Articles | Volume 23, issue 13
https://doi.org/10.5194/acp-23-7535-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-7535-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Better-constrained climate sensitivity when accounting for dataset dependency on pattern effect estimates
Angshuman Modak
CORRESPONDING AUTHOR
Department of Meteorology, Stockholm University, Stockholm, Sweden
Interdisciplinary Program in Climate Studies, IIT Bombay, Mumbai, India
Thorsten Mauritsen
Department of Meteorology, Stockholm University, Stockholm, Sweden
Related authors
Stephanie Fiedler, Vaishali Naik, Fiona M. O'Connor, Christopher J. Smith, Paul Griffiths, Ryan J. Kramer, Toshihiko Takemura, Robert J. Allen, Ulas Im, Matthew Kasoar, Angshuman Modak, Steven Turnock, Apostolos Voulgarakis, Duncan Watson-Parris, Daniel M. Westervelt, Laura J. Wilcox, Alcide Zhao, William J. Collins, Michael Schulz, Gunnar Myhre, and Piers M. Forster
Geosci. Model Dev., 17, 2387–2417, https://doi.org/10.5194/gmd-17-2387-2024, https://doi.org/10.5194/gmd-17-2387-2024, 2024
Short summary
Short summary
Climate scientists want to better understand modern climate change. Thus, climate model experiments are performed and compared. The results of climate model experiments differ, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article gives insights into the challenges and outlines opportunities for further improving the understanding of climate change. It is based on views of a group of experts in atmospheric composition–climate interactions.
Thomas Hocking, Linda Megner, Maria Hakuba, and Thorsten Mauritsen
EGUsphere, https://doi.org/10.5194/egusphere-2025-829, https://doi.org/10.5194/egusphere-2025-829, 2025
Short summary
Short summary
The imbalance between the energy the Earth absorbs from the Sun and emits back to space gives rise to climate change, but measuring the small imbalance is challenging. The Earth surface reflects sunlight more in some directions than in others, as with e.g. ocean sunglint. We simulate satellites to investigate how this uneven reflection impacts estimates of the imbalance. We identify orbits that cover all directions well, so that the impact is small.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
Atmos. Meas. Tech., 17, 7077–7095, https://doi.org/10.5194/amt-17-7077-2024, https://doi.org/10.5194/amt-17-7077-2024, 2024
Short summary
Short summary
The imbalance between the energy the Earth absorbs from the Sun and the energy the Earth emits back into space gives rise to climate change, but measuring the small imbalance is challenging. We simulate satellites in various orbits to investigate how well they sample the imbalance and find that the best option is to combine at least two satellites that see complementary parts of the Earth and cover the daily and annual cycles. This information is useful when planning future satellite missions.
Alejandro Uribe, Frida A.-M. Bender, and Thorsten Mauritsen
Atmos. Chem. Phys., 24, 13371–13384, https://doi.org/10.5194/acp-24-13371-2024, https://doi.org/10.5194/acp-24-13371-2024, 2024
Short summary
Short summary
Our study explores climate feedbacks, vital for understanding global warming. It links them to shifts in Earth's energy balance at the atmosphere's top due to natural temperature variations. It takes roughly 50 years to establish this connection. Combined satellite observations and reanalysis suggest that Earth cools more than expected under carbon dioxide influence. However, continuous satellite data until at least the mid-2030s are crucial for refining our understanding of climate feedbacks.
Andrea Mosso, Thomas Hocking, and Thorsten Mauritsen
Atmos. Chem. Phys., 24, 12793–12806, https://doi.org/10.5194/acp-24-12793-2024, https://doi.org/10.5194/acp-24-12793-2024, 2024
Short summary
Short summary
Clouds play a crucial role in the Earth's energy balance, as they can either warm up or cool down the area they cover depending on their height and depth. They are expected to alter their behaviour under climate change, affecting the warming generated by greenhouse gases. This paper proposes a new method to estimate their overall effect on this warming by simulating a climate where clouds are transparent. Results show that with the model used, clouds have a stabilising effect on climate.
Martin Renoult, Navjit Sagoo, Johannes Hörner, and Thorsten Mauritsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2981, https://doi.org/10.5194/egusphere-2024-2981, 2024
Short summary
Short summary
Geological evidence indicate persistent tropical sea-ice cover in the deep past, often called Snowball Earth. Using a climate model, we show here that clouds substantially cool down the tropics and facilitate the advance of sea-ice into lower latitudes. We identify a critical threshold temperature of 0 °C from where cooling down the Earth is accelerated. This value can be used as a constraint on Earth's sensitivity to CO2, as recent cold paleoclimates never entered Snowball Earth.
