doi.org/10.1021/acs.est.5b01598, 2015b.
Sofiev, M., Vankevich, R., Lotjonen, M., Prank, M., Petukhov, V., Ermakova,
T., Koskinen, J., and Kukkonen, J.: An operational system for the
assimilation of the satellite information on wild-land fires for the needs of
air quality modelling and forecasting, Atmos. Chem. Phys., 9, 6833–6847,
https://doi.org/10.5194/acp-9-6833-2009, 2009.
Song, Y., Liu, B., Miao, W., Chang, D., and Zhang, Y.: Spatiotemporal
variation in nonagricultural open fire emissions in China from 2000 to 2007:
open fire emissions in China, Global Biogeochem. Cy., 23, GB2008,
https://doi.org/10.1029/2008GB003344, 2009.
Streets, D. G., Yarber, K. F., Woo, J. H., and Carmichael, G. R.: Biomass
burning in Asia: Annual and seasonal estimates and atmospheric emissions,
Global Biogeochem. Cy., 17, 1099,
https://doi.org/10.1029/2003GB002040, 2003.
Su, J. F., Zhu, B., Kang, H. Q., Wang, H. L., and Wang, T. J.: Applications
of pollutants released form crop residues at open burning in Yangtze River
Delta Region in air quality model, Environm. Sci., 33, 1418–1424, 2012 (in
Chinese).
Tang, X. B., Huang, C., Lou, S. R., Qiao, L. P., Wang, H. L., Zhou, M.,
Chen, M. H., Chen, C. H., Wang, Q., Li, G. L., Li, L., Huang, H. Y., and
Zhang, G. F.: Emission factors and PM chemical composition study of biomass
burning in the Yangtze River Delta Region, Environ. Sci., 35, 1623–1632,
2014 (in Chinese).
Tang, Z. X., Xu, R. R., and Lan, X. L.: Breeding of a new peanut variety
fuhua 3 and the physiological foundation of high yield, Chin. Agric. Sci.
Bull., 25, 232–237, 2009 (in Chinese).
Tian, H., Hao, J., Lu, Y. Q., and Zhou, Z.: Evaluation of SO2 and
NOx emissions resulted from biomass fuels utilization in
China, Acta Scien. Circum., 22, 204–208, 2002 (in Chinese).
Tian, H., Zhao, D., and Wang, Y.: Emission inventories of atmospheric
pollutants discharged from biomass burning in China, Acta Scien. Circum., 31,
349–357, 2011 (in Chinese).
Tian, X. L., Xia, J., Xia, H. B., and Ni, J.: Forest biomass and its spatial
pattern in Guizhou Province, Chin. J. Appl. Ecol., 22, 287–297, 2014 (in
Chinese).
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M.,
Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen,
T. T.: Global fire emissions and the contribution of deforestation, savanna,
forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10,
11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Wang, K. D. and Deng, L. Y.: Dynamics of forest vegetation carbon stock in
Fujian Province based on national forest inventories, J. Fujian For. Univ.,
34, 145–151, 2014 (in Chinese).
Wang, S. X. and Zhang, C. Y.: Spatial and temporal distribution of air
pollutant emissions from open burning of crop residues in China, Science
paper Online, 3, 329–333, 2008 (in Chinese).
Wen, X. R., Jiang, L. X., Liu, L., Lin, G. Z., Zheng, Y., Xie, X. J., and
She, G. H.: Forest biomass, spatial distribution analysis and productivity
estimation in Jiangsu Province, J. Northwest. For. Univ., 29, 36–40, 2014
(in Chinese).
Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhang, X.,
O'Neill, S., and Wynne, K. K.: Estimating emissions from fires in North
America for air quality modeling, Atmos. Environ., 40, 3419–3432,
https://doi.org/10.1016/j.atmosenv.2006.02.010, 2006.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J.
A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a
high resolution global model to estimate the emissions from open burning,
Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011,
2011.
Wooster, M. J., Roberts, G., Perry, G. L. W., and Kaufman, Y. J.: Retrieval
of biomass combustion rates and totals from fire radiative power
observations: FRP derivation and calibration relationships between biomass
consumption and fire radiative energy release, J. Geophys. Res., 110, D24311,
https://doi.org/10.1029/2005JD006318, 2005.
Xie, G. H., Han, D. Q., Wang, X. Y., and Lv, R. H.: Harvest index and residue
factor of cereal crops in China, J. China Agric. Univ., 16, 1–8, 2011a (in
Chinese).
