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Abstract. Cloud condensation nuclei (CCN) are mediators of aerosol–cloud interactions (ACIs), contributing
to the largest uncertainties in the understandings of global climate change. We present a novel remote-sensing-
based algorithm that quantifies the vertically resolved CCN number concentrations (NCCN) using aerosol optical
properties measured by a multiwavelength lidar. The algorithm considers five distinct aerosol subtypes with bi-
modal size distributions. The inversion used the lookup tables developed in this study, based on the observations
from the Aerosol Robotic Network, to efficiently retrieve optimal particle size distributions from lidar measure-
ments. The method derives dry aerosol optical properties by implementing hygroscopic enhancement factors
in lidar measurements. The retrieved optically equivalent particle size distributions and aerosol-type-dependent
particle composition are utilized to calculate critical diameters using κ-Köhler theory and NCCN at six supersat-
urations ranging from 0.07 % to 1.0 %. Sensitivity analyses indicate that uncertainties in extinction coefficients
and relative humidity greatly influence the retrieval error in NCCN. The potential of this algorithm is further
evaluated by retrieving NCCN using airborne lidar from the NASA ObseRvations of Aerosols above CLouds and
their intEractionS (ORACLES) campaign and is validated against simultaneous measurements from the CCN
counter. The independent validation with robust correlation demonstrates promising results. Furthermore, the
NCCN has been retrieved for the first time using a proposed algorithm from spaceborne lidar – Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP) – measurements. The application of this new capability demon-
strates the potential for constructing a 3D CCN climatology at a global scale, which helps to better quantify ACI
effects and thus reduce the uncertainty in aerosol climate forcing.
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1 Introduction

The Intergovernmental Panel on Climate Change (IPCC) re-
port states that radiative forcing caused by aerosol–cloud in-
teractions (ACIs) dominates the largest uncertainty and re-
mains the least well-understood anthropogenic contribution
to climate change (IPCC AR5, 2013). The uncertainty mainly
stems from the complicated processes of how aerosols im-
pact the global cloud system. Atmospheric aerosols allow for
water vapor condensation under certain supersaturation (SS)
conditions and subsequently evolve into cloud droplets by
serving as cloud condensation nuclei (CCN). Anthropogenic
emissions are a major source of CCN, facilitating the for-
mation of cloud droplets and thereby altering cloud proper-
ties, precipitation patterns, and the climate forcing (Carslaw
et al., 2010; Paasonen et al., 2013). Consequently, reducing
the uncertainty associated with ACIs is crucial for increasing
our confidence in predictions of global and regional climate
models (IPCC, 2014). The fundamental parameter for under-
standing aerosol–cloud interaction is the CCN concentration
(Rosenfeld et al., 2014). Determining CCN number concen-
tration (NCCN) is the basis for analyses of ACI (Seinfeld et
al., 2016). Large uncertainties in their magnitude and vari-
ability at a global scale are one of the main factors in the low
level of scientific understanding of ACI effects. Therefore,
knowledge of the global abundance of aerosols capable of
serving as CCN is fundamental to advancing our understand-
ing of ACI (Fan et al., 2016).

Tackling the challenges in climate change, as identified by
the IPCC, requires that CCN properties be measured glob-
ally. Missing such a fundamental quantity has greatly hin-
dered our ability to accurately quantify the effects of anthro-
pogenic aerosols on cloud properties (Rosenfeld et al., 2014).
Ground-based instruments can observe NCCN at various SSs,
but they only provide sparse and localized information. Be-
sides limited coverage, near-surface CCN properties could
differ significantly from CCN properties near the cloud base
due to vertical aerosol inhomogeneities, particularly under
stable atmospheric boundary conditions. Airborne observa-
tions can provide very useful CCN measurements near the
cloud base but are expensive to collect and are limited to a
few field experiments, with limited spatiotemporal coverage
(Feingold et al., 1998; Li et al., 2015b, a).

Overall, observations of CCN are spatiotemporally sparse,
lack a vertical dimension, and provide insufficient constraints
on their global distribution. ACI studies often use satellite re-
trievals to take advantage of their global coverage, but satel-
lites have been unable to measure the CCN. Nevertheless,
the aerosol optical parameters such as aerosol optical depth
(AOD) and aerosol index (AI) are commonly used as prox-
ies for CCN in previous studies (Quaas et al., 2008, 2009;
Gryspeerdt and Stier, 2012; Patel and Kumar, 2016; Patel et
al., 2017, 2019; Rosenfeld, 2008). However, all these prox-
ies are crude tools and suffer from various issues such as
aerosol swelling, lack of vertical information, cloud con-

tamination, uncertainty in size distribution and solubility,
and more (Rosenfeld et al., 2016). The aforementioned stud-
ies based on passive satellite remote sensing measurements,
such as AOD and AI, have limitations in several areas for
ACI studies.

Active remote sensing technologies such as lidar have the
ability to improve the precision and range of conditions un-
der which particle concentrations and their ability to act as
CCN can be retrieved. A significant body of prior studies
has assessed the relationship between aerosol optical proper-
ties and CCN based on local in situ data offered by lidar and
radar. Feingold et al. (1998) developed a technique to derive
CCN from the retrieved cloud droplet concentration, verti-
cal velocity, and lidar backscatter from ground-based radar,
lidar, and radiometers. Ghan et al. (2006) and Ghan and
Collins (2004) evaluated the relationship between aerosol
extinction from airborne lidar and NCCN from near-surface
measurements and devised a technique for estimating CCN
at a cloud base. However, their techniques rely on the as-
sumption that the physiochemical characteristics of aerosols
at the surface represent the vertical column. Thus, their re-
trievals may be subject to large uncertainties due to vertical
inhomogeneity in particle characteristics. Previous work by
Clarke and Kapustin (2010), Kapustin et al. (2006), Liu and
Li (2014), and Shinozuka et al. (2015) demonstrated a strong
correlation between extinction coefficients andNCCN instead
of vertically integrated AOD or AI using airborne and in situ
observations. Stier (2016) provided a global assessment of
the link between aerosol radiative properties and CCN using
a global aerosol–climate model (ECHAM-HAM) and sug-
gested that vertically integrated aerosol radiative properties
are of limited suitability as a proxy for global surface CCN.

Both Mamouri and Ansmann (2016) and Choudhury and
Tesche (2022) examine the potential of single-wavelength
lidar observations to retrieve CCN number concentrations
for different aerosol types. The relationships between parti-
cle extinction coefficients and number concentrations of par-
ticles with dry radii larger than 50 nm (for non-dust) and
100 nm (for dust) were parameterized based on multiyear
AErosol RObotic NETwork (AERONET) observations for
different aerosol types. However, the measurements from the
single-wavelength lidar also lack sufficient information to
quantify particle size distribution, particle number concentra-
tion, or aerosol type, resulting in large uncertainty in NCCN
retrieval (Burton et al., 2012; Tan et al., 2019). However,
few recent studies (Lv et al., 2018; Tan et al., 2019) have
shown efforts to retrieve NCCN based on the advanced capa-
bility of multiwavelength lidar measurements, but they have
been limited to ground-based observations only. Rosenfeld
et al. (2016) attempted a new approach to retrieve satellite-
based NCCN using passive satellite observations. All these
studies taken together provide a sound foundation for CCN-
relevant aerosol properties, but most of them do not refer to
CCN concentrations themselves, and the ones that do, do not
give a global coverage or a vertically resolved picture. Con-

Atmos. Chem. Phys., 24, 2861–2883, 2024 https://doi.org/10.5194/acp-24-2861-2024



P. N. Patel et al.: Lidar-based estimation of CCN 2863

sequently, no reliable global observational dataset of CCN
exists, and the ability to routinely measure vertically resolved
CCN to study ACI effectively is still lacking (Burkart et
al., 2011).

This study introduces ECLiAP (Estimation of CCN using
Lidar measured Aerosol optical Properties), a comprehensive
remote sensing algorithm designed to estimate the concentra-
tion of cloud condensation nuclei (NCCN) using multiwave-
length spaceborne lidar measurements.

This paper is structured as follows. The introductory sec-
tion discusses the importance of and motivation behind
NCCN estimation. Section 2 describes the lookup table
(LUT)-based approach utilized for NCCN estimation, fo-
cusing specifically on satellite observations. Section 3 en-
compasses numerical simulations, sensitivity analysis, exten-
sive validation efforts, and an observational case study. Fi-
nally, Sect. 4 comprehensively discusses the results and their
broader implications.

2 Dataset

2.1 NASA ObseRvations of Aerosols above CLouds
and their intEractionS (ORACLES)

The NASA ORACLES campaign, conducted between 2016
and 2018 over the southeastern Atlantic (SEA) (Redemann
et al., 2021), provided valuable insights into a crucial region
characterized by the interaction of biomass burning emis-
sions with marine stratocumulus clouds specifically during
July to October. These clouds wield a significant influence
over the global climate; however, climate models often inad-
equately represent them due to their abundance and bright-
ness (Bony and Dufresne, 2005; Nam et al., 2012). Fur-
thermore, the challenges of non-polarimetric passive remote
sensing of aerosols in the presence of low stratocumulus
clouds (Coddington et al., 2010; Chang et al., 2021) under-
score the criticality of accurately predicting cloud conden-
sation nuclei (CCN) concentrations and refining model pa-
rameterization for the SEA region. To address the knowledge
gaps, the ORACLES campaign focused on comprehensive
observations of aerosol and cloud properties, employing a
combination of remote sensing and in situ instruments aboard
the NASA P-3 (operational from 2016 to 2018) and ER2 (op-
erational in 2016) aircraft. The ORACLES data include in
situ measurements of NCCN from the CCN counter as well
as lidar measurements obtained through the NASA Langley
Research Center’s high-spectral-resolution lidar (HSRL-2).
We seized this opportunity to conduct a validation exercise
based on the accessible data.

