Articles | Volume 24, issue 23
https://doi.org/10.5194/acp-24-13317-2024
https://doi.org/10.5194/acp-24-13317-2024
Opinion
 | Highlight paper
 | 
02 Dec 2024
Opinion | Highlight paper |  | 02 Dec 2024

Opinion: Challenges and needs of tropospheric chemical mechanism development

Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William R. Stockwell, Luc Vereecken, and Timothy J. Wallington

Related authors

Clouds influence the functioning of airborne microorganisms
Raphaëlle Péguilhan, Florent Rossi, Muriel Joly, Engy Nasr, Bérénice Batut, François Enault, Barbara Ervens, and Pierre Amato
Biogeosciences, 22, 1257–1275, https://doi.org/10.5194/bg-22-1257-2025,https://doi.org/10.5194/bg-22-1257-2025, 2025
Short summary
Opinion: Improved scientific discourse and quality assurance by interactive open access publishing with community-based multi-stage open peer review in an open science landscape
Barbara Ervens, Ken S. Carslaw, Thomas Koop, and Ulrich Pöschl
EGUsphere, https://doi.org/10.5194/egusphere-2025-419,https://doi.org/10.5194/egusphere-2025-419, 2025
Short summary
Ideas and perspectives: Microorganisms in the air through the lenses of atmospheric chemistry and microphysics
Barbara Ervens, Pierre Amato, Kifle Aregahegn, Muriel Joly, Amina Khaled, Tiphaine Labed-Veydert, Frédéric Mathonat, Leslie Nuñez López, Raphaëlle Péguilhan, and Minghui Zhang
Biogeosciences, 22, 243–256, https://doi.org/10.5194/bg-22-243-2025,https://doi.org/10.5194/bg-22-243-2025, 2025
Short summary
Bacteria in clouds biodegrade atmospheric formic and acetic acids
Leslie Nuñez López, Pierre Amato, and Barbara Ervens
Atmos. Chem. Phys., 24, 5181–5198, https://doi.org/10.5194/acp-24-5181-2024,https://doi.org/10.5194/acp-24-5181-2024, 2024
Short summary
The number fraction of iron-containing particles affects OH, HO2 and H2O2 budgets in the atmospheric aqueous phase
Amina Khaled, Minghui Zhang, and Barbara Ervens
Atmos. Chem. Phys., 22, 1989–2009, https://doi.org/10.5194/acp-22-1989-2022,https://doi.org/10.5194/acp-22-1989-2022, 2022
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Evaluating tropospheric nitrogen dioxide in UKCA using OMI satellite retrievals over south and east Asia
Alok K. Pandey, David S. Stevenson, Alcide Zhao, Richard J. Pope, Ryan Hossaini, Krishan Kumar, and Martyn P. Chipperfield
Atmos. Chem. Phys., 25, 4785–4802, https://doi.org/10.5194/acp-25-4785-2025,https://doi.org/10.5194/acp-25-4785-2025, 2025
Short summary
Technical note: A comparative study of chemistry schemes for volcanic sulfur dioxide in Lagrangian transport simulations – a case study of the 2019 Raikoke eruption
Mingzhao Liu, Lars Hoffmann, Jens-Uwe Grooß, Zhongyin Cai, Sabine Grießbach, and Yi Heng
Atmos. Chem. Phys., 25, 4403–4418, https://doi.org/10.5194/acp-25-4403-2025,https://doi.org/10.5194/acp-25-4403-2025, 2025
Short summary
Revisiting the high tropospheric ozone over southern Africa: role of biomass burning and anthropogenic emissions
Yufen Wang, Ke Li, Xi Chen, Zhenjiang Yang, Minglong Tang, Pascoal M. D. Campos, Yang Yang, Xu Yue, and Hong Liao
Atmos. Chem. Phys., 25, 4455–4475, https://doi.org/10.5194/acp-25-4455-2025,https://doi.org/10.5194/acp-25-4455-2025, 2025
Short summary
Monoterpene oxidation pathways initiated by acyl peroxy radical addition
Dominika Pasik, Thomas Golin Almeida, Emelda Ahongshangbam, Siddharth Iyer, and Nanna Myllys
Atmos. Chem. Phys., 25, 4313–4331, https://doi.org/10.5194/acp-25-4313-2025,https://doi.org/10.5194/acp-25-4313-2025, 2025
Short summary
Local and transboundary contributions to NOy loadings across East Asia using CMAQ-ISAM and a GEMS-informed emission inventory during the winter–spring transition
Jincheol Park, Yunsoo Choi, and Sagun Kayastha
Atmos. Chem. Phys., 25, 4291–4311, https://doi.org/10.5194/acp-25-4291-2025,https://doi.org/10.5194/acp-25-4291-2025, 2025
Short summary

Cited articles

Abbatt, J. P. D. and Ravishankara, A. R.: Opinion: Atmospheric multiphase chemistry – past, present, and future, Atmos. Chem. Phys., 23, 9765–9785, https://doi.org/10.5194/acp-23-9765-2023, 2023. a
Atkinson, R., Aschmann, S. A., Carter, W. P. L., Winer, A. M., and J. N. Pitts, Jr.: Alkyl Nitrate Formation from the NOx-Air Photooxidation of C2–C8 n-Alkanes, The J. Phys. Chem. A, 86, 4563–4589, https://doi.org/10.1021/j100220a022, 1982. a
Aumont, B., Jaecker-Voirol, A., Martin, B., and Toupance, G.: Tests of some reduction hypotheses made in photochemical mechanisms, Atmos. Environ., 30, 2061–2077, https://doi.org/10.1016/1352-2310(95)00279-0, 1996. a
Aumont, B., Madronich, S., Bey, I., and Tyndall, G.: Contribution of Secondary VOC to the Composition of Aqueous Atmospheric Particles: A Modeling Approach, J. Atmos. Chem., 35, 59–75, https://doi.org/10.1023/a:1006243509840, 2000. a
Aumont, B., Szopa, S., and Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach, Atmos. Chem. Phys., 5, 2497–2517, https://doi.org/10.5194/acp-5-2497-2005, 2005. a, b, c, d
Executive editor
This paper is written by experts in the field and addresses new tropospheric chemical mechanism developments. It shows how new analytical methods, instrumentation and cheminformatics methods have led to the identification of key processes and knowledge gaps in our understanding of chemical mechanisms, both in the gas phase and condensed phases. The opinion paper presents a perspective on these developments in the present and future, and outlines new directions. This opinion will be a very valuable contribution for the community and I am convinced it will be frequently read and cited.
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes in the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses the advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Share
Altmetrics
Final-revised paper
Preprint