Articles | Volume 13, issue 12
https://doi.org/10.5194/acp-13-5873-2013
https://doi.org/10.5194/acp-13-5873-2013
Research article
 | 
17 Jun 2013
Research article |  | 17 Jun 2013

Modeling air pollution in Lebanon: evaluation at a suburban site in Beirut during summer

A. Waked, C. Seigneur, F. Couvidat, Y. Kim, K. Sartelet, C. Afif, A. Borbon, P. Formenti, and S. Sauvage

Related authors

Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions
A. Waked, O. Favez, L. Y. Alleman, C. Piot, J.-E. Petit, T. Delaunay, E. Verlinden, B. Golly, J.-L. Besombes, J.-L. Jaffrezo, and E. Leoz-Garziandia
Atmos. Chem. Phys., 14, 3325–3346, https://doi.org/10.5194/acp-14-3325-2014,https://doi.org/10.5194/acp-14-3325-2014, 2014

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Influence of land cover change on atmospheric organic gases, aerosols, and radiative effects
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
Atmos. Chem. Phys., 25, 243–262, https://doi.org/10.5194/acp-25-243-2025,https://doi.org/10.5194/acp-25-243-2025, 2025
Short summary
Quantifying the impacts of marine aerosols over the southeast Atlantic Ocean using a chemical transport model: implications for aerosol–cloud interactions
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
Atmos. Chem. Phys., 24, 14123–14143, https://doi.org/10.5194/acp-24-14123-2024,https://doi.org/10.5194/acp-24-14123-2024, 2024
Short summary
Quantifying the impact of global nitrate aerosol on tropospheric composition fields and its production from lightning NOx
Ashok K. Luhar, Anthony C. Jones, and Jonathan M. Wilkinson
Atmos. Chem. Phys., 24, 14005–14028, https://doi.org/10.5194/acp-24-14005-2024,https://doi.org/10.5194/acp-24-14005-2024, 2024
Short summary
Rapid oxidation of phenolic compounds by O3 and HO: effects of the air–water interface and mineral dust in tropospheric chemical processes
Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He
Atmos. Chem. Phys., 24, 12409–12423, https://doi.org/10.5194/acp-24-12409-2024,https://doi.org/10.5194/acp-24-12409-2024, 2024
Short summary
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024,https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary

Cited articles

Afif, C., Dutot, A., Jambert, C., Abboud, M., Adjizian-Gérard, J., Farah, W., Perros, P., and Rizk, T.: Statistical approach for the characterization of NO2 concentrations in Beirut, Air Quality, Atmosphere & Health, 2, 57–67, 2009.
Borge, R., Alexandrov, V., José del Vas, J., Lumbreras, J., and Rodriguez, E.: A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula, Atmos. Environ., 42, 8560–8574, 2008.
Bailey, E. M., Gautney, L. L., Kelsoe, J. J., Jacobs, M. E., Mao, Q., Condrey, J. W., Pun, B., Yu, S. Y., Seigneur, C., Douglas, S., Heney, J., and Kumar, N.: A comparison of the performance of four air quality models for the Southern oxidants study episode in July 1999, J. Geophys. Res., 112, D05306, https://doi.org/10.1029/2005JD007021, 2007.
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, 2006.
Byun, D. and Schere, K. L.: Review of the governing equations, computational algorithms and other components of the models-3 community multi scale air quality (CMAQ) modeling system, Applied Mechanics Review, 59, 51, 2006.
Download
Altmetrics
Final-revised paper
Preprint