Antoine Hermant, Linnea Huusko, and Thorsten Mauritsen
Atmos. Chem. Phys., 24, 10707–10715, https://doi.org/10.5194/acp-24-10707-2024, https://doi.org/10.5194/acp-24-10707-2024, 2024
Short summary
Short summary
Aerosol particles, from natural and human sources, have a cooling effect on the climate, partially offsetting global warming. They do this through direct (sunlight reflection) and indirect (cloud property alteration) mechanisms. Using a global climate model, we found that, despite declining emissions, the direct effect of human aerosols has increased while the indirect effect has decreased, which is attributed to the shift in emissions from North America and Europe to Southeast Asia.
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, Erin McClymont, and Sze Ling Ho
Clim. Past, 20, 1989–1999, https://doi.org/10.5194/cp-20-1989-2024, https://doi.org/10.5194/cp-20-1989-2024, 2024
Short summary
Short summary
We have created a new global surface temperature reconstruction of the climate of the mid-Pliocene Warm Period, representing the period roughly 3.2 million years before the present day. We estimate that the globally averaged mean temperature was around 3.9 °C warmer than it was in pre-industrial times, but there is significant uncertainty in this value.
Raphael Grodofzig, Martin Renoult, and Thorsten Mauritsen
Earth Syst. Dynam., 15, 913–927, https://doi.org/10.5194/esd-15-913-2024, https://doi.org/10.5194/esd-15-913-2024, 2024
Short summary
Short summary
We investigate whether the Amazon rainforest has lost substantial resilience since 1990. This assertion is based on trends in the observational record of vegetation density. We calculate the same metrics in a large number of climate model simulations and find that several models behave indistinguishably from the observations, suggesting that the observed trend could be caused by internal variability and that the cause of the ongoing rapid loss of Amazon rainforest is not mainly global warming.
Stephanie Fiedler, Vaishali Naik, Fiona M. O'Connor, Christopher J. Smith, Paul Griffiths, Ryan J. Kramer, Toshihiko Takemura, Robert J. Allen, Ulas Im, Matthew Kasoar, Angshuman Modak, Steven Turnock, Apostolos Voulgarakis, Duncan Watson-Parris, Daniel M. Westervelt, Laura J. Wilcox, Alcide Zhao, William J. Collins, Michael Schulz, Gunnar Myhre, and Piers M. Forster
Geosci. Model Dev., 17, 2387–2417, https://doi.org/10.5194/gmd-17-2387-2024, https://doi.org/10.5194/gmd-17-2387-2024, 2024
Short summary
Short summary
Climate scientists want to better understand modern climate change. Thus, climate model experiments are performed and compared. The results of climate model experiments differ, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article gives insights into the challenges and outlines opportunities for further improving the understanding of climate change. It is based on views of a group of experts in atmospheric composition–climate interactions.
Clare Marie Flynn, Linnea Huusko, Angshuman Modak, and Thorsten Mauritsen
Atmos. Chem. Phys., 23, 15121–15133, https://doi.org/10.5194/acp-23-15121-2023, https://doi.org/10.5194/acp-23-15121-2023, 2023
Short summary
Short summary
The latest-generation climate models show surprisingly cold mid-20th century global-mean temperatures, often despite exhibiting more realistic late 20th/early 21st century temperatures. A too-strong aerosol forcing in many models was thought to the be primary cause of these too-cold mid-century temperatures, but this was found to only be a partial explanation. This also partly undermines the hope to construct a strong relationship between the mid-century temperatures and aerosol forcing.
Sushant Das, Frida Bender, and Thorsten Mauritsen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1605, https://doi.org/10.5194/egusphere-2023-1605, 2023
Preprint archived
Short summary
Short summary
Quantifying global and Indian precipitation responses to anthropogenic aerosol and CO2 forcings using multiple models is needed for reducing climate uncertainty. The response to global warming from CO2 increases precipitation both globally and over India, whereas the cooling response to sulfate aerosol leads to a reduction in precipitation in both cases. An opposite response to black carbon is noted i.e., a global decrease but an increase of precipitation over India implying changes in dynamics.
