Articles | Volume 24, issue 8
https://doi.org/10.5194/acp-24-4809-2024
https://doi.org/10.5194/acp-24-4809-2024
Research article
 | 
23 Apr 2024
Research article |  | 23 Apr 2024

Simulated phase state and viscosity of secondary organic aerosols over China

Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa

Related authors

Hygroscopic Growth and Activation Changed Submicron Aerosol Composition and Properties in North China Plain
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-998,https://doi.org/10.5194/egusphere-2024-998, 2024
Short summary
Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China
Zhiqiang Zhang, Yele Sun, Chun Chen, Bo You, Aodong Du, Weiqi Xu, Yan Li, Zhijie Li, Lu Lei, Wei Zhou, Jiaxing Sun, Yanmei Qiu, Lianfang Wei, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 10409–10423, https://doi.org/10.5194/acp-22-10409-2022,https://doi.org/10.5194/acp-22-10409-2022, 2022
Short summary
Organic aerosol volatility and viscosity in the North China Plain: contrast between summer and winter
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021,https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024,https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Modeling impacts of dust mineralogy on fast climate response
Qianqian Song, Paul Ginoux, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7421–7446, https://doi.org/10.5194/acp-24-7421-2024,https://doi.org/10.5194/acp-24-7421-2024, 2024
Short summary
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024,https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024,https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024,https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary

Cited articles

Abbatt, J. P. D., Lee, A. K. Y., and Thornton, J. A.: Quantifying trace gas uptake to tropospheric aerosol: recent advances and remaining challenges, Chem. Soc. Rev., 41, 6555–6581, https://doi.org/10.1039/C2CS35052A, 2012. 
Ahmadov, R., Mckeen, S. A., Robinson, A. L., Bahreini, R., Middlebrook, A. M., De Gouw, J. A., Meagher, J., Hsie, E. Y., Edgerton, E., Shaw, S., and Trainer, M.: A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006, J. Geophys. Res.-Atmos., 117, D06301, https://doi.org/10.1029/2011JD016831, 2012. 
Angell, C. A.: Relaxation in liquids, polymers and plastic crystals – strong/fragile patterns and problems, J. Non-Cryst. Solids, 131-133, 13-31, https://doi.org/10.1016/0022-3093(91)90266-9, 1991. 
Baboomian, V. J., Crescenzo, G. V., Huang, Y., Mahrt, F., Shiraiwa, M., Bertram, A. K., and Nizkorodov, S. A.: Sunlight can convert atmospheric aerosols into a glassy solid state and modify their environmental impacts, P. Natl. Acad. Sci. USA, 119, e2208121119, https://doi.org/10.1073/pnas.2208121119, 2022. 
Champion, W. M., Rothfuss, N. E., Petters, M. D., and Grieshop, A. P.: Volatility and viscosity are correlated in terpene secondary organic aerosol formed in a flow reactor, Environ. Sci. Technol. Lett., 6, 513–519, https://doi.org/10.1021/acs.estlett.9b00412, 2019. 
Download
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Altmetrics
Final-revised paper
Preprint