2.1.1 HSRL-2

The NASA Langley Research Center HSRL-2 measures
aerosol backscatter and depolarization at three wavelengths
(355, 532, and 1064 nm) and aerosol extinction at 355 and

532 nm using the HSRL technique (Shipley et al., 1983; Bur-
ton et al., 2018). At 1064 nm, extinction is derived from
the product of aerosol backscatter at 1064 nm and an in-
ferred lidar ratio at 1064 nm. The HSRL-2 measurement
technique differentiates between aerosol and molecular re-
turns by analyzing the spectral distribution of the return sig-
nal. Consequently, this enables the independent determina-
tion of aerosol backscatter and extinction coefficients, unlike
traditional elastic backscatter lidar retrievals that rely on a li-
dar ratio assumption (Hair et al., 2008). The addition of the
355 nm channel in HSRL-2 enhances sensitivity to smaller
particles, including CCN, which are crucial in aerosol–cloud
interactions (Burton et al., 2018). The instrument achieves
horizontal and vertical resolutions of approximately 2 km
and 15 m, respectively, for aerosol backscatter and depolar-
ization. For aerosol extinction coefficients, horizontal and
vertical resolutions are approximately 12 km and 300 m, re-
spectively, with interpolation to match the finer resolutions of
backscatter and depolarization. In terms of temporal resolu-
tion, aerosol backscatter and extinction coefficients are avail-
able at approximately 10 and 60 s intervals, respectively. The
uncertainty in lidar observables, influenced by factors like
contrast ratio and aerosol loading, can be within 5 % under
certain conditions (Burton et al., 2018). This paper delves
into the ability of ECLiAP by leveraging the advanced ca-
pabilities of HSRL-2 to accurately derive NCCN under real-
world atmospheric conditions.

2.1.2 CCN counter

We utilize the Georgia Institute of Technology (GIT) Droplet
Measurement Technologies (DMT) CCN counter (CCN-
100) as another primary instrument and data source. The
CCN-100 facilitates in situ measurements of CCN concen-
trations across a range of water vapor supersaturation lev-
els (S), specifically between 0.1 % and 0.4 % (Kacarab et al.,
2020; Redemann et al., 2021). The CCN-100 is ingeniously
designed as a continuous-flow streamwise thermal-gradient
chamber (CFSTGC) following the framework proposed by
Roberts and Nenes (2005). In this configuration, a cylindrical
flow chamber generates quasi-uniform supersaturation at its
centerline through continuous heat and water vapor transport
from the wetted walls, subject to a temperature gradient. The
difference in heat and water vapor diffusivity in the radial di-
rection ensures the generation of supersaturation at varying
levels depending on the flow rate and temperature gradient.
An advantage of the continuous-flow system is its rapid sam-
pling capabilities, achieving a frequency of approximately
1 Hz (Roberts and Nenes, 2005). Such a high frequency is
crucial for effectively capturing rapidly changing environ-
ments typical of airborne sampling scenarios. Aerosols that
activate into droplets with a radius greater than 0.5 µm are
counted as CCN at the end of the growth chamber. The hor-
izontal resolution of in situ observations during the ORA-
CLES campaign is contingent upon aircraft speed. For ac-
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curacy, the uncertainty associated with CCN number con-
centration is approximately ±10 % at a high signal-to-noise
ratio (S/N), while the supersaturation uncertainty is around
±0.04 % (Rose et al., 2008). These precision values ensure
the reliability of the CCN measurements, ensuring the ro-
bustness of the dataset used to validate the ECLiAP-derived
NCCN in our investigation.

2.2 Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO)

CALIOP (Cloud-Aerosol Lidar with Orthogonal Polariza-
tion) on the CALIPSO satellite, the first spaceborne polar-
ization lidar, was launched in April 2006 (Winker et al.,
2007). CALIPSO is in 705 km sun-synchronous polar or-
bit, and the orbit is controlled to repeat the same ground
track every 16 d with cross-track errors of less than ±10 km.
CALIOP acquires high-resolution (vertical and horizontal at
30 and 333 m below 8.2 km and 60 and 1000 m between
8.2 and 20.2 km) profiles of total attenuated backscatter by
aerosols and clouds at 532 and 1064 nm during both day and
night. Spatial averaging over different scales is typically per-
formed to improve the signal-to-noise ratio for reliable re-
trievals. For our study, we used the CALIPSO version 4.20
level-2 aerosol profile product (vertical and horizontal res-
olution: 60 m× 5 km; temporal resolution: 5.92 s). CALIOP
first classified the aerosol and cloud layers using the Clod-
Aerosol Discrimination (CAD) score algorithm (Liu et al.,
2009). Further, the aerosol layers are categorized into the
subsequent aerosol types (Omar et al., 2009). The hybrid ex-
tinction retrieval algorithms are used to retrieve the aerosol
extinction, using the assumed lidar ratios appropriate for
each aerosol type (Young and Vaughan, 2009). Click or tap
here to enter the text reported in the CALIPSO level-2 5 km
aerosol profile product (Vaughan et al., 2017). The deter-
mination of the lidar ratio contributes the major uncertainty
in the retrieval of CALIOP aerosol extinction, and the mis-
classification of aerosol type is another source of uncertainty
(Yu et al., 2010). We incorporate the profiles of aerosol ex-
tinction coefficient, backscatter coefficient, and particle de-
polarization ratio, along with aerosol subtype information
from CALIOP, into ECLiAP for the NCCN retrieval. Addi-
tionally, we utilize relative humidity profiles obtained from
the Global Modelling and Assimilation Office Data Assim-
ilation System (Molod et al., 2015), which are included in
the CALIPSO data product. We employed CALIOP data to
assess theNCCN retrieval capability of ECLiAP and also con-
ducted a case study.

3 Methodology

3.1 Construction of lookup tables

The inversion solution using the combination of simultane-
ous measurements of backscatters at three wavelengths and

extinction at two wavelengths, also called 3β + 2α, using li-
dar has been gaining prominence for aerosol microphysical
(effective radius, total number, volume concentration, refrac-
tive index) retrieval (Burton et al., 2016; Müller et al., 2005;
1999, 2016; Veselovskii et al., 2002, 2004, 2012). Several
fundamental aspects of the mathematical problem must be
solved during the retrieval from multiwavelength lidar. The
most important aspect is that the inversion solution is not
unique. The non-uniqueness of an inversion solution in the
advanced 3β + 2α technique is the primary source of the re-
trieval challenges (Chemyakin et al., 2016). Additionally, re-
trieving six size parameters (number concentrations, effec-
tive radius, and geometric standard deviation for fine- and
coarse-mode particles) for a bimodal particle size distribu-
tion (PSD) from five known quantities (β355, β532, β1064
α355, α532) is still an ill-posed inversion problem. In addition,
the existing spaceborne lidar instrument (CALIOP aboard
CALIPSO) provides the measurements at only two wave-
lengths (532 and 1064 nm). Considering all these constraints
and partially compensating for the non-uniqueness problem,
we employed the LUT approach with a fine step of bimodal
particle size distributions (PSDs) to derive aerosol size pa-
rameters. The parameterization of bimodal lognormal PSDs
is described in Sect. 2.1.1. The fundamental design of the
LUT framework for lidar measurements is built to test the
aerosol optical properties that we target for precise informa-
tion.

In the present study, the LUTs are designed using the
3β + 3α (β355, β532, β1064, α355, α532, α1064) technique for
the individual aerosol types. An additional input at a longer
wavelength improves the retrieval accuracy for coarse-mode
particles (Lv et al., 2018). These LUTs contain aerosol op-
tical properties such as backscatter coefficients at 355, 532,
and 1064 nm (β355, β532, β1064) and extinction coefficients
at 355, 532, and 1064 nm (α355, α532, α1064), along with
size parameters including number concentration, effective ra-
dius, and geometric standard deviation for fine- and coarse-
mode particles (Ntf, rf,σf,Ntc, rc,σc). Primarily, the LUTs
are generated for the five distinct aerosol subtypes: ma-
rine, dust, polluted continental, clean continental, and smoke
aerosols (as shown in Fig. 1). This study considers dust par-
ticles to be spheroid and other aerosol types to be spheres.
The particle optical properties are computed using the well-
known Mie scattering theory (Bohren and Huffman, 1998)
for spherical particles, which is a numerically accurate ap-
proach over a wide range of particle sizes. Meanwhile, the
T-matrix method (TMM) (Mishchenko and Travis, 1998) is
adopted for the spheroids and is numerically precise for the
limited particle sizes. Consequently, the improved geomet-
ric optics method (IGOM; Bi et al., 2009; Yang et al., 2007)
is applied to the larger spheroids not covered by the TMM.
The axis ratio distribution for spheroids, ranging from ∼ 0.3
(flattened spheroids) to ∼ 3.0 (elongated spheroids), is taken
from Dubovik et al. (2006). The transition from the TMM to
IGOM is determined by specific size parameters and is de-
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pendent on the particle shape and refractive index. However,
the present study considers the mean complex refractive in-
dex, and the transition from the TMM to IGOM depends on
the particle shape. PSD and mean complex refractive index
were used as the input parameters for the computations of
aerosol optical properties. The parameter ranges for the bi-
modal size distribution and mean complex refractive index
of the five aerosol subtypes are presented in Table 1 and are
used to construct the respective LUTs. These parameter val-
ues were adopted from Dubovik (2002), Torres et al. (2017),
and Veselovskii et al. (2004), who used measurements from
sun and sky radiometers at multiple AERONET sites. Click
or tap here to enter text. Torres et al. (2017) validated their
models against 744 AERONET observations and 165 almu-
cantar AERONET standard inversions at eight different sites.
This approach ensures the robustness and reliability of our
aerosol characterization. The PSDs are given in terms of the
total particle number concentration, effective radius (r), and
geometric standard deviation individually for fine and coarse
modes. Considering the sensitivity limitation of lidar mea-
surements, the range of the radius for the PSD is constrained
to 0.01–10 µm with a fixed bin size of 0.002 defined on a
logarithmic-equidistant scale in the calculation. In the pro-
cess of constructing LUTs, specific intervals for the parame-
ters σf, σc, rf, and rc have been carefully chosen to define the
range of particle size distributions for each aerosol model.
These intervals are set at 0.01, 0.01, 0.002, and 0.01 µm, re-
spectively. They are set as a compromise between accuracy
and computation time, ensuring that the LUTs encompass a
comprehensive range of particle size distributions for vari-
ous aerosol subtypes found in the real atmosphere. Further
details on the parameterization of the bimodal particle size
distribution are discussed in the subsequent section.