Martin Renoult, Navjit Sagoo, Jiang Zhu, and Thorsten Mauritsen
Clim. Past, 19, 323–356, https://doi.org/10.5194/cp-19-323-2023, https://doi.org/10.5194/cp-19-323-2023, 2023
Short summary
Short summary
The relationship between the Last Glacial Maximum and the sensitivity of climate models to a doubling of CO2 can be used to estimate the true sensitivity of the Earth. However, this relationship has varied in successive model generations. In this study, we assess multiple processes at the Last Glacial Maximum which weaken this relationship. For example, how models respond to the presence of ice sheets is a large contributor of uncertainty.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
James D. Annan, Julia C. Hargreaves, and Thorsten Mauritsen
Clim. Past, 18, 1883–1896, https://doi.org/10.5194/cp-18-1883-2022, https://doi.org/10.5194/cp-18-1883-2022, 2022
Short summary
Short summary
We have created a new global surface temperature reconstruction of the climate of the Last Glacial Maximum, representing the period 19–23 000 years before the present day. We find that the globally averaged mean temperature was roughly 4.5 °C colder than it was in pre-industrial times, albeit there is significant uncertainty on this value.
Jule Radtke, Thorsten Mauritsen, and Cathy Hohenegger
Atmos. Chem. Phys., 21, 3275–3288, https://doi.org/10.5194/acp-21-3275-2021, https://doi.org/10.5194/acp-21-3275-2021, 2021
Short summary
Short summary
Shallow trade wind clouds are a key source of uncertainty to projections of the Earth's changing climate. We perform high-resolution simulations of trade cumulus and investigate how the representation and climate feedback of these clouds depend on the specific grid spacing. We find that the cloud feedback is positive when simulated with kilometre but near zero when simulated with hectometre grid spacing. These findings suggest that storm-resolving models may exaggerate the trade cloud feedback.
Martin Renoult, James Douglas Annan, Julia Catherine Hargreaves, Navjit Sagoo, Clare Flynn, Marie-Luise Kapsch, Qiang Li, Gerrit Lohmann, Uwe Mikolajewicz, Rumi Ohgaito, Xiaoxu Shi, Qiong Zhang, and Thorsten Mauritsen
Clim. Past, 16, 1715–1735, https://doi.org/10.5194/cp-16-1715-2020, https://doi.org/10.5194/cp-16-1715-2020, 2020
Short summary
Short summary
Interest in past climates as sources of information for the climate system has grown in recent years. In particular, studies of the warm mid-Pliocene and cold Last Glacial Maximum showed relationships between the tropical surface temperature of the Earth and its sensitivity to an abrupt doubling of atmospheric CO2. In this study, we develop a new and promising statistical method and obtain similar results as previously observed, wherein the sensitivity does not seem to exceed extreme values.
Cited articles
Andrews, T. and Webb, M. J.: The Dependence of Global Cloud and Lapse Rate
Feedbacks on the Spatial Structure of Tropical Pacific Warming, J. Climate, 31, 641–654, https://doi.org/10.1175/JCLI-D-17-0087.1, 2018. a, b
Andrews, T., Gregory, J. M., and Webb, M. J.: The dependence of radiative
forcing and feedback on evolving patterns of surface temperature change in
climate models, J. Climate, 28, 1630–1648, https://doi.org/10.1175/JCLI-D-14-00545.1, 2015. a
Andrews, T., Gregory, J. M., Paynter, D., Silvers, L. G., Zhou, C., Mauritsen, T., Webb, M. J., Armour, K. C., Forster, P. M., and Titchner, H.: Accounting for Changing Temperature Patterns Increases Historical Estimates of Climate Sensitivity, Geophys. Res. Lett., 45, 8490–8499,
https://doi.org/10.1029/2018GL078887, 2018. a, b, c, d, e, f
Andrews, T., Gregory, J. M., Dong, Y., Armour, K., Paynter, D., Lin, P., Modak, A., Mauritsen, T., Cole, J., Medeiros, B., and et al.: On the effect of historical SST patterns on radiative feedback, Earth and Space Science Open Archive, p. 48, https://doi.org/10.1002/essoar.10510623.3, 2022. a, b, c, d, e, f, g, h, i, j
Armour, K. C.: Energy budget constraints on climate sensitivity in light of
inconstant climate feedbacks, Nat. Clim. Change, 7, 331–335,
https://doi.org/10.1038/nclimate3278, 2017. a, b
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris,
D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A. L., Dufresne,
J. L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M.,
Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G.,
Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato,
Y., Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V.,
Winker, D., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of
Climate Change, Rev. Geophys., 58, 1–45, https://doi.org/10.1029/2019RG000660, 2020.
