the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements
C. Zhao
Z. Hu
Y. Qian
L. Ruby Leung
J. Jin
M. G. Flanner
R. Zhang
H. Yan
Z. Lu
D. G. Streets
Related authors
Climate models are crucial for predicting climate change in detail. This paper proposes a balanced approach to improving their accuracy by combining traditional process-based methods with modern artificial intelligence (AI) techniques while maximizing the resolution to allow for ensemble simulations. The authors propose using AI to learn from both observational and simulated data while incorporating existing physical knowledge to reduce data demands and improve climate prediction reliability.
Exascale Earth System Model (E3SMv2) to document model performance and understand what updates in E3SMv2 have caused changes in clouds from E3SMv1 to E3SMv2. We find that stratocumulus clouds along the subtropical west coast of continents are dramatically improved, primarily due to the retuning done in CLUBB. This study offers additional insights into clouds simulated in E3SMv2 and will benefit future E3SM developments.
hiddensource of inter-model variability and may be leading to bias in some climate model results.
bioalbedo. Quantifying bioalbedo has not been achieved because of difficulties in isolating the biological contribution from the optical properties of ice and snow, and from inorganic impurities in field studies. In this paper, we provide a physical model that enables bioalbedo to be quantified from first principles and we use it to guide future field studies.
Related subject area
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
hiddensource of inter-model variability and may be leading to bias in some climate model results.