3.1.1 Lognormal aerosol size distributions

An earlier study by Kolmogorov (1941) mathematically
proved that the random process of sequential particle crush-
ing leads to a lognormal distribution of particle size. In our
study, PSDs have been treated as a bimodal lognormal dis-
tribution, as widely used in aerosol remote sensing studies
(Dubovik et al., 2011; Remer et al., 2005; Schuster et al.,
2006; Torres et al., 2014). Although particle size distribu-
tions are not always bimodal in each case, their size distribu-
tions can be considered a combination of the fine and coarse
modes. This bimodal lognormal size distribution can be ex-
pressed as

dn (r)
d ln(r)

=

∑
i=f,c

Nt i

(2π )1/2 lnσi
exp

[
−

(
lnr − lnrni

)2
2(lnσi)2

]
, (1)

where Nt i is the total particle concentration of the ith mode
and rni is the median radius for the aerosol size distribution,
with n representing the number concentration distribution.
The index i = f,c refers to the fine and coarse modes, re-

Figure 1. Bimodal lognormal particle size distributions for the five
aerosol types (marine, dust, polluted continental, clean continental,
and smoke aerosols) considered in this study to build the lookup
tables (LUTs). These particle size distributions were derived using
measurements from sun and sky radiometers at multiple selected
AErosol RObotic NETwork (AERONET) sites. Solid line repre-
sents the mean of the particle size distribution, whereas the shaded
area shows the range of size distribution cover in the respective
LUTs.

spectively. The term lnσi is the mode width of the ith mode.
This general bimodal lognormal size distribution shape for
aerosol is adopted in this study to improve the accuracy of
the CCN retrieval. The sensitivity assessment regarding the
response of CCN to the assumption of bimodal size distri-
butions is presented in Sect. 3.1. For individual lognormal
components, the relationships between the volume and num-
ber distribution parameters are represented by the following
equations (Hatch and Choate, 1929):

rn = rv/exp
[
3(lnσ )2

]
, (2)

Vt = Nt
4π
3

(
rn
)3exp

[
9
2

(lnσ )2
]
, (3)

where Vt is the particle volume concentration and rv is the
median radius for the aerosol volume size distribution. As
shown in Fig. 1 and Table 1, the main difference between the
aerosol subtypes is the ratio of the volume concentration of
the fine mode to the coarse mode.
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Table 1. Typical parameter ranges for the aerosol bimodal distribution used in our study to construct the LUTs. V tf /V
t
c is the ratio of the

volume concentration of the fine mode to the coarse mode. mR and mI represent the mean values of real and imaginary parts of the complex
refractive index.

Aerosol
parameters Marine Dust Polluted continental Clean continental Biomass burning

rvf 0.065–0.085 0.062–0.082 0.075–0.095 0.08–0.11 0.072–0.082
rvc 0.5–0.6 0.59–0.64 0.6–0.71 0.42–0.52 0.75–0.80
σ vf 0.46–0.54 0.4–0.53 0.38–0.46 0.37–0.45 0.4–0.47
σ vc 0.68–0.78 0.6–0.7 0.65–0.75 0.70–0.80 0.65–0.75
V tf /V

t
c 0.1–0.25 0.1–0.5 1.0–2.0 0.01–0.15 1.5–2.5

mR/mI 1.36/0.0015 1.56/0.001 1.47/0.014 1.401/0.003 1.51/0.021
κ 0.7 0.03 0.27 0.31 0.1

3.2 Retrieval of CCN number concentrations

Building upon the methodology proposed by Lv et al. (2018),
we have enhanced and generalized the approach to enable its
application to airborne and spaceborne lidar measurements
for CCN estimation. The core of the algorithm relies on the
utilization of LUTs that incorporate aerosol size and com-
position information, facilitating reliable and vertically re-
solved CCN estimation.NCCN values are obtained at six crit-
ical supersaturations from 0.07 % to 1.0 % based on retrieved
particle size distributions. Significant improvements have
been implemented within the methodology. Firstly, its appli-
cability has been expanded to accommodate lidar measure-
ments from diverse platforms. Secondly, the LUTs now in-
clude five aerosol types, ensuring a more comprehensive rep-
resentation of aerosol characteristics. Thirdly, the methodol-
ogy leverages the additional signal of the extinction coeffi-
cient at 1064 nm, effectively addressing the uncertainty as-
sociated with the non-uniqueness problem during the inver-
sion process. Fourthly, including the hygroscopic growth cor-
rection in the revised method has led to significant improve-
ments in the accuracy of CCN estimation, further enhancing
the reliability and robustness of the CCN estimation. Finally,
the extensive analysis has been conducted by including the
errors from relative humidity (RH).

This section discusses a detailed methodology adopted
by ECLiAP to retrieve NCCN from the given lidar measure-
ments.

3.2.1 Overview

An optically relatedNCCN is introduced to bridge the gap be-
tween aerosol particles and their activation capability to serve
as a cloud droplet. The ability of particles to act as CCN
is mainly controlled by particle size distribution followed
by chemical composition (Patel and Jiang, 2021; Dusek et
al., 2006). However, both factors are significant in specific
regions (Mamouri and Ansmann, 2016). Therefore, NCCN
could be quantified with size distribution and compositional
information. The key feature of an approach adopted in

ECLiAP is to seek the parameters that can provide the size
and composition of particles consistent with lidar measure-
ments under dry conditions and to use these parameters to
estimate NCCN.

Figure 2 illustrates a schematic diagram of the method to
retrieve NCCN from satellite observations.

In the natural environment, the particle hygroscopic prop-
erties influence the particle size distributions and their optical
properties, especially when they are near a cloud base or in
a high-moisture environment. Therefore, the lidar-measured
aerosol optical properties under ambient conditions need to
be corrected to the dry aerosol optical properties using the
hygroscopic enhancement factor. The hygroscopic enhance-
ment factor can be fitted by the parameterization scheme us-
ing enhancement of backscatter and extinction coefficients
with RH. Particle dry backscatter and extinction can also be
inferred from the hygroscopic enhancement factor. An ap-
proach to computing hygroscopic enhancement factors and
performing hygroscopic correction to obtain dry backscatter
and extinction is described in Sect. 2.2.2. This step is ap-
plied to all the 3β+3α parameters before looking for aerosol
size parameters from the LUT. Before applying hygroscopic
correction, lidar-measured optical properties, particularly for
dust mixtures (polluted dust and dusty marine), are sepa-
rated into dust and non-dust components using the backscat-
ter coefficients and particle depolarization ratios (Tesche et
al., 2009). The methodology to separate the dust mixture is
discussed in Appendix A1. The resulting dust and non-dust
aerosol optical properties, along with aerosol subtype and
relative humidity, are then utilized in the ECLiAP algorithm
(as shown in Fig. 2) to estimate CCN concentrations. Note
that the direct inclusion of internal mixtures in our analysis
and LUTs poses complexity and challenges. As a result, our
approach primarily centers on studying and analyzing exter-
nal mixtures of aerosol subtypes.

Once the dry aerosol optical properties are derived,
ECLiAP looks for the suitable size parameters from the
LUTs for the given dry aerosol optical properties and respec-
tive aerosol subtypes (see Sect. 2.2.3). As mentioned earlier,
the ability of particles to act as CCN is mainly controlled
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Figure 2. Flowchart of the ECLiAP algorithm for the retrieval
of NCCN from lidar measurements. The steps within the dotted
line box describe the preprocessing which includes the calcula-
tion of aerosol optical properties using Mie scattering theory (T-
matrix/IGOM for dust) to build lookup tables for five aerosol mod-
els. The steps outside the dotted line box represent the retrieval pro-
cess of NCCN from the given inputs of aerosol optical properties
and meteorological parameters. The chart also refers to the used
equations associated with a particular retrieval process.

by particle size distribution, followed by chemical compo-
sition. Deriving composition information of particles from
the lidar measurements is not yet well-defined. Therefore,
in the absence of chemical composition data, mean chemi-
cal composition information denoted by a single value of κ ,
the so-called hygroscopicity parameter, is achievable for es-
timatingNCCN, which describes the relationship between the
particle dry diameter and CCN activity. The sensitivity of the
estimated NCCN to κ depends strongly on the variability of
the shape of the aerosol size distribution (Wang et al., 2018).
Therefore, the chemical information becomes less important
in estimating NCCN, especially at higher supersaturation (Pa-
tel and Jiang, 2021). Most studies reported that the uncer-
tainty of using the mean value of κ to estimate NCCN is less
than 10 % (Jurányi et al., 2010; Wang et al., 2018), which
varies with atmospheric conditions. In ECLiAP, the literature
values of κ are considered for each aerosol subtype for fur-
ther retrieval. κ is assumed to be 0.7 for marine (Andreae and
Rosenfeld, 2008), 0.03 for dust (Koehler et al., 2009), 0.27
for polluted continental (Liu et al., 2011), 0.3 for clean con-

tinental (Andreae and Rosenfeld, 2008), and 0.1 for smoke
aerosols (Petters et al., 2009) for the later computations.

Finally, ECLiAP uses the retrieved optically equivalent
size parameters from LUTs and κ values as composition in-
formation for the further computation of critical radii using
κ-Köhler theory (Petters and Kreidenweis, 2007) and hence
the NCCN for the six fixed supersaturations (see Sect. 2.2.4).
For the dust mixture,NCCN values derived separately for both
dust and non-dust are added last.