a
Ceppi, P., Brient, F., Zelinka, M. D., and Hartmann, D. L.: Cloud feedback
mechanisms and their representation in global climate models, Wires Clim. Change, 8, e465, https://doi.org/10.1002/wcc.465, 2017. a, b, c
Clarke, D. C. and Richardson, M.: The Benefits of Continuous Local Regression for Quantifying Global Warming, Earth Space Sci., 8, 1–21,
https://doi.org/10.1029/2020EA001082, 2021. a
Cowtan, K. and Way, R. G.: Coverage bias in the HadCRUT4 temperature series
and its impact on recent temperature trends, Q. J. Roy. Meteorol. Soc., 140, 1935–1944, https://doi.org/10.1002/qj.2297, 2014. a, b, c, d
Cressie, N.: The origins of kriging, Math. Geol., 22, 239–252,
https://doi.org/10.1007/BF00889887, 1990. a
Dong, Y., Proistosescu, C., Armour, K. C., and Battisti, D. S.: Attributing
Historical and Future Evolution of Radiative Feedbacks to Regional Warming
Patterns using a Green's Function Approach: The Preeminence of the Western
Pacific, J. Climate, 32, 5471–5491, https://doi.org/10.1175/JCLI-D-18-0843.1, 2019. a, b, c, d, e
Dong, Y., Armour, K. C., Zelinka, M. D., Proistosescu, C., Battisti, D. S.,
Zhou, C., and Andrews, T.: Intermodel Spread in the Pattern Effect and Its
Contribution to Climate Sensitivity in CMIP5 and CMIP6 Models, J. Climate, 33, 7755–7775, https://doi.org/10.1175/JCLI-D-19-1011.1, 2020. a
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame,
D., Lunt, D., Mauritsen, T., Palmer, M., Watanabe, M., Wild, M., and Zhang,
H.: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 923–1054, https://doi.org/10.1017/9781009157896.009, 2021. a, b, c
Forster, P. M.: Inference of Climate Sensitivity from Analysis of Earth's
Energy Budget, Annu. Rev. Earth Planet. Sci., 44, 85–106,
https://doi.org/10.1146/annurev-earth-060614-105156, 2016. a
Gregory, J. M., Stouffer, R. J., Raper, S. C., Stott, P. A., and Rayner, N. A.: An observationally based estimate of the climate sensitivity, J. Climate, 15, 3117–3121, https://doi.org/10.1175/1520-0442(2002)015<3117:AOBEOT>2.0.CO;2, 2002. a
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A.,
Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D.: A new method
for diagnosing radiative forcing and climate sensitivity, Geophys. Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747, 2004. a, b, c
Gregory, J. M., Andrews, T., Ceppi, P., Mauritsen, T., and Webb, M. J.: How
accurately can the climate sensitivity to CO2 be estimated from historical climate change?, Clim. Dynam., 54, 129–157,
https://doi.org/10.1007/s00382-019-04991-y, 2019. a, b
Grose, M. R., Gregory, J., Colman, R., and Andrews, T.: What Climate
Sensitivity Index Is Most Useful for Projections?, Geophys. Res. Lett., 45, 1559–1566, https://doi.org/10.1002/2017GL075742, 2018. a
Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A.,
Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto,
V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E.,
Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J.,
Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas,
V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone,
P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and
Zhang, S.: Efficacy of climate forcings, J. Geophys. Res.-Atmos., 110, 1–45, https://doi.org/10.1029/2005JD005776, 2005. a, b
Hirahara, S., Ishii, M., and Fukuda, Y.: Centennial-scale sea surface
temperature analysis and its uncertainty, J. Climate, 27, 57–75,
https://doi.org/10.1175/JCLI-D-12-00837.1, 2014. a, b, c
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H. M.: Extended
reconstructed Sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/JCLI-D-16-0836.1, 2017. a, b, c, d
Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., and Rosinski, J.: A new
sea surface temperature and sea ice boundary dataset for the community
atmosphere model, J. Climate, 21, 5145–5153, https://doi.org/10.1175/2008JCLI2292.1, 2008. a, b
