Articles | Volume 24, issue 5
https://doi.org/10.5194/acp-24-2861-2024
https://doi.org/10.5194/acp-24-2861-2024
Research article
 | 
05 Mar 2024
Research article |  | 05 Mar 2024

A remote sensing algorithm for vertically resolved cloud condensation nuclei number concentrations from airborne and spaceborne lidar observations

Piyushkumar N. Patel, Jonathan H. Jiang, Ritesh Gautam, Harish Gadhavi, Olga Kalashnikova, Michael J. Garay, Lan Gao, Feng Xu, and Ali Omar

Related authors

Surveying Methane Point-Source Super-Emissions across Oil and Gas Basins with MethaneSAT
Luis Guanter, Javier Roger, Jack Warren, Maryann Sargent, Zhan Zhang, Sébastien Roche, Christopher Chan Miller, Michael Steiner, Harvey Hadfield, Mark Omara, James P. Williams, Katlyn MacKay, Jonathan E. Franklin, Steven C. Wofsy, Steven P. Hamburg, and Ritesh Gautam
EGUsphere, https://doi.org/10.5194/egusphere-2025-4666,https://doi.org/10.5194/egusphere-2025-4666, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Tracing ammonia emission sources in California's Salton Sea region: insights from airborne longwave-infrared hyperspectral imaging and ground monitoring
Sina Hasheminassab, David M. Tratt, Olga V. Kalashnikova, Clement S. Chang, Morad Alvarez, Kerry N. Buckland, Michael J. Garay, Francesca M. Hopkins, Eric R. Keim, Le Kuai, Yaning Miao, Payam Pakbin, William C. Porter, and Mohammad H. Sowlat
Atmos. Chem. Phys., 25, 11935–11950, https://doi.org/10.5194/acp-25-11935-2025,https://doi.org/10.5194/acp-25-11935-2025, 2025
Short summary
Sectoral contributions of high-emitting methane point sources from major US onshore oil and gas producing basins using airborne measurements from MethaneAIR
Jack D. Warren, Maryann Sargent, James P. Williams, Mark Omara, Christopher C. Miller, Sebastien Roche, Katlyn MacKay, Ethan Manninen, Apisada Chulakadabba, Anthony Himmelberger, Joshua Benmergui, Zhan Zhang, Luis Guanter, Steve Wofsy, and Ritesh Gautam
Atmos. Chem. Phys., 25, 10661–10675, https://doi.org/10.5194/acp-25-10661-2025,https://doi.org/10.5194/acp-25-10661-2025, 2025
Short summary
Validation and assessment of satellite-based columnar CO2 and CH4 mixing ratios from GOSAT and OCO-2 satellites over India
Harish Shivraj Gadhavi, Akanksha Arora, Chaithanya Jain, Mahesh Kumar Sha, Frank Hase, Matthias Max Frey, Srikanthan Ramachandran, and Achuthan Jayaraman
Atmos. Meas. Tech., 18, 4497–4514, https://doi.org/10.5194/amt-18-4497-2025,https://doi.org/10.5194/amt-18-4497-2025, 2025
Short summary
Detection and quantification of methane plumes with the MethaneAIR airborne spectrometer
Luis Guanter, Jack Warren, Mark Omara, Apisada Chulakadabba, Javier Roger, Maryann Sargent, Jonathan E. Franklin, Steven C. Wofsy, and Ritesh Gautam
Atmos. Meas. Tech., 18, 3857–3872, https://doi.org/10.5194/amt-18-3857-2025,https://doi.org/10.5194/amt-18-3857-2025, 2025
Short summary

Cited articles

Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.  
ARM: AOS: Ultrahigh Sensitivity Aerosol Spectrometer, ARM [data set], https://doi.org/10.5439/1409033, 2022a. 
ARM: Aerosol Observing System (AOS): Aerodynamic Particle Sizer, ARM [data set], https://doi.org/10.5439/1407135, 2022b. 
ARM: AOS: Cloud Condensation Nuclei Counter (Dual Column), ramping mode spectra data, ARM [data set], https://doi.org/10.5439/1323896, 2022c. 
Bedoya-Velásquez, A. E., Navas-Guzmán, F., Granados-Muñoz, M. J., Titos, G., Román, R., Casquero-Vera, J. A., Ortiz-Amezcua, P., Benavent-Oltra, J. A., de Arruda Moreira, G., Montilla-Rosero, E., Hoyos, C. D., Artiñano, B., Coz, E., Olmo-Reyes, F. J., Alados-Arboledas, L., and Guerrero-Rascado, J. L.: Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation, Atmos. Chem. Phys., 18, 7001–7017, https://doi.org/10.5194/acp-18-7001-2018, 2018. 
Download
Short summary
Global measurements of cloud condensation nuclei (CCN) are essential for understanding aerosol–cloud interactions and predicting climate change. To address this gap, we introduced a remote sensing algorithm that retrieves vertically resolved CCN number concentrations from airborne and spaceborne lidar systems. This innovation offers a global distribution of CCN concentrations from space, facilitating model evaluation and precise quantification of aerosol climate forcing.
Share
Altmetrics
Final-revised paper
Preprint