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Abstract. The best estimate of equilibrium climate sensitivity (ECS) constrained based on the instrumental
record of historical warming becomes coherent with other lines of evidence when the dependence of radiative
feedback on the pattern of surface temperature change (pattern effect) is incorporated. Pattern effect strength is
usually estimated with atmosphere-only model simulations forced with observed historical sea-surface tempera-
ture (SST) and sea-ice change and constant pre-industrial forcing. However, recent studies indicate that pattern
effect estimates depend on the choice of SST boundary condition dataset, due to differences in the measure-
ment sources and the techniques used to merge and construct them. Here, we systematically explore this dataset
dependency by applying seven different observed SST datasets to the MPI-ESM1.2-LR model covering 1871–
2017. We find that the pattern effect ranges from − 0.01± 0.09 to 0.42± 0.10 W m−2 K−1 (standard error),
whereby the commonly used Atmospheric Model Intercomparison Project II (AMIPII) dataset produces by far
the largest estimate. When accounting for the generally weaker pattern effect in MPI-ESM1.2-LR compared to
other models, as well as dataset dependency and intermodel spread, we obtain a combined pattern effect esti-
mate of 0.37 W m−2 K−1 [−0.14 to 0.88 W m−2 K−1] (5th–95th percentiles) and a resulting instrumental record
ECS estimate of 3.2 K [1.8 to 11.0 K], which as a result of the weaker pattern effect is slightly lower and better
constrained than in previous studies.

1 Introduction

Governments around the world are putting in extensive ef-
forts to achieve the targets set in the Paris Agreement (2015),
where the long-term goals are to limit the increase in global
mean temperature to well below 2 ◦C and pursuing efforts to
limit the warming to 1.5 ◦C above pre-industrial levels. How-
ever, the latest Intergovernmental Panel on Climate Change
(IPCC, 2021) reported that our planet has already warmed
by more than 1 ◦C relative to pre-industrial levels and that it
is likely that we might miss the 1.5 ◦C target. To know what
is required to meet the Paris Agreement goal, it is impera-
tive to better quantify and understand the ultimate amount of
warming in response to a given forcing. Equilibrium climate
sensitivity (ECS), defined as the long-term warming result-
ing from a doubling of CO2 concentration over pre-industrial
levels, is a metric of central importance in the quest to con-

strain projections of future global warming (Grose et al.,
2018; Sherwood et al., 2020; Forster et al., 2021). Transient
climate response (TCR) is another metric that is often used
to study climate change, which is however closely related to
ECS (Huusko et al., 2021). Here, we investigate ECS con-
strained based on the instrumental record of historical warm-
ing including corrections for the effects on the radiation bal-
ance caused by the pattern of surface temperature change.
Relative to earlier studies, we will do so by also account-
ing for uncertainty and biases caused by the underlying sea-
surface temperature (SST) reconstructions used in estimates
of the pattern effect.
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2 How historical warming is used to constrain ECS

A linear energy budget framework incorporating global mean
parameters is widely used to understand the response of the
climate system to external perturbations such as a change
in atmospheric composition (e.g., Gregory et al., 2002; Otto
et al., 2013). It can be framed asN = F+λT , whereN is the
planetary energy imbalance, which is generally defined as the
change in net downward radiative flux at the top of the atmo-
sphere (TOA), F is the external radiative forcing, defined as
effective radiative forcing (ERF; Hansen et al., 2005; Forster
et al., 2021) and T is the change in surface temperature, all
relative to an unperturbed equilibrium climate state where
N = F = 0. λ is the climate feedback parameter which me-
diates how rapidly the climate system would get rid of the
energy imbalance due to the external perturbation. ECS is
related to the feedback parameter as ECS=−F2×/λ, where
F2× is the forcing due to a doubled CO2 concentration, such
that

ECS≈
F2×1T

1F −1N
, (1)

where the change in temperature, forcing and energy im-
balance is taken between two periods, e.g., 1850–1900 and
2006–2019 denoted by 1F , 1T and 1N .

Early best estimates of ECS based on the instrumental
temperature record (Forster, 2016) are usually found to be at
the lower end of the commonly accepted ECS likely range
and triggered a lowering of the lower bound between the
IPCC’s Fourth and Fifth Assessment Reports. For instance,
the best estimate of Otto et al. (2013) of the historical energy
budget-constrained ECS is 2 K, whereas Lewis and Curry
(2015) found a best estimate of 1.64 K. To reconcile this dis-
crepancy, among other things the community looked into the
concept of the pattern effect, which is not taken into account
in the traditional energy balance framework. The rationale is
that if the pattern of temperature response in the historical pe-
riod is different in ways that affect the radiation balance from
what it would be in the future, then constraining ECS based
on the instrumental record could be biased. In addition, there
has been upward revisions to the temperature record through
infilling (e.g., Clarke and Richardson, 2021), downward re-
visions to total forcing and small revisions to estimates of
energy imbalance (Bellouin et al., 2020; Von Schuckmann
et al., 2020; IPCC, 2021).