Huusko, L. L., Bender, F. A., Ekman, A. M., and Storelvmo, T.: Climate
sensitivity indices and their relation with projected temperature change in
CMIP6 models, Environ. Res. Lett., 16, 064095, https://doi.org/10.1088/1748-9326/ac0748, 2021. a
IPCC: Climate Change 2021: The Physical Science Basis, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157896, in press, 2021. a, b, c, d
Lewis, N. and Curry, J. A.: The implications for climate sensitivity of AR5
forcing and heat uptake estimates, Clim. Dynam., 45, 1009–1023,
https://doi.org/10.1007/s00382-014-2342-y, 2015. a
Loeb, N. G., Wang, H., Allan, R. P., Andrews, T., Armour, K., Cole, J. N. S.,
Dufresne, J.-L., Forster, P., Gettelman, A., Guo, H., Mauritsen, T., Ming,
Y., Paynter, D., Proistosescu, C., Stuecker, M. F., Willén, U., and Wyser,
K.: New Generation of Climate Models Track Recent Unprecedented Changes in
Earth's Radiation Budget Observed by CERES, Geophys. Res. Lett., 47,
e2019GL086705, https://doi.org/10.1029/2019GL086705, 2020. a
Mauritsen, T.: Global warming: Clouds cooled the Earth, Nat. Geosci., 9, 865–867, https://doi.org/10.1038/ngeo2838, 2016. a, b, c
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H.,
Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T.,
Jimenéz-de-la Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S.,
Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke,
J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B.,
Müller, W. A., Nabel, J. E., Nam, C. C., Notz, D., Nyawira, S. S.,
Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M.,
Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T.,
Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein,
L., Stemmler, I., Stevens, B., von Storch, J. S., Tian, F., Voigt, A., Vrese,
P., Wieners, K. H., Wilkenskjeld, S., Winkler, A., and Roeckner, E.:
Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and
Its Response to Increasing CO2, J. Adv. Model. Earth Syst., 11, 998–1038, https://doi.org/10.1029/2018MS001400, 2019. a
Met Office Hadley Centre: Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST), Met Office Hadley Centre [data set], https://www.metoffice.gov.uk/hadobs/hadisst/ (last access: 25 May 2023), 2023. a
Modak, A., and Mauritsen, T.: Better constrained climate sensitivity when accounting for dataset dependency on pattern effect estimates, Zenodo [data set], https://doi.org/10.5281/zenodo.7106446, 2022. a
Modak, A., Bala, G., Caldeira, K., and Cao, L.: Does shortwave absorption by
methane influence its effectiveness?, Clim. Dynam., 51, 3653–3672, https://doi.org/10.1007/s00382-018-4102-x, 2018. a
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: The HadCRUT4 data set, J. Geophys. Res.-Atmos., 117, 1–22, https://doi.org/10.1029/2011JD017187, 2012. a, b
MPI-M – Max-Planck-Institut für Meteorologie: MPI-Earth System Model version 1.2 (MPI-ESM1.2), https://mpimet.mpg.de/en/science/models/mpi-esm (last access: 25 May 2023), 2023. a
Olonscheck, D., Rugenstein, M., and Marotzke, J.: Broad Consistency Between
Observed and Simulated Trends in Sea Surface Temperature Patterns, Geophys. Res. Lett., 47, e2019GL086773, https://doi.org/10.1029/2019GL086773, 2020. a
Otto, A., Otto, F. E., Boucher, O., Church, J., Hegerl, G., Forster, P. M.,
Gillett, N. P., Gregory, J., Johnson, G. C., Knutti, R., Lewis, N., Lohmann,
U., Marotzke, J., Myhre, G., Shindell, D., Stevens, B., and Allen, M. R.:
Energy budget constraints on climate response, Nat. Geosci., 6, 415–416, https://doi.org/10.1038/ngeo1836, 2013. a, b
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res.-Atmos., 108, 4407, https://doi.org/10.1029/2002jd002670, 2003. a, b
Seager, R., Cane, M., Henderson, N., Lee, D.-E., Abernathey, R., and Zhang, H.: Strengthening tropical Pacific zonal sea surface temperature gradient
consistent with rising greenhouse gases, Nat. Clim. Change, 9, 517–522,
https://doi.org/10.1038/s41558-019-0505-x, 2019. a, b
Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M.,
Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J.,
Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C. S., Foster, G. L.,
Hausfather, Z., Heydt, A. S., Knutti, R., Mauritsen, T., Norris, J. R.,
Proistosescu, C., Rugenstein, M., Schmidt, G. A., Tokarska, K. B., and
Zelinka, M. D.: An Assessment of Earth's Climate Sensitivity Using Multiple
Lines of Evidence, Rev. Geophys., 58, 1–92, https://doi.org/10.1029/2019rg000678, 2020. a, b
Stevens, B., Sherwood, S. C., Bony, S., and Webb, M. J.: Prospects for
narrowing bounds on Earth's equilibrium climate sensitivity, Earth's Future,
4, 512–522, https://doi.org/10.1002/2016EF000376, 2016. a
Taylor, K. E., Williamson, D., and Zwiers, F.: The sea surface temperature and sea ice concentration boundary conditions for AMIP II simulations, Program for Climate Model Diagnosis & Intercomparison (PCMDI), LLNL – Lawrence Livermore National Laboratory [data set], https://pcmdi.llnl.gov/mips/amip/amip2/#data (last access: 25 May 2023), 2023. a
Vaccaro, A., Emile-Geay, J., Guillot, D., Verna, R., Morice, C., Kennedy, J.,
and Rajaratnam, B.: Climate Field Completion via Markov Random Fields:
Application to the HadCRUT4.6 Temperature Dataset, J. Climate, 34,
4169–4188, https://doi.org/10.1175/jcli-d-19-0814.1, 2021a. a, b, c, d
Vaccaro, A., Emile-Geay, J., Guillot, D., Verna, R., Morice, C., Kennedy, J., and Rajaratnam, B.: GraphEM-infilled HadCRUT4.6.0.0 January 1850–December 2017, Zenodo [data set], https://doi.org/10.5281/zenodo.4601616, 2021b. a
Von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich,
V., Adusumilli, S., Beltrami, H., Boyer, T., José Cuesta-Valero, F.,
Desbruyères, D., Domingues, C., Garciá-Garciá, A., Gentine, P., Gilson, J., Gorfer, M., Haimberger, L., Ishii, M., Johnson, G. C.,
Killick, R., King, B. A., Kirchengast, G., Kolodziejczyk, N., Lyman, J.,
Marzeion, B., Mayer, M., Monier, M., Paolo Monselesan, D., Purkey, S.,
Roemmich, D., Schweiger, A., Seneviratne, S. I., Shepherd, A., Slater, D. A.,
Steiner, A. K., Straneo, F., Timmermans, M. L., and Wijffels, S. E.: Heat
stored in the Earth system: Where does the energy go?, Earth Syst. Sci.
Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, 2020.
a
Watanabe, M., Dufresne, J. L., Kosaka, Y., Mauritsen, T., and Tatebe, H.:
Enhanced warming constrained by past trends in equatorial Pacific sea
surface temperature gradient, Nature Clim. Change, 11, 33–37, https://doi.org/10.1038/s41558-020-00933-3, 2021. a, b, c
WCRP – World Climate Research Programme: WCRP Coupled Model Intercomparison Project (Phase 6), https://esgf-node.llnl.gov/projects/cmip6/ (last access: 25 May 2023), 2023. a
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of Higher Climate
Sensitivity in CMIP6 Models, Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020. a
Zhou, C., Zelinka, M. D., and Klein, S. A.: Impact of decadal cloud variations on the Earth's energy budget, Nat. Geosci., 9, 871–874,
https://doi.org/10.1038/ngeo2828, 2016. a, b, c, d
Zhou, C., Zelinka, M. D., and Klein, S. A.: Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach, J. Adv. Model. Earth Syst., 9, 2174–2189, https://doi.org/10.1002/2017MS001096, 2017. a
Short summary
We provide an improved estimate of equilibrium climate sensitivity (ECS) constrained based on the instrumental temperature record including the corrections for the pattern effect. The improved estimate factors in the uncertainty caused by the underlying sea-surface temperature datasets used in the estimates of pattern effect. This together with the inter-model spread lifts the corresponding IPCC AR6 estimate to 3.2 K [1.8 to 11.0], which is lower and better constrained than in past studies.
We provide an improved estimate of equilibrium climate sensitivity (ECS) constrained based on...
Altmetrics
Final-revised paper
Preprint