Articles | Volume 13, issue 18
Atmos. Chem. Phys., 13, 9623–9639, 2013
https://doi.org/10.5194/acp-13-9623-2013
Atmos. Chem. Phys., 13, 9623–9639, 2013
https://doi.org/10.5194/acp-13-9623-2013

Research article 30 Sep 2013

Research article | 30 Sep 2013

A global historical ozone data set and prominent features of stratospheric variability prior to 1979

S. Brönnimann et al.

Related authors

The unidentified volcanic eruption of 1809: why it remains a climatic cold case
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstadt, and Rob Wilson
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-4,https://doi.org/10.5194/cp-2021-4, 2021
Preprint under review for CP
Intercomparisons, Error Assessments, and Technical Information on Historical Upper-Air Measurements
Noemi Imfeld, Leopold Haimberger, Alexander Sterin, Yuri Brugnara, and Stefan Brönnimann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-395,https://doi.org/10.5194/essd-2020-395, 2021
Preprint under review for ESSD
Short summary
Total column ozone in New Zealand and in the UK in the 1950s
Stefan Brönnimann and Sylvia Nichol
Atmos. Chem. Phys., 20, 14333–14346, https://doi.org/10.5194/acp-20-14333-2020,https://doi.org/10.5194/acp-20-14333-2020, 2020
Short summary
Synthetic weather diaries: concept and application to Swiss weather in 1816
Stefan Brönnimann
Clim. Past, 16, 1937–1952, https://doi.org/10.5194/cp-16-1937-2020,https://doi.org/10.5194/cp-16-1937-2020, 2020
Short summary
Assimilating monthly precipitation data in a paleoclimate data assimilation framework
Veronika Valler, Yuri Brugnara, Jörg Franke, and Stefan Brönnimann
Clim. Past, 16, 1309–1323, https://doi.org/10.5194/cp-16-1309-2020,https://doi.org/10.5194/cp-16-1309-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021,https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean
Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze
Atmos. Chem. Phys., 21, 731–754, https://doi.org/10.5194/acp-21-731-2021,https://doi.org/10.5194/acp-21-731-2021, 2021
Short summary
Impact of the eruption of Mt Pinatubo on the chemical composition of the stratosphere
Markus Kilian, Sabine Brinkop, and Patrick Jöckel
Atmos. Chem. Phys., 20, 11697–11715, https://doi.org/10.5194/acp-20-11697-2020,https://doi.org/10.5194/acp-20-11697-2020, 2020
Short summary
Projecting ozone hole recovery using an ensemble of chemistry–climate models weighted by model performance and independence
Matt Amos, Paul J. Young, J. Scott Hosking, Jean-François Lamarque, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Markus Kunze, Marion Marchand, David A. Plummer, David Saint-Martin, Kengo Sudo, Simone Tilmes, and Yousuke Yamashita
Atmos. Chem. Phys., 20, 9961–9977, https://doi.org/10.5194/acp-20-9961-2020,https://doi.org/10.5194/acp-20-9961-2020, 2020
Short summary
Inconsistencies between chemistry–climate models and observed lower stratospheric ozone trends since 1998
William T. Ball, Gabriel Chiodo, Marta Abalos, Justin Alsing, and Andrea Stenke
Atmos. Chem. Phys., 20, 9737–9752, https://doi.org/10.5194/acp-20-9737-2020,https://doi.org/10.5194/acp-20-9737-2020, 2020
Short summary

Cited articles

Bhend, J., Franke, J., Folini, D., Wild, M., and Brönnimann, S.: An ensemble-based approach to climate reconstructions, Clim. Past, 8, 963–976, https://doi.org/10.5194/cp-8-963-2012, 2012.
Bodeker, G. E., Hassler, B., Young, P. J., and Portmann, R. W.: A vertically resolved, global, gap-free ozone database for assessing or constraining global climate model simulations, Earth Syst. Sci. Data, 5, 31–43, https://doi.org/10.5194/essd-5-31-2013, 2013.
Brönnimann, S.: Interactive comment on "Detection and measurement of total ozone from stellar spectra: Paper 2. Historic data from 1935–1942" by R. E. M. Griffin, Atmos. Chem. Phys. Discuss., 5, S4045–S4048, 2005.
Brönnimann, S. and Compo, G. P.: Ozone highs and associated flow features in the first half of the twentieth century in different data sets, Meteorol. Z., 21, 49–59, 2012.
Brönnimann, S., Luterbacher, J., Schmutz, C., Wanner H., and Staehelin, J.: Variability of total ozone at Arosa, Switzerland, since 1931 related to atmospheric circulation indices, Geophys. Res. Lett., 27, 2213–2216, 2000.
Download
Altmetrics
Final-revised paper
Preprint