3.2.2 Separation of optical properties for dust mixtures

We have adopted the methodology by Tesche et al. (2009) to
separate the dust and non-dust extinction coefficients in the
dust mixtures (polluted dust and dusty marine) using parti-
cle backscatter coefficients and particle depolarization ratios.
The optical properties are

βd = βp

(
δp− δ2

)
(1+ δ1)

(δ1− δ2)
(
1+ δp

) . (A1.1)

This study incorporates wavelength-dependent depolariza-
tion ratios δ1 and δ2 to distinguish between the dust and non-
dust aerosol components. The reported particle depolariza-
tion ratio from various campaigns is listed in Table S1 in the
Supplement. In this study, mean values of δ1 (0.24, 0.31, and
0.06) and δ2 (0.03, 0.05, and 0.02) at 355, 532, and 1064 nm,
respectively, are utilized. If the measured depolarization ra-
tio is δp>δ1 (<δ2), then the aerosol mixture is considered
pure dust (non-dust). For the remaining δp values, we first
estimate βd using the above equation and then calculate βnd
by subtracting βd from βp. Subsequently, the extinction co-
efficients are computed by multiplying the backscatter coef-
ficients by the respective lidar ratio. Determining a spatially
varying lidar ratio for dust across different regions presents
challenges due to uncertainties in identifying dust source re-
gions during transport. Therefore, we employ a simplified
approach using a single lidar ratio value. Previous studies
have reported little to no wavelength dependency of the li-
dar ratio for dust and marine aerosol based on ground-based
Raman lidar and airborne HSRL lidar measurements. As a
result, we consider constant lidar ratios of 44 for dust and 23
for marine to calculate the extinction coefficients at the three
wavelengths. However, for polluted continental aerosols, we
utilize wavelength-dependent lidar ratios of 58, 70, and 30
at 355, 532, and 1064 nm (Giannakaki et al., 2016; Hänel et
al., 2012; Komppula et al., 2012; Kim et al., 2018; Müller et
al., 2007).

3.2.3 Derivation of dry backscatter and dry extinction

It is difficult to measure the complex chemical composition
and associated water uptake capability of a particle with in-
creasing RH. Therefore, a widely popular and simple pa-
rameterization scheme was used to describe the changes in
aerosol optical properties with atmospheric RH relative to a
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dry (or low-RH) state, also called the hygroscopic enhance-
ment factor. Recent aerosol hygroscopic studies (Lv et al.,
2017; Fernández et al., 2018; Bedoya-Velásquez et al., 2018)
have derived backscatter and extinction enhancement factors
using lidar measurements and RH profiles. The hygroscopic
enhancement factor that is associated with both particle size
and hygroscopicity (Kuang et al., 2017) is defined as

fξ (RH,λ)=
ξ (RH,λ)
ξ
(
RHdry,λ

) , (4)

where fξ is the hygroscopic enhancement factor of the opti-
cal property ξ (backscatter and extinction) at a specific light
wavelength λ and RH, and RHdry is the reference RH value
(RH= 0). There is no generic reference RH that represents
the dry conditions for lidar measurements, unlike in situ con-
trolled RH measurements, to derive the enhancement factor.
Inferring dry backscatter and extinction coefficients is also
crucial in CCN retrieval. Therefore, parameterization of the
hygroscopic growth of lidar-derived optical properties should
combine dry aerosol optical properties and fξ (RH,λ). Previ-
ous studies have proposed several parameterization schemes
for hygroscopic enhancement factors (Titos et al., 2016). The
most frequently used parameterization scheme is a power-
law function that is known as gamma parameterization, in-
troduced by Kasten (1969):

fξ (RH, λ) = A. (1 − RH/100)−γ , (5)

where the parameter A gives the extrapolated value at
RH= 0 % and the exponent γ is the fitting parameter and
defines the hygroscopic behavior of the particles. Recently,
a new physically based single-parameter representation ap-
proach was proposed by Brock et al. (2016) to describe the
hygroscopic enhancement factor. Their results claimed that
this proposed parameterization scheme better describes light-
scattering hygroscopic enhancement factors than the widely
used gamma power-law approximation. The formula of this
new scheme is written as

ξ (RH, λ)= ξdry (RH, λ) .fξ (RH)= ξdry (RH, λ) .[
1+ κξ (λ)

RH
100− RH

]
, (6)

where κξ is a dimensionless fitting parameter and shows a
significant correlation with bulk hygroscopic parameter κ ,
but they are not equivalent (Brock et al., 2016; Kuang et al.,
2017). ξdry denotes dry aerosol optical properties (backscat-
ter and extinction coefficients).

For the estimation of the hygroscopic enactment factor,
aerosol optical properties (backscatter and extinction coeffi-
cients) at 355, 532, and 1064 nm are calculated over a range
of RH (0 %–99 %) using Mie theory (TMM and IGOM for
spheroids) for the range of PSDs and each aerosol subtype.
Figure S1 in the Supplement illustrates the mean curve of
the hygroscopic enhancement factor (the ratio between the

aerosol optical properties at a specific RH to a dry RH) at
three wavelengths with an increasing RH for each aerosol
subtype. With given aerosol optical properties at different
RHs, κξ can be fitted by curve fitting using Eq. (6). How-
ever, Tan et al. (2019), based on a comparison of κξ and de-
rived ξdry for various ranges of RH, showed that the fitting
hygroscopic parameters are found to be sensitive to the fit-
ting RH range when the RH range is limited and relatively
high (between 60 % and 90 %). Therefore, we fixed the RH
range to 60 %–90 % for the parameter fitting (highlighted
curve in Fig. S1). In addition, retrieving finite dry aerosol
optical properties could not be possible for the observation
with RH> 99 %. Therefore, ECLiAP only applies the hy-
groscopic correction when RH is between 40 % and 99 %. In
ECLiAP, individual κξ values for each aerosol optical prop-
erty at three different wavelengths, along with the RH value,
are used to obtain the dry aerosol optical properties sepa-
rately for each aerosol subtype using Eq. (6).

3.2.4 Inversion techniques for size parameters

ECLiAP utilizes an inverse approach, distinct from tradi-
tional methods, to estimate the particle size distribution from
LUTs using lidar inputs. This process involves inferring par-
ticle size distributions from known aerosol optical properties,
determining the best-fitting solution that corresponds to the
observed lidar measurements. It differs from the traditional
3α+ 2β technique typically used for inversion.

Once the dry aerosol optical properties are obtained,
ECLiAP searches for suitable size parameters from the
LUTs. For this, ECLiAP looks for the best combination of
six values (Ntf, rf,σf,Ntc, rc,σc) to match inputs (β355,β532,
β1064, α355, α532, α1064) by minimizing the following func-
tion:

µsum
=

∑
i=1,...,6

∣∣∣∣xi − xi ′xi

∣∣∣∣ , (7)

where xi represents input aerosol optical data (β355, β532,
β1064, α355, α532, α1064), and xi

′ is aerosol optical data
(β ′355,β

′
532, β ′1064, α′355, α′532, α′1064) derived from LUTs,

which are calculated from Mie theory (or T-matrix and
IGOM for spheroids) and size distribution parameters.

Each LUT consists of two parts to reduce the dimensions
and sizes of LUTs. Therefore, the particle size distribution,
as shown in Eq. (1), can be rewritten as

dn (r)
d ln(r)

=

∑
i=f,c

{
1

(2π )1/2 lnσi
exp

[
−

(
lnr − lnrni

)2
2(lnσi )2

]
.Nt i

}

=

∑
i=f,c

xi .Nt i, (8)

where xf and xc refer to the database precomputed with (σf,
rf, and r) and (σc, rc, and r), respectively. Furthermore, we
have adopted the successive approximation method (Kan-
torovitch, 1939) to deal with the extensive range of Ntf and
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to speed up finding the closest solution. Therefore, the in-
version technique is further divided into two steps. Step 1:
search for an approximate solution based on the criterion in
Eq. (8) and calculate the corresponding aerosol optical data
(β ′355,β

′
532, β ′1064, α′355, α′532, α′1064) from the databases

(xf and xc) and Ntf and Ntc. The step widths of Ntf and Ntc
are considered to be 100 and 0.1 cm−3, respectively. Step 2:
based on the approximate solution obtained in step 1, deter-
mine the smallest solution space of Ntf by repeating the pro-
cedure in step 1 using a smaller step width of 10 cm−3 for
Ntf. Search for the optimal solution of six size parameters
(Ntf, rf,σf, Ntc, rc, σc).

3.2.5 Estimation of NCCN

For the given aerosol optical properties, the retrieved size pa-
rameters and the associated hygroscopicity parameter (κ , as
discussed in Sect. 2.2.1) were used to calculate the critical
radius. The critical radius (rcrit) above which all particles are
activated into droplets for a certain supersaturation ratio (Sc)
can be computed from κ-Köhler theory, as suggested by Pet-
ters and Kreidenweis (2007):

Dcrit =

(
4A3

27 · κ · ln (Sc)2

)1/3

,A =
4σs/aMw

RT ρw
, (9)

where Dcrit is the critical diameter (rcrit = Dcrit/2); Sc =

SS+1,Mw, and ρw are the molecular weight and water den-
sity; R and T are the ideal gas constant and the absolute tem-
perature, respectively; and σs/a = 0.072 J m−2. The critical
radius is determined at six critical supersaturations for acti-
vation (0.07 %, 0.1 %, 0.2 %, 0.4 %, 0.8 %, and 1.0 %). While
lidar measurements are more sensitive to particles with sizes
around 50 nm and larger, this method incorporates factors
such as particle size distribution, chemical composition, su-
persaturation levels, and thermodynamic properties to esti-
mate the critical radius, even for particles below the typical
lidar sensitivity range.

