Articles | Volume 17, issue 23
Atmos. Chem. Phys., 17, 14519–14541, 2017
https://doi.org/10.5194/acp-17-14519-2017

Special issue: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)...

Atmos. Chem. Phys., 17, 14519–14541, 2017
https://doi.org/10.5194/acp-17-14519-2017

Research article 06 Dec 2017

Research article | 06 Dec 2017

Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment

Scott E. Giangrande et al.

Related authors

Contrasting characteristics of open- and closed-cellular stratocumulus cloud in the eastern North Atlantic
Michael P. Jensen, Virendra P. Ghate, Dié Wang, Diana K. Apoznanski, Mary J. Bartholomew, Scott E. Giangrande, Karen L. Johnson, and Mandana M. Thieman
Atmos. Chem. Phys., 21, 14557–14571, https://doi.org/10.5194/acp-21-14557-2021,https://doi.org/10.5194/acp-21-14557-2021, 2021
Short summary
Identifying insects, clouds, and precipitation using vertically pointing polarimetric radar Doppler velocity spectra
Christopher R. Williams, Karen L. Johnson, Scott E. Giangrande, Joseph C. Hardin, Ruşen Öktem, and David M. Romps
Atmos. Meas. Tech., 14, 4425–4444, https://doi.org/10.5194/amt-14-4425-2021,https://doi.org/10.5194/amt-14-4425-2021, 2021
Short summary
What drives daily precipitation over the central Amazon? Differences observed between wet and dry seasons
Thiago S. Biscaro, Luiz A. T. Machado, Scott E. Giangrande, and Michael P. Jensen
Atmos. Chem. Phys., 21, 6735–6754, https://doi.org/10.5194/acp-21-6735-2021,https://doi.org/10.5194/acp-21-6735-2021, 2021
Short summary
The development of rainfall retrievals from radar at Darwin
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021,https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary
Cloud regimes over the Amazon Basin: perspectives from the GoAmazon2014/5 campaign
Scott E. Giangrande, Dié Wang, and David B. Mechem
Atmos. Chem. Phys., 20, 7489–7507, https://doi.org/10.5194/acp-20-7489-2020,https://doi.org/10.5194/acp-20-7489-2020, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Global evidence of aerosol-induced invigoration in marine cumulus clouds
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 21, 15103–15114, https://doi.org/10.5194/acp-21-15103-2021,https://doi.org/10.5194/acp-21-15103-2021, 2021
Short summary
Impacts of the Saharan air layer on the physical properties of the Atlantic tropical cyclone cloud systems: 2003–2019
Hao Luo and Yong Han
Atmos. Chem. Phys., 21, 15171–15184, https://doi.org/10.5194/acp-21-15171-2021,https://doi.org/10.5194/acp-21-15171-2021, 2021
Short summary
Two-year statistics of columnar-ice production in stratiform clouds over Hyytiälä, Finland: environmental conditions and the relevance to secondary ice production
Haoran Li, Ottmar Möhler, Tuukka Petäjä, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 14671–14686, https://doi.org/10.5194/acp-21-14671-2021,https://doi.org/10.5194/acp-21-14671-2021, 2021
Short summary
Changes in cirrus cloud properties and occurrence over Europe during the COVID-19-caused air traffic reduction
Qiang Li and Silke Groß
Atmos. Chem. Phys., 21, 14573–14590, https://doi.org/10.5194/acp-21-14573-2021,https://doi.org/10.5194/acp-21-14573-2021, 2021
Short summary
A new conceptual model for adiabatic fog
Felipe Toledo, Martial Haeffelin, Eivind Wærsted, and Jean-Charles Dupont
Atmos. Chem. Phys., 21, 13099–13117, https://doi.org/10.5194/acp-21-13099-2021,https://doi.org/10.5194/acp-21-13099-2021, 2021
Short summary

Cited articles

Ackerman, T. P. and Stokes, G. M.: The Atmospheric Radiation Measurement Program, Phys. Today, 56, 38–44, doi:10.1063/1.1554135, 2003.
Alcântara, C. R., Dias, M., Silva, A. F., Souza, E. P., and Cohen, J. C. P.: Verification of the role of the low level jets in Amazon squall lines, Atmos. Res., 100, 36–44, 2011.
Anber, U., Gentine, P., Wang, S. G., and Sobel, A. H.: Fog and rain in the Amazon, P. Natl. Acad. Sci. USA, 112, 11473–11477, 2015.
Atmospheric Radiation Measurement (ARM): Climate Research Facility, updated hourly, Balloon-Borne Sounding System (SONDE), 3.21297 S 60.5981 W: ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Holdridge, D., Kyrouac, J., and Coulter, R., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive, Oak Ridge, Tennessee, USA, Data set accessed at: https://doi.org/10.5439/1025284, 1993.
Atmospheric Radiation Measurement (ARM): Climate Research Facility, updated monthly, SCM-Forcing DATA from variational analysis (VARANAL), 2014-01-01 to 2015-12-31, 3.21297 S 60.5981 W: ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Tang, S., Xie, S., and Zhang, Y.: Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, Data set accessed 2016-07-22 at: https://doi.org/10.5439/1273323, 2001.
Download
Short summary
The Amazon forest is the largest tropical rain forest on the planet, featuring prolific and diverse cloud conditions. The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment was motivated by demands to gain a better understanding of aerosol and cloud interactions on climate and the global circulation. The routine DOE ARM observations from this 2-year campaign are summarized to help quantify controls on clouds and precipitation over this undersampled region.
Altmetrics
Final-revised paper
Preprint