Articles | Volume 16, issue 10
https://doi.org/10.5194/acp-16-6547-2016
https://doi.org/10.5194/acp-16-6547-2016
Research article
 | 
30 May 2016
Research article |  | 30 May 2016

Impact of major volcanic eruptions on stratospheric water vapour

Michael Löffler, Sabine Brinkop, and Patrick Jöckel

Related authors

The contribution of transport emissions to ozone mixing ratios and methane lifetime in 2015 and 2050 in the Shared Socioeconomic Pathways (SSPs)
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024,https://doi.org/10.5194/acp-24-12079-2024, 2024
Short summary
New submodel for emissions from Explosive Volcanic ERuptions (EVER v1.1) within the Modular Earth Submodel System (MESSy, version 2.55.1)
Matthias Kohl, Christoph Brühl, Jennifer Schallock, Holger Tost, Patrick Jöckel, Adrian Jost, Steffen Beirle, Michael Höpfner, and Andrea Pozzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2200,https://doi.org/10.5194/egusphere-2024-2200, 2024
Short summary
Chemistry-climate feedback of atmospheric methane in a methane emission flux driven chemistry-climate model
Laura Stecher, Franziska Winterstein, Patrick Jöckel, Michael Ponater, Mariano Mertens, and Martin Dameris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2938,https://doi.org/10.5194/egusphere-2024-2938, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
ICON ComIn – The ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-135,https://doi.org/10.5194/gmd-2024-135, 2024
Preprint under review for GMD
Short summary
Parameterizations for global thundercloud corona discharge distributions
Sergio Soler, Francisco J. Gordillo-Vázquez, Francisco J. Pérez-Invernón, Patrick Jöckel, Torsten Neubert, Olivier Chanrion, Victor Reglero, and Nikolai Østgaard
Atmos. Chem. Phys., 24, 10225–10243, https://doi.org/10.5194/acp-24-10225-2024,https://doi.org/10.5194/acp-24-10225-2024, 2024
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Analytical approximation of the definite Chapman integral for arbitrary zenith angles
Dongxiao Yue
Atmos. Chem. Phys., 24, 5093–5097, https://doi.org/10.5194/acp-24-5093-2024,https://doi.org/10.5194/acp-24-5093-2024, 2024
Short summary
Moist bias in the Pacific upper troposphere and lower stratosphere (UTLS) in climate models affects regional circulation patterns
Felix Ploeger, Thomas Birner, Edward Charlesworth, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 24, 2033–2043, https://doi.org/10.5194/acp-24-2033-2024,https://doi.org/10.5194/acp-24-2033-2024, 2024
Short summary
Evaluation of vertical transport in ERA5 and ERA-Interim reanalysis using high-altitude aircraft measurements in the Asian summer monsoon 2017
Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh
Atmos. Chem. Phys., 24, 317–343, https://doi.org/10.5194/acp-24-317-2024,https://doi.org/10.5194/acp-24-317-2024, 2024
Short summary
Injection strategy – a driver of atmospheric circulation and ozone response to stratospheric aerosol geoengineering
Ewa M. Bednarz, Amy H. Butler, Daniele Visioni, Yan Zhang, Ben Kravitz, and Douglas G. MacMartin
Atmos. Chem. Phys., 23, 13665–13684, https://doi.org/10.5194/acp-23-13665-2023,https://doi.org/10.5194/acp-23-13665-2023, 2023
Short summary
Quantifying stratospheric ozone trends over 1984–2020: a comparison of ordinary and regularized multivariate regression models
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Jianchun Bian, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 23, 13029–13047, https://doi.org/10.5194/acp-23-13029-2023,https://doi.org/10.5194/acp-23-13029-2023, 2023
Short summary

Cited articles

Angell, J. K.: Stratospheric warming due to Agung, El Chichón, and Pinatubo taking into account the quasi-biennial oscillation, J. Geophys. Res.-Atmos., 102, 9479–9485, https://doi.org/10.1029/96JD03588, 1997.
Arfeuille, F., Luo, B. P., Heckendorn, P., Weisenstein, D., Sheng, J. X., Rozanov, E., Schraner, M., Brönnimann, S., Thomason, L. W., and Peter, T.: Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions, Atmos. Chem. Phys., 13, 11221–11234, https://doi.org/10.5194/acp-13-11221-2013, 2013.
Brinkop, S., Dameris, M., Jöckel, P., Garny, H., Lossow, S., and Stiller, G.: The millennium water vapour drop in chemistry-climate model simulations, Atmos. Chem. Phys. Discuss., 15, 24909–24953, https://doi.org/10.5194/acpd-15-24909-2015, 2015.
Considine, D. B., Rosenfield, J. E., and Fleming, E. L.: An interactive model study of the influence of the Mount Pinatubo aerosol on stratospheric methane and water trends, J. Geophys. Res.-Atmos., 106, 27711–27727, https://doi.org/10.1029/2001JD000331, 2001.
Download
Short summary
After the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991, stratospheric water vapour is significantly increased. This results from increased stratospheric heating rates due to volcanic aerosol and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as important sources for the additional water vapour in the stratosphere.
Altmetrics
Final-revised paper
Preprint