Finally, ECLiAP calculates NCCN by integrating the size
distribution from the critical radius to the maximum radius
as

Nccn =

∫ ln rmax

lnrc

dn (r)
d ln(r)

d ln(r) . (10)

4 Results

4.1 Sensitivity analysis

Evaluating the algorithm is a challenging task in the absence
of standard and reliable measurements. The performance of
ECLiAP is evaluated using numerically simulated observa-
tions with different error characteristics.

4.1.1 Retrieval of NCCN with error-free data

To assess the inversion performance and stability ECLiAP,
we first performed a sensitivity analysis under the assump-
tion of error-free lidar measurements. We used 2000 differ-
ent sets of bimodal size distributions for each aerosol sub-
type and used them to simulate the lidar observations. The
retrieval was repeated for each simulated lidar observation,
and the retrieved size parameters were used to calculate the
errors in the retrievedNCCN (N ret

CCN) with respect to the initial
inputs (N int

CCN). The errors were calculated as the percentage
difference using Eq. (8).

CCNError=
[(
N ret

CCN− N
int
CCN

)
/N int

CCN

]
× 100% (11)

Table 2 lists the statistical results of CCN error for each
aerosol type. As the number shows, the initial NCCN is re-
produced well from the error-free inputs for each aerosol size
distribution. The standard deviation of the retrieved CCN er-
rors from the different sets of bimodal size distribution data
is also estimated along with the mean value to determine
the range of the retrieved CCN error. As mentioned above,
the appropriate balance between the accuracy and process-
ing time of the LUTs provides a mean CCN error close to
zero but not equal to zero. However, the small standard devia-
tion (< 0.25) indicates the smaller variances of errors among
the aerosol size distributions. Although the high accuracy of
LUTs provides a CCN error closer to zero, the calculations
are more time-consuming. In general, the retrieval results
shown in Table 2 exhibit good accuracy and stability of the
inversion algorithm for each aerosol subtype.

Additionally, the sensitivity of the NCCN retrieval to the
assumption of the bimodal size distribution is tested against
the aerosol size distribution measurements at the U.S. De-
partment of Energy’s Atmospheric Radiation Measurement
(ARM) climate research facility at the Southern Great Plains
(SGP) site. Particle size distribution was measured simulta-
neously by an Ultra-High Sensitivity Aerosol Spectrometer
(for the 0.07 to 1 µm geometric diameter range) and an Aero-
dynamic Particle Sizer (TSI-3321, for the 0.7 to 5 µm aerody-
namic diameter range). The size conversion factor, defined as
the ratio of aerodynamic diameter to geometric diameter, was
used to construct a trimodal lognormal particle size distribu-
tion. For the purpose of this study, the corresponding bimodal
fits are produced that are representative of the observed size
distributions. Figure S2 shows an example of the observed
aerosol size distribution and the corresponding bimodal fits.
The comparison suggests that bimodal lognormal size distri-
butions can qualitatively represent the observed aerosol size
distributions well. Later, we calculate NCCN based on the bi-
modal fits and compare it to the 100 observed size distri-
butions to quantify the errors arising from the bimodal log-
normal fits. The associated κ values are estimated based on
observed PSDs and NCCN values as described in Patel and
Jiang (2021). The induced CCN errors from the bimodal fit-
ting are shown in Table 3. The absolute value of NCCN re-
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Table 2. CCN errors at the six supersaturations (SSs) retrieved from error-free inputs for the five aerosol types.

Aerosol type CCN error (%)

0.07 % 0.1 % 0.2 % 0.4 % 0.8 % 1.0 %

Marine −0.00± 0.21 −0.01± 0.23 0.00± 0.26 −0.00± 0.25 0.00± 0.23 −0.00± 0.24
Dust −0.01± 0.22 −0.01± 0.23 0.00± 0.26 −0.01± 0.24 0.00± 0.25 −0.01± 0.23

Mean±SD (%) Polluted continental −0.01± 0.18 0.00± 0.18 −0.01± 0.16 0.00± 0.18 −0.01± 0.19 −0.00± 0.18
Clean continental −0.01± 0.19 −0.01± 0.20 −0.01± 0.19 −0.00± 0.17 −0.00± 0.18 −0.01± 0.17
Smoke −0.01± 0.19 −0.01± 0.21 −0.01± 0.18 −0.01± 0.20 −0.00± 0.22 −0.01± 0.19

trieval errors is 3.9 %, with a standard deviation of 2.8 %
at 0.1 % supersaturation. Overall, the results suggest that bi-
modal lognormal aerosol size distributions are adequate for
retrieving NCCN, but errors from the bimodal assumption are
not negligible.

4.1.2 Impact of systematic and random errors on NCCN
retrieval

Both systematic and random errors exist in lidar-retrieved
measurements (Mattis et al., 2016). Systematic errors can
be induced by experimental conditions, retrieval algorithms,
data processing methods, and our understanding of physi-
cal interactions. Sensitivity analysis tests the impacts of sys-
tematic errors from backscatter and extinction coefficients
on NCCN retrieval. Although the systematic errors of differ-
ent parameters are correlated, the errors are considered in-
dependent for individual lidar measurements in the simula-
tions. The error range is reasonable for most current lidar
systems. The systematic errors ranging from −20 % to 20 %
with an interval of 5 % are applied to one input parameter at
a time (others are kept error-free) in each test to understand
the impacts on individual parameters better. The inversion
algorithm is performed to obtain a new set of aerosol size
distributions and to retrieve NCCN data. The procedure is re-
peated for each input parameter and error value with 200 sets
of the randomly generated size distribution for each aerosol
subtype. The percentage errors in NCCN associated with sys-
tematic errors can be estimated by comparing retrieved and
initial values of NCCN using Eq. (11). Note that we have
also conducted additional simulations for higher ranges of
the error and found that our results are unchanged. However,
Pérez-Ramírez et al. (2013) demonstrated that larger errors
in the input data can cause significant and unpredictable de-
viation in the retrieved results. The error range±20 % is rea-
sonable for most lidar systems.

Figure 3 illustrates the error in retrieved NCCN as a func-
tion of the systematic errors in backscatter and extinction co-
efficients. The slope of the curve indicates the sensitivity of
CCN errors to systematic errors in individual parameters. A
steeper slope infers a high sensitivity in the NCCN retrieval
to the systematic error for a given input parameter. Errors
in retrieved NCCN increase as errors of backscatter and ex-

tinction increase, and it is even steeper at higher supersatu-
rations. In general, NCCN retrievals are most sensitive to er-
rors in extinction coefficients, followed by backscatter coeffi-
cients. Interestingly, the results are less sensitive to errors in
backscatter coefficients at lower supersaturations (≤ 0.2 %)
but are relatively more sensitive at higher supersaturations
(> 0.2 %). This indicates that reducing uncertainties in the
extinction coefficients can effectively improve the accuracy
of NCCN retrieval, while reducing uncertainty in backscatter
coefficients can be beneficial for retrieving NCCN at higher
supersaturation. Errors in α355 influence the retrieval results
the most. On average, a positive relative error of 20 % in α355
overestimates the NCCN retrieval by about 20 % at lower su-
persaturation and by about 50 % at higher supersaturation. A
negative error of 20 % in α355 underestimates the NCCN re-
trieval, and the degree of impact is slightly higher than the
positive error. Errors in α532 and α355 have the opposite ef-
fect on the retrieval error. It is also clear that the influence
of systematic errors on the retrieval of NCCN varies with
the activation radius, as elucidated by the different signs of
the slopes. For instance, the slopes of the extinction coeffi-
cient for dust aerosols reverse the sign when the activation
radius exceeds low to high supersaturations. These differ-
ences most likely result from the reduced retrieval sensitivity
to the coarse mode of the aerosol size distribution. In addi-
tion, there are substantial distinctions between the types of
aerosols. Dust and marine aerosols have the largest absolute
errors compared to others dominated by fine-mode particles
(see Table 2). These collectively indicate that there are bet-
ter constraints for fine-mode aerosols than for coarse-mode
aerosols, which introduce a larger retrieval error in NCCN for
aerosols with more weight in the coarse mode. It is note-
worthy that incorporating an additional input signal of ex-
tinction coefficients at 1064 nm in ECLiAP reduces the error
by ∼ 20 % in the coarse-mode-dominated aerosol subtypes
(dust and marine) and ∼ 15 % in total compared to previous
studies (Lv et al., 2018; Tan et al., 2019). Nevertheless, inte-
grating an additional lidar signal at a wavelength longer than
1064 nm may further reduce retrieval error for the coarse-
mode-dominated aerosol type.

RH is another crucial parameter in the present retrieval al-
gorithm for NCCN. Errors in RH derived by remote sensing
or reanalysis influence the values of growth factors and re-
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Table 3. Sensitivity of CCN retrieval to the bimodal fits at different supersaturation ratios from the 100 aerosol size distributions obtained
from ARM-SGP. The CCN error is calculated as an absolute value.

CCN error (%)

Mean±SD (%) 0.07 % 0.1 % 0.2 % 0.4 % 0.8 % 1.0 %
3.3± 2.4 3.9± 2.8 3.1± 2.7 2.9± 1.8 2.1± 1.5 1.7± 1.3

Figure 3. Systematic errors in retrieved NCCN. This represents
the errors in retrieved NCCN as a function of systematic errors in
backscatter and extinction coefficients at all three wavelengths for
low (≤ 0.2 %) and high (> 0.2 %) supersaturations and for all five
aerosol subtypes. The markers denote the mean value, and the error
bars represent the standard deviation.

sult in the dry aerosol optical properties, which in turn in-
fluence all the input parameters. Therefore, systematic errors
ranging from −10 % to 10 % in intervals of 2 % are consid-
ered for RH. Figure 4 shows the result of systematic errors in
RH. We observed that NCCN is overestimated when RH has
a negative systematic error, and the extent of overestimation
in NCCN increases as the error increases. A negative error
of 10 % in RH overestimates NCCN at lower supersaturation
by about 20 % and doubles at higher supersaturation. The ef-
fects of the positive errors in RH are relatively smaller and
more complicated than negative errors. The mean retrieval
error peaked at the RH error at 6 %, and the standard devi-
ation of the retrieval error increased with the RH error. This

Figure 4. Systematic errors in retrieved NCCN. This represents
the errors in retrieved NCCN as a function of systematic error in
RH, combined for all aerosol subtypes at low (≤ 0.2 %) and high
(> 0.2 %) supersaturations. The markers denote the mean value, and
the error bars represent the standard deviation.

suggests that underestimating RH causes larger errors than
overestimation. Therefore, extra care should be given to RH
measurements if RH-related hygroscopic enhancements of
aerosol optical properties are considered.