Xie, G. H., Wang, X. Y., Han, D. Q., and Xue, S.: Harvest index and residue
factor of non-cereal crops in China, J. China Agric. Univ., 16, 9–17, 2011b
(in Chinese).
Xu, J. D.: The 8th forest resources inventory results and analysis in China,
For. Econ., 3, 6–8, https://doi.org/10.13843/j.cnki.lyjj.2014.03.002, 2014 (in
Chinese).
Xue, X. P., Wang, J. G., Guo, W. Q., Chen, B. L., You, J., and Zhou, Z. G.:
Effect of nitrogen applied levels on the dynamics of biomass, nitrogen
accumulation and nitrogen fertilization recovery rate of cotton after initial
flowering, Acta. Eco. Sin., 26, 3632–3640, 2006 (in Chinese).
Yamaji, K., Li, J., Uno, I., Kanaya, Y., Irie, H., Takigawa, M., Komazaki,
Y., Pochanart, P., Liu, Y., Tanimoto, H., Ohara, T., Yan, X., Wang, Z., and
Akimoto, H.: Impact of open crop residual burning on air quality over Central
Eastern China during the Mount Tai Experiment 2006 (MTX2006), Atmos. Chem.
Phys., 10, 7353–7368, https://doi.org/10.5194/acp-10-7353-2010, 2010.
Yan, W. L., Liu, D. Y., Sun Y., Wei, J. S., and Pu, M. J.: Analysis of the
sustained fog and haze event resulting from crop burning residue in Jiangsu
province, Climatic Environ. Res., 19, 237–247, 2014 (in Chinese).
Yan, X., Ohara, T., and Akimoto, H.: Bottom-up estimate of biomass burning in
mainland China, Atmos. Environ., 40, 5262–5273,
https://doi.org/10.1016/j.atmosenv.2006.04.040, 2006.
Yevich, R. and Logan, J. A.: An assessment of biofuel use and burning of
agricultural waste in the developing world, Global Biogeochem. Cy., 17, 1095,
https://doi.org/10.1029/2002GB001952, 2003.
Yin, S., Wang, X., Xiao, Y., Tani, H., Zhong, G., and Sun, Z.: Study on
spatial distribution of crop residue burning and PM2.5 change in China,
Environ. Pollut., 220, 204–221, https://doi.org/10.1016/j.envpol.2016.09.040, 2017.
Yu, L. X., Zhang, J. H., Liu, L. Q., Chen, Q. Q., Zhou, Y., Wang, X. G.,
Xia, S. B., and Bie, S.: Study on high yield mechanism of hybrid cotton,
Hubei Agric. Sci., 48, 2084–2086, 2009 (in Chinese).
Zeng, J. M., Cui, K. H., Huang, J. L., He, F., and Peng, S. B. : Responses of
physio-biochemical properties to N-fertilizer application and its
relationship with nitrogen use efficiency in rice, Acta Agron. Sin., 33,
1168–1176, 2007 (in Chinese).
Zha, S.: Agricultural fires and their potential impacts on regional air
quality over China, Aerosol Air Qual. Res., 13, 992–1001, 2013.
Zhang, H., Hu, D., Chen, J., Ye, X., Wang, S. X., Hao, J. M., Wang, L.,
Zhang, R., and An, Z.: Particle size distribution and polycyclic aromatic
hydrocarbons emissions from agricultural crop residue burning, Environ. Sci.
Technol., 45, 5477–5482, https://doi.org/10.1021/es1037904, 2011.
Zhang, H., Wang, S., Hao, J., Wang, X., Wang, S., Chai, F., and Li, M.: Air
pollution and control action in Beijing, J. Clean. Prod., 112, 1519–1527,
https://doi.org/10.1016/j.jclepro.2015.04.092, 2016.
Zhang, H. F., Ye, X. N., Cheng, T. T., Chen, J. M., Yang, X., Wang, L., and
Zhang, R. Y.: A laboratory study of agricultural crop residue combustion in
China: Emission factors and emission inventory, Atmos. Environ., 42,
8432–8441, https://doi.org/10.1016/j.atmosenv.2008.08.015, 2008.
Zhang, L., Liu, Y., and Hao, L.: Contributions of open crop straw burning
emissions to PM2.5 concentrations in China, Environ. Res. Lett., 11,
014014, https://doi.org/10.1088/1748-9326/11/1/014014, 2016.