Systematic errors introduce mean biases into NCCN re-
trievals, whereas random errors in observations produce ran-
dom NCCN retrieval errors. Random errors obeying Gaussian
distributions are produced arbitrarily with a mean value of
zero. The standard deviations are set to 10 % for aerosol op-
tical properties and to 5 %, 10 %, and 20 % for RH in each
test. The simulation is repeated 5000 times for each aerosol
subtype, and the statistical results are presented in Fig. 5. The
mean values of relative error are presented by color, and the
number indicates the standard deviation. The error does not
change significantly as the random error of RH increases.
The mean random errors are relatively small and non-zero,
mainly because the sensitivities of NCCN retrievals are dif-
ferent for different aerosol optical data. The standard devia-
tions are within 16 %–28 %. The results reveal that random
errors in the given input parameters may also contribute to
systematic errors in the NCCN retrievals. The largest mean
relative errors are found for coarse-mode-dominated aerosol
subtypes (dust and marine), consistent with the sensitivities
to systematic errors. As discussed earlier, considering ad-
ditional lidar measurements at longer wavelengths that are
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Figure 5. Random errors in retrieved NCCN. This represents
the random errors in retrieved NCCN at low (≤ 0.2 %) and high
(> 0.2 %) supersaturations with different random error conditions
individually for five aerosol subtypes. The uncertainty of backscat-
ter and extinction coefficients of all the tests is 10 %, and the uncer-
tainties of RH are 5 %, 10 %, and 20 %. The color shows the mean
values, whereas the number shows the ±1 standard deviation of the
errors.

more sensitive to larger particles could improve the retrieval
of NCCN for the coarse-mode-dominated aerosol subtypes.
The mean values of relative errors increase with increasing
supersaturation for all the aerosol types. Errors in the re-
trieved NCCN follow a Gaussian distribution for low super-
saturation. However, the Gaussian shape disappears, and the
high frequencies shift to the edge of the distribution when su-
persaturation shifts from low to high (not shown here). Fur-
thermore, the influence of random errors on the individual
input parameters is also assessed and is shown in Fig. S3.
Random errors underestimate the enhancement factor (κξ ) by
30 %–40 % for 5 % RH error, 45 %–60 % for 10 % RH error,
and 65 %–75 % for 20 % RH error. The relative errors in β
are likely to be overestimated, whereas they are underesti-
mated in α. The absolute relative error of input parameters
becomes larger as the random error of RH grows.

4.2 Comparison to airborne measurements

The evaluation of NCCN retrieval depends on how well re-
trieved and observed values are matched, as matching er-
rors can become overwhelming. Therefore, we have carried
out a validation approach by comparing ECLiAP-retrieved
NCCN from lidar measurements to the in situ measurements
of NCCN by the CCN counter during the NASA ORACLES
airborne campaign, which occurred from 2016 to 2018 over
the SEA (Redemann et al., 2021; Zuidema et al., 2016).

HSRL-2 measures the vertical profiles of aerosol optical
properties, whereas the CCN counter provides measurements
for point location. Therefore, we carried out two strategi-

cally different validation exercises in this study: (1) the ver-
tical profile-based comparison and (2) the comparison of
collocated measurements. For the profile-based comparison,
an ascending path of flight (area covered within the yellow
dashed line in Fig. S4) on 19 October 2018 has been consid-
ered, so the measurements of the CCN counter can be avail-
able at various altitudes. Prior to comparison, the lidar mea-
surements from HSRL-2 are averaged over a selected wide
space and time (yellow dashed line box in Fig. S4). The
NCCN measurements from the CCN counter were available
at a supersaturation between 0.32 % and 0.34 %. Hence, the
NCCN were retrieved at a supersaturation of 0.34 % by ap-
plying ECLiAP to the mean profiles of lidar measurements.
It is noteworthy that the retrieval has been carried out only
on those observations with valid lidar measurements for at
least two wavelengths. Figure 6a demonstrates the retrieval
fit to HSRL-2’s vertical dry aerosol extinction coefficient
measurements at 355, 532, and 1064 nm. A smoke aerosol
dominates ∼ 93 % of profiles at altitudes above 800 m and
marine at lower altitudes (< 800 m), with RH between 30 %
and 105 %. The finite dry aerosol optical properties close to
the surface could not be retrieved for the observations with
RH> 99 %. The retrieved profiles of dry extinction coeffi-
cients are in better agreement with those measured by HSRL-
2. This illustrates the ability of the κ parametrization to ac-
count for aerosol hygroscopicity. The vertical mean of the
absolute fitting error of the extinction coefficient is found to
be 3.2 %, 4.8 %, and 6.3 % for 355, 532, and 1064 nm, re-
spectively, and the vertical mean of the absolute fitting error
of the backscatter coefficients is 5.1 %, 6.7 %, and 8.9 % for
355, 532, and 1064 nm, respectively. The fit to the backscat-
ter coefficients of 1064 nm has a relatively larger error. Cer-
tainly, one needs to know that the vertically resolved extinc-
tion coefficient at 1064 nm is derived using the backscatter
coefficient at 1064 nm and the lidar ratio. Since HSRL-2 does
not directly measure extinction at 1064 nm, it is computed
from an assumed relationship with the measured lidar ratio
at 532 nm. Though provided as a best guess, such an estimate
may cause extra uncertainty at 1064 nm. Furthermore, the
comparison of vertical profiles of ECLiAP-retrieved NCCN
from lidar measurements and the NCCN measured by the
CCN counter is shown in Fig. 6b. The retrieved values cap-
tured the pattern of altitude variations in NCCN as observed
by the in situ measurements. However, the magnitude of the
retrieved NCCN is slightly overestimated, by ∼ 12 % in total.
The overestimation is lower (∼ 9 %) at above 2 km, whereas,
at below 1 km, it is slightly higher (∼ 16 %). A plausible rea-
son behind the relatively large overestimation at below 1 km
might be the considerable variation of RH between 60 % and
105 % and/or the highly variable aerosol properties due to
the mixture of multiple aerosol subtypes (smoke, marine,
and dust). In addition, wind-driven advection and the age of
the air parcel radically modify the characteristics of smoke
aerosols and their hygroscopic behavior, which also leads to
the slight overestimation of retrieved NCCN values. The dis-
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Figure 6. Comparison between retrieved and observed vertical pro-
files of aerosol extinction coefficients and NCCN. The ECLiAP-
retrieved (a) aerosol extinction coefficients at 355, 532, and
1064 nm and (b) NCCN were compared against the one observed
during the NASA ORACLES airborne campaign. The lidar signals
were mainly influenced by the mixture of smoke and dust or ma-
rine aerosols. The relationship between HSRL-2-measured aerosol
extinction coefficients (solid lines) and retrieved ones (dotted line)
with an algorithm in panel (a). Panel (b) illustrates the comparison
of retrieved NCCN using lidar measurements and measured by the
CCN counter. The dashed line in panel (b) shows the moving aver-
age of retrieved NCCN values. The CCN counter measured NCCN
at a supersaturation ranging from 0.32 % to 0.34 % for the selected
region (described in Fig. S4). Therefore, the retrieval of NCCN was
carried out at a supersaturation of 0.34 %.

crepancy between the retrieved and observed values ofNCCN
should be reassessed with the robust measurements from the
varieties of aerosol subtypes using the multi-campaign air-
borne data.

The second robust validation exercise is performed based
on collocated measurements and using 2 years (2017–2018)
of combined data from the ORACLES campaign. In 2017–
2018, both HSRL-2 and the CCN counter were installed on
the NASA P-3 flight. The end goal of this exercise is to find
one lidar measurement from HSRL-2 to directly compare it
to one NCCN measured by the CCN counter, both observed
in approximately the same time and space. We defined collo-
cation criteria for any given HSRL-2 profile as follows. The
collocation method finds CCN measurement that falls within
± 1.1 km horizontal distance, ± 60 m vertical distance, and
± 10 min of the time window. Later, the meteorological pa-
rameters within the given space and time windows are ex-
tracted along with lidar measurements and measured NCCN
from each flight of the 2017–2018 ORACLES campaign.
ECLiAP is applied to each lidar measurement for NCCN re-
trieval of the same supersaturation value measured by the

Figure 7. Comparison between retrieved and observed NCCN. The
comparison between ECLiAP-retrieved NCCN from HSRL-2 li-
dar measurements and the measured NCCN values from the CCN
counter. The HSRL-2 and CCN counter data were collected from
the multiple flights during NASA ORACLES airborne campaigns
conducted in 2017–2018. The color bar displays the observed values
of supersaturation for each measurement, and the NCCN were re-
trieved at the same supersaturation for direct comparison. The slope
and intercept of the best-fit line are given in the key by m and b,
respectively. The gray dashed line indicates the unit slope line, and
the blue solid line indicates the regression line.

CCN counter (lying within the range from 0.2 % to 0.4 %
SS). Figure 7 represents the result from the comparison of
retrieved and measured NCCN. The NCCN inferred from the
CCN counter measurement is in better agreement with the
retrieved NCCN, with a correlation coefficient (R) of ∼ 0.89,
a root mean square error (RMSE) value of 302.8 cm−3, and
a bias of 138.8 cm−3. The systematic positive bias in the
comparison indicates that the retrieved NCCN overestimates
the observed values. It is noteworthy that smoke aerosols
dominate in the observations from ORACLES, but it also
has significant observations from marine, dust, and polluted
dust. The discrepancy between measured and retrieved val-
ues could be due to the variabilities in the aerosol proper-
ties. Overall, the strong correlation in the validation results
demonstrates the potential of ECLiAP to retrieve NCCN from
lidar measurements. It recommends having a detailed valida-
tion study separate for aerosol subtypes using ground-based
and aircraft measurements to evaluate the reliability of the
ECLiAP algorithm in estimating the NCCN.
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4.3 Retrieving NCCN from spaceborne lidar
(CALIOP/CALIPSO): a case study

Extending the scope of ECLiAP, the methodology was con-
verted into a procedure that can be applied to any level-2
aerosol profile dataset from CALIOP on CALIPSO (Winker
et al., 2007). As an illustrative example, this procedure was
applied to a regular CALIPSO track for 1 January 2019
starting at 20:08 UTC, which spans from 10 to 40° N, pass-
ing over the Tibetan Plateau and the Indian land mass. The
CALIPSO track (solid black line) can be seen on the right-
hand side in Fig. 8a. CALIOP aboard CALIPSO provides
measurements of aerosol optical properties at two wave-
lengths only (532 and 1064 nm). Therefore, a total of six pa-
rameters (β532, β1064, α532, α1064, depolarization ratio, and
aerosol subtypes) from CALIOP along with meteorological
parameters (RH, temperature) are provided as the inputs to
ECLiAP and retrieved total particle concentrations NCN and
NCCN at six supersaturations as outputs. The NCN amount
represents the total number of aerosol particles that can serve
as centers for condensation, while theNCCN is the fraction of
NCN that can activate as CCN.

The extinction coefficient at 532 nm and aerosol subtypes,
along with retrieved NCN and NCCN at a supersaturation of
0.4 %, are shown in Fig. 8. Unfortunately, due to the retrieval
limitation over the elevated region along with cloudiness,
there are no valid aerosol measurements over the Himalayan–
Tibetan Plateau (as shown by a gap between 28 and 37° N).
In contrast, a strong mixed aerosol signal is observed over
the Indian land mass (α532 larger than 2.5 km−1), while
an elevated (altitude> 1 km) dust aerosol layer (α532 =∼

1.0 km−1) is at the edge of the CALIPSO track over the
Taklamakan desert (above 38° N). Over southern India (be-
low 17° N), polluted continental aerosols prevail (α532 be-
tween 0.5 and 0.8 km−1) and mostly accumulate within the
boundary layer (∼ 1.5 km a.s.l.), while over northern India
(above 19° N), the aerosol situation includes a mixture of pol-
luted continental and polluted dust (α532 =∼ 1.6 km−1 be-
low 1 km altitude). The corresponding vertical cross section
of retrieved NCN and NCCN at a supersaturation of 0.4 % us-
ing ECLiAP can be seen in Fig. 8c and d, respectively. NCN
andNCCN larger than 25 000 and 3000 cm−3 at a supersatura-
tion of 0.4 % appear over the areas where polluted continen-
tal aerosols dominate (southern India), while NCCN greater
than 2000 cm−3 appears over northern India. Dust NCCN of
100 to 200 cm−3 appears over the Taklamakan desert region.

To verify the capability of ECLiAP retrieval to capture
similar variability of particle physicochemical characteris-
tics and its influence on CCN retrievals, we have investi-
gated two distinct cases identified based on the variation in
aerosol subtypes and meteorological variables. These scenar-
ios are as follows. (1) Case I: domination of polluted conti-
nental aerosols over southern India (red-colored box covered
in Fig. 8); (2) case II: a mixture of polluted dust and pol-
luted continental aerosols over northern India (blue-colored

box covered in Fig. 8). The profiles of extinction coefficients
at 532 nm and relative humidity, along with retrieved NCN
and NCCN at six supersaturations, are presented in Fig. 9.
Figure 9a shows the profiles of the extinction coefficient at
532 nm and relative humidity for both cases. The extinction
profile in case I ranges from 0.7 to 1.2 km−1, is dominated by
polluted continental aerosols under high-moisture conditions
(RH between 60 % and 80 %), accumulates within the bound-
ary layer (∼ 1.5 km), and peaks at∼ 1.2 km. Conversely, case
II represents the low-moisture condition (RH≤ 30 %), with
relatively large extinction coefficient values with a maximum
of 1.6 km−1 at ∼ 0.2 km altitude influenced mainly by the
mixture of polluted continental and polluted dust aerosols.
These two cases are dynamically diverse and different in na-
ture, providing a solid platform for verifying the capability of
ECLiAP to retrieve NCCN. Figure 9b illustrates the retrieved
NCN using ECLiAP for both cases. The retrieved mean val-
ues of NCN are observed to be almost similar (∼ 12 000 and
∼ 11 000 cm−3 for case I and case II, respectively). The pro-
files of NCN follow a similar vertical distribution pattern of
extinction coefficients. Figure 9c and d display the retrieved
NCCN at six supersaturations for cases I and II, respectively.
Interestingly, NCCN values are found to be relatively lower
in case II, though its extinction coefficient is larger than in
case I. Note that ECLiAP considers polluted dust to be a
mixture of polluted continental and dust aerosol for retriev-
ing NCCN. The abovementioned discrepancy can only be ex-
plained by the intrusion of dust and its non-hygroscopic be-
havior along with dry conditions, further reducing the con-
centration of hygroscopic aerosols that leads to a decrease in
NCCN. This has been clearly reflected in the calculated acti-
vation ratio (AR=NCCN/NCN) spectra in Fig. S5. Figure S5
directly compares the AR spectra as a function of SS for both
cases. The observed differences in the AR spectra reflect the
ability of the particles to act as CCN. Relatively speaking,
larger values of AR in case I indicate the dominance of hy-
groscopic aerosols activated to CCN under high moisture and
increased NCCN. In contrast, the dust intrusion in case II re-
duces the capability of particles to activate as CCN under
low moisture and further reduces AR by ∼ 20 %–60 % for
the range of supersaturation from 0.07 % to 1.0 %. Given
the limited sample space, the aim of the study is to demon-
strate the potential of ECLiAP to retrieve reliable NCCN data
from spaceborne lidar measurements. We have adapted the
retrieval approach to accommodate the available data, utiliz-
ing aerosol optical properties at two wavelengths and mete-
orological datasets. These modifications introduce potential
limitations and uncertainties due to the availability of a lim-
ited number of input parameters. While the CALIPSO case
study offers valuable insights, we stress the need for further
validation with independent measurements. A detailed com-
prehensive analysis comparing the CALIOP-retrieved NCCN
to multi-campaign airborne measurements is essential for
evaluating the reliability of ECLiAP in constructing the 3D
CCN climatology at a global scale.
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Figure 8. Retrieval from spaceborne lidar measurements. Explore the capability of ECLiAP, the NCN, and NCCN retrieved from CALIOP
aboard CALIPSO observations on 1 January 2019, passing over the Tibetan Plateau and the Indian land mass. CALIOP-derived (a) extinction
coefficient at 532 nm; (b) aerosol subtypes were shown in the upper two panels. The lower two panels illustrate the ECLiAP-retrieved (c) total
particle concentrations (NCN) and (d) NCCN at supersaturation 0.4 %. The two-color boxes in red (case I) and blue (case II) are the two
different scenarios that are further studied to assess the capability of ECLiAP.

5 Discussion

Due to the absence of vertically resolved information in
AOD, using it as a proxy for CCN in ACI studies has several
shortcomings. Among other issues, a column property like
AOD is not necessarily representative of NCCN at altitudes,
which affects the formation and growth of the cloud. Because
no reliable global estimate of NCCN exists, the fundamen-
tal assumptions of ACI cannot be robustly verified with the
available sparse and localized in situ measurements. In this
study, we present a novel approach based on the 3β+3 tech-
nique for retrieving vertically resolved cloud-relevant NCCN
from a single spaceborne lidar sensor. With this development,
we demonstrate a new application of active satellite remote
sensing that can provide direct measurements of CCN to im-
prove understanding of ACI processes.

To address the problem of the non-uniqueness of a solu-
tion in the 3β + 2α inverse technique, we have adopted a
more realistic LUT-based approach using the 3β+3α multi-
wavelength technique, reflecting the bimodal particle distri-
bution in the atmosphere better. Previous studies (Lv et al.,
2018; Tan et al., 2019) demonstrated that CCN estimation is
more highly sensitive to the extinction coefficient than the
backscatter coefficient, thereby leveraging the availability of
derived extinction coefficients at 1064 nm as an additional
input to ECLiAP to improve the retrieval accuracy of par-
ticle size distribution, particularly for the coarse mode. In
order to verify the performance, the CCN estimation error,
using Eq. (12), has been calculated using both 3β + 2α and
3β + 3α techniques for each aerosol subtype in comparison
to the observed CCN values. The relative difference in the
CCN estimation error between 3β + 2α and 3β + 3α tech-
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Figure 9. Case studied from CALIOP observations. As mentioned
above, two different scenarios (case 1 dominated by polluted conti-
nental and case II containing a mixture of polluted continental and
polluted dust) were identified and studied in detail to assess the po-
tential of ECLiAP to accurately capture the particles’ physicochem-
ical characteristics and their influence on the retrieved values along
with meteorological influence.

niques for each aerosol subtype is shown in Fig. 10. The anal-
ysis shows that insertion of the α1064 signal in the 3β + 3α
technique improves the CCN estimation by ∼ 15 % in total
and∼ 20 % for the coarse-mode-dominated aerosol subtypes
(i.e., marine and dust aerosols) compared to 3β + 2α. Based
on CCN closure analysis, Patel and Jiang (2021) suggested
that particle size and chemical composition are more crucial
in the CCN activity at lower SS. In contrast, at higher SS,
most particles become activated regardless of their size and
composition. Therefore, the improvement in CCN estimation
is relatively large at low SS (SS< 0.2 %) than at high SS
(SS> 0.2 %). In our NCCN retrieval approach, we use mul-
tiple input parameters: aerosol optical properties (α355, α532,
α1064, β355, β532, and β1064) and RH. Each parameter plays
a unique role in constraining aerosol size and concentration

Figure 10. Relative difference in CCN error between 3β + 2α and
3β + 3α. The CCN errors were calculated against the given inputs
using Eq. (11) for both the 3β + 2α and 3β + 3α techniques indi-
vidually. Later the relative difference of CCN error was calculated
from the individual CCN errors at low and high supersaturations for
each aerosol subtype.

accurately. Through sensitivity analyses, we found that us-
ing all seven parameters leads to improved retrieval accuracy
compared to a reduced set. The interplay between the param-
eters enhances the performance of algorithms, resulting in
reliable and consistent NCCN retrievals. The combination of
aerosol optical properties and RH provides a comprehensive
understanding of aerosol behavior, ensuring a more holistic
characterization of aerosol properties in our study.