Zhang, J., Cui, M., Fan, D., Zhang, D., Lian, H., Yin, Z. and Li, J.:
Relationship between haze and acute cardiovascular, cerebrovascular, and
respiratory diseases in Beijing, Environ. Sci. Pollut. R., 22, 3920–3925,
https://doi.org/10.1007/s11356-014-3644-7, 2015.
Zhang, Y., Tang, L., Croteau, P. L., Favez, O., Sun, Y., Canagaratna, M. R.,
Wang, Z., Couvidat, F., Albinet, A., Zhang, H., Sciare, J., Prévôt, A. S.
H., Jayne, J. T., and Worsnop, D. R.: Field characterization of the
PM2.5 Aerosol Chemical Speciation Monitor: insights into the
composition, sources, and processes of fine particles in eastern China,
Atmos. Chem. Phys., 17, 14501–14517,
https://doi.org/10.5194/acp-17-14501-2017, 2017.
Zhao, P. and Chen, F.: Short-term influences of straw and nitrogen
cooperation on nitrogen use and soil nitrate content in North Henan, J. China
Agric. Univ., 13, 19–23, 2008 (in Chinese).
Zhao, Y., Nielsen, C. P., Lei, Y., McElroy, M. B., and Hao, J.: Quantifying
the uncertainties of a bottom-up emission inventory of anthropogenic
atmospheric pollutants in China, Atmos. Chem. Phys., 11, 2295–2308,
https://doi.org/10.5194/acp-11-2295-2011, 2011.
Zhou, Y., Cheng, S. Y, Lang, J., Chen, D. S., Zhao, B. B., Liu, C., Xu,
R., and Li, T.: A comprehensive ammonia emission inventory with
high-resolution and its evaluation in the Beijing-Tianjin-Hebei (BTH) region,
China, Atmos. Environ., 106, 305–317, https://doi.org/10.1016/j.atmosenv.2015.01.069,
2015.
Zhou, Y., Yue, Y., Lan, L. I., Liu, M., and Zhou, T.: Analysis of a serious
haze event resulting from crop residue burning in Central Eastern Hubei,
Climatic Environ. Res., 21, 141–152, 2016.
Zhou, Y., Xing, X., Lang, J., Chen, D., Cheng, S., Wei, L., Wei, X., and Liu,
C.: A comprehensive biomass burning emission inventory with high spatial and
temporal resolution in China, Atmos. Chem. Phys., 17, 2839–2864,
https://doi.org/10.5194/acp-17-2839-2017, 2017.
Zhu, B., Su, J. F., Han, Z. W., Cong, Y., and Wang, T. J.: Analysis of a serious
air pollution event resulting from crop residue burning over Nanjing and
surrounding regions, China Environ. Sci., 30, 585–592, 2010.
Zhu, L. J., Wang, G. Y., and Zhang, Y. L.: Spatial and temporal distribution
of crop straw resources in Yangtze River Delta area, Guizhou Agric. Sci., 45,
138–142, 2017 (in Chinese).
Zong, Z., Wang, X., Tian, C., Chen, Y., Qu, L., Ji, L., Zhi, G., Li, J., and
Zhang, G.: Source apportionment of PM2.5 at a regional background site
in North China using PMF linked with radiocarbon analysis: insight into the
contribution of biomass burning, Atmos. Chem. Phys., 16, 11249–11265,
https://doi.org/10.5194/acp-16-11249-2016, 2016.
Zou, J., Lu, J. W., Liao, Z. W., Gong, X. M., Wang, H., Zhou, Y. G.. and
Zhou, H.: Study on response of rapeseed to boron application and critical
level of soil available B in Hubei province, Sci. Agric. Sin., 41, 752–759,
2008 (in Chinese).
Zuo, Z. G.: The cause and prevention of forest fire in forest area of Southern China, Land Greening, 5, 10, 2004 (in Chinese).
Short summary
In order to support regional modeling impact on air quality and policy making on controlling open biomass burning emissions, accurate open biomass burning emissions were estimated from 2003 to 2015 with high spatial and temporal resolution. Multiple satellite data, updated biomass data and survey results were all used to improve the accuracy. In addition, management policies and all influencing factors in rural areas for open biomass burning emissions were considered.
In order to support regional modeling impact on air quality and policy making on controlling...
Altmetrics
Final-revised paper
Preprint