Systematic and random errors in the lidar measurements
were evaluated individually and discussed in the sensitiv-
ity analysis. Both systematic and random errors realistically
coexist in optical parameters, and therefore we have evalu-
ated their concurrent effect. The simulations were conducted
with both systematic and random errors co-occurring. The
results (not shown here) show that the retrieved CCN er-
rors are much smaller than the error obtained individually
and either systematically or randomly at each wavelength in-
dependently. The mean CCN error ranges between 7 % and
15 % at SS from 0.07 % to 1.0 %. This retrieved CCN error is
slightly large (∼ 12 %–18 %) for the coarse-mode-dominated
aerosol subtypes (dust and marine). Summing up errors from
multiple optical parameters might compensate for them and
improve the CCN retrievals. Furthermore, the retrieval from
ECLiAP has a few constraints. (i) It strongly depends on the
accuracy of lidar-measured aerosol optical properties. The
retrieval is only possible if the lidar signals are available at at
least two wavelengths. (ii) The non-spherical shape of dust

Atmos. Chem. Phys., 24, 2861–2883, 2024 https://doi.org/10.5194/acp-24-2861-2024



P. N. Patel et al.: Lidar-based estimation of CCN 2877

particles: while this study considers the spheroidal shape of
dust particles, a recent study by Haarig et al. (2022) sug-
gested that the assumption of spheroidal dust particles has
limitations in obtaining an accurate particle depolarization
ratio. Therefore, our assumption of spheroidal shape may not
fully capture the complexity of dust particles and could lead
to uncertainties in our dust-related retrieval. Although com-
plex non-spherically shaped models (Gasteiger et al., 2011;
Saito et al., 2021) provide a more realistic representation
of irregularly shaped dust particles, they are computation-
ally expensive. We acknowledge this limitation and plan to
explore alternative models in future studies. (iii) Retrieval
from ECLiAP is only performed for RH ≤ 99 %. (iv) The
use of mean refractive indices for each aerosol subtype in
the creation of the lookup tables may limit the representa-
tion of refractive index variability within each subtype. This
simplified approach reduces computation time but may com-
promise the accuracy of the LUTs in accounting for the full
range of aerosol properties. (v) The CCN activity also de-
pends on the mixing state, which is difficult to measure from
space. Subsequently, an alternative solution is required to
parametrize the effect of the mixing state on CCN activity.
(v) It is constrained by the inherent limitations of lidar mea-
surements, which may not effectively capture particles with
sizes smaller than 50 nm. Consequently, the algorithm does
not fully account for the impact of new particle formation on
the estimation of CCN concentrations.

The present study demonstrates the capability of ECLiAP
to construct the 3D global climatology of NCCN. The global
coverage of NCCN, in conjunction with collocated retrieved
cloud properties, will provide crucial input for the regional
and global simulations that will provide realistic assessments
of aerosol-induced cloud radiative forcing. The satellite-
retrieved NCCN can precisely separate the aerosols into nat-
ural and anthropogenic components, which can be further
used for constraining aerosol emissions and transport mod-
els for air-quality studies. The application of detailed NCCN
will potentially mitigate the uncertainty of aerosol perturbed
climate forcing (direct and indirect) and improve confidence
in assessing anthropogenic contributions and climate change
projections.

6 Summary

CCN number concentration is a critically important param-
eter for constraining the relationship between aerosols and
clouds and is needed to improve the understanding of ACI
processes. The lack of direct measurements of CCN pre-
vents robust testing of the underlying assumptions associated
with aerosol–cloud interactions robustly and evaluates cli-
mate model simulations. In order to overcome this limitation,
we presented ECLiAP, an emergent remote-sensing-based
analytical algorithm based on the physical law to retrieve
the vertically resolved NCCN from aerosol optical proper-

ties measured by the multiwavelength lidar system. Among
the several fundamental aspects of the mathematical problem
that must be solved during retrievals of microphysical pa-
rameters from multiwavelength lidar, the most crucial aspect
is that the inverse solution is not unique. Therefore, the re-
trieval is implemented based on lookup tables generated from
Mie scattering (and T-matrix/IGOM for dust particles) cal-
culations. AERONET-based five representative aerosol sub-
types with bimodal size distributions were considered. The
influence of relative humidity on lidar-measured aerosol op-
tical properties is corrected using the aerosol-type-dependent
hygroscopic growth factor to obtain the dry aerosol optical
properties. As a tradeoff between the accuracy and computa-
tion time of the inversion, a successive approximation tech-
nique is utilized in two steps to retrieve the optically equiv-
alent particle number size distribution. Once the aerosol size
distribution parameters are obtained through the LUT, criti-
cal diameter and NCCN at six supersaturations ranging from
0.07 % to 1.0 % are estimated using κ-Köhler theory.

Sensitivity analyses were carried out to evaluate the al-
gorithm performance and to show the influence of system-
atic and random errors of lidar-derived optical properties and
auxiliary RH profiles on CCN retrieval. The performance of
ECLiAP is evaluated with error-free data, and NCCN at all
six supersaturations is reproduced well with good accuracy
and stability for the five aerosol subtypes. Systematic er-
rors in extinction coefficients and RH greatly influence CCN
retrieval errors. Reducing uncertainties in extinction coeffi-
cients effectively improves retrieval accuracy, while uncer-
tainties in backscatter coefficients benefit retrieval at higher
SS. Differences in weights of fine- to coarse-mode particles
within the aerosol subtypes lead to significant differences in
the retrieval uncertainty. The differences can be explained by
the weaker constraint of the algorithm for the coarse-mode
particles than for the fine mode. However, the insertion of
the additional signal at a relatively longer wavelength re-
duced the differences in the retrieval uncertainty compared to
previous techniques. The mean random errors are relatively
small and are found to be relatively large for the coarse-
mode-dominated aerosol subtypes, consistent with the sen-
sitivities to the systematic errors. In realistic cases, system-
atic and random errors often offset each other and improve
the mean CCN retrievals. Overall, the error analysis suggests
that extinction coefficients at 355 and 532 nm must be re-
liably derived to ensure retrieval accuracy, including mea-
surements at longer wavelengths that further improve the
CCN retrievals, particularly for the coarse-mode-dominated
aerosol subtypes.

The ECLiAP algorithm was applied to observational data
from the NASA ORACLES airborne campaign to illustrate
the potential of the algorithm. NCCN retrieved from lidar
(HSRL-2) measurements has been validated against the si-
multaneous measurements from the CCN counter installed
on the flight. Considering the inhomogeneity in the verti-
cal distribution of aerosols throughout the atmospheric col-
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umn, NCCN from in situ measurements and lidar retrievals
agrees well. Furthermore, for the first time, ECLiAP has
been applied to spaceborne lidar measurements – CALIOP/-
CALIPSO – to retrieve NCCN. The results demonstrate that
the NCCN retrieved by ECLiAP is highly influenced by the
variability of aerosol particle size and composition based on
aerosol subtypes and also captures the meteorological influ-
ence. The vertically resolved information of aerosols, along
with CCN from spaceborne lidar, is essential for investigat-
ing the ACI in detail.

Our future goals include a comprehensive evaluation of
NCCN derived from spaceborne lidar measurements, i.e.,
CALIOP/CALIPSO, with multi-campaign airborne measure-
ments covering various physicochemical regimes in the tro-
posphere. The extensive validation will enable us to test the
applicability of the ECLiAP algorithm in the context of es-
timating the NCCN from space. Eventually, we plan to apply
the ECLiAP algorithm over the period of CALIOP observa-
tions (∼ 15 years) to generate the global 3D NCCN climatol-
ogy. The dataset coupled with the cloud-related data from the
other satellite or state-of-the-art numerical models will help
improve our understanding of the ACI. The science narrative
of the NASA Aerosol and Cloud, Convection and Precipi-
tation (ACCP) project showed that the combination of near-
simultaneous and collocated lidar and polarimeter measure-
ments can provide more detailed information regarding parti-
cle size, concentration, and composition (Braun et al., 2022).
Therefore, our future work may also include combinations
of the lidar measurements with passive observations in the
ECLiAP algorithm to further narrow down the uncertainty of
aerosol microphysics with the enhanced observational con-
straints (Xu et al., 2021), which will in turn improve the ac-
curacy of CCN retrieval. Moreover, the ability of CALIOP
to detect the aerosol subtypes has facilitated the retrieval of
an aerosol-type-specific 3D NCCN climatology on a global
scale. These datasets from spaceborne lidar measurements
will be beneficial for evaluating models and other satellite
products, opening a new window to investigate the region
and regime-wise detailed ACI studies and to better constrain
anthropogenic contributions to the climate forcing in the cli-
mate model.
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