Indeed, it has been identified that inference of λ based
on the instrumental record not only relies on the global
mean temperature but also on its spatial structure (Armour,
2017; Andrews et al., 2018; Lewis and Mauritsen, 2021;
Fueglistaler and Silvers, 2021). Different patterns of tem-
perature response lead to different circulation and cloud re-
sponse. This in turn impacts the energy budget and hence
could induce dissimilar λ (Zhou et al., 2016; Mauritsen,
2016; Ceppi et al., 2017). The dependence of the radiative

feedback on the spatial pattern of temperature response is re-
ferred to as the “pattern effect” (Stevens et al., 2016).

Whereas a colder tropical eastern Pacific and Southern
Ocean (SO) and stronger tropical western Pacific warming
are observed over the historical period, atmosphere–ocean
general circulation models (AOGCMs) simulate a long-term
climate response (to abrupt4×CO2) that resembles a tem-
perature pattern similar to the El Niño–Southern Oscillation
(ENSO) with relatively larger warming trends in the east-
ern Pacific and SO (Andrews et al., 2015; Zhou et al., 2016;
Dong et al., 2019; Sherwood et al., 2020; Watanabe et al.,
2021). This difference in the distribution of temperature re-
sponse induces a pattern effect since a warmer west Pacific
and colder east Pacific lead to more stabilizing feedback,
while the simulated future temperature distribution would
lead to a less stabilizing feedback (Zhou et al., 2016; Mau-
ritsen, 2016; Ceppi et al., 2017; Andrews and Webb, 2018;
IPCC, 2021).

The strength of the pattern effect can be estimated as the
difference in the radiative feedback obtained from a historical
climate change simulation from that obtained from a long-
term response simulation such as abrupt4×CO2 (Fig. 1,
Armour, 2017; Andrews et al., 2018; Lewis and Mauritsen,
2021). One approach to determine an observationally con-
strained historical pattern effect is to prescribe the observed
historical SST and sea-ice evolution such as the Atmospheric
Model Intercomparison Project II (AMIPII) dataset to the at-
mosphere general circulation models (AGCMs) as a bound-
ary condition with pre-industrial forcing (Andrews et al.,
2018). This observedSST-piForcing configuration in princi-
ple simulates a TOA energy imbalance following the histori-
cal SST pattern evolution and hence facilitates the computa-
tion of historical λ for the given model and dataset (Figs. 1
and A1). Such estimates are model dependent; nevertheless
most models yield a dampening pattern effect relative to
the long-term abrupt4×CO2 pattern based on the AMIPII
dataset (e.g., Andrews et al., 2018).

However, this approach to estimating the pattern effect
relies on the observed–reconstructed SST datasets applied
to the AGCMs as boundary conditions, and hence the esti-
mates of the pattern effect derived from such modeling ex-
periments might depend on the applied SST dataset. Only a
few studies (Lewis and Mauritsen, 2021; Fueglistaler and Sil-
vers, 2021; Andrews et al., 2022) have addressed the dataset
dependency of the pattern effect in limited setups. Lewis
and Mauritsen (2021) compared only two datasets, AMIPII
and HadISST, although they assessed the pattern effects de-
rived using the Green’s function approach with six other re-
constructed datasets. They concluded that using alternative
datasets yields a smaller pattern effect similar to that simu-
lated by coupled climate models running the historical sce-
nario. Fueglistaler and Silvers (2021), on the other hand, did
not conduct simulations but instead based on temperature
metrics that rely on the region of deep convection and trop-
ical average SSTs, a proxy for pattern effect (Dong et al.,
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Figure 1. Linear fits from ordinary least squares (OLS) regression
between the change in global annual mean net downward radia-
tion flux at the TOA and the surface temperature change (Gregory
et al., 2004) for different AOGCM (abrupt4×CO2, historical) and
observedSST-piForcing atmosphere-only GCM simulations (named
per dataset, shown in legend). The global annual mean values are
not shown but only the regression fits. The changes are relative to
the 1871–1900 mean. The y intercept is adjusted such that all linear
fits begin from the origin. The pattern effect (1λ) is the difference
between the regression fits (solid lines) and the abrupt4×CO2 fit
(dashed line). See Fig. A1, which shows the global annual mean
values with OLS regression.

2019), showed that AMIPII stands out from the rest of the
considered datasets.

In this study, we address this problem by applying seven
datasets covering 1871–2017 to the MPI-ESM1.2-LR model.
We simulate a range of pattern effect estimates based on
the datasets. The resulting dataset-dependent estimates of
the pattern effect is then extended to include model depen-
dency estimated by Andrews et al. (2022) in order to update
the ECS estimates constrained by the instrumental record re-
ported in Forster et al. (2021).

3 Model, datasets and experiments

The MPI-ESM1.2-LR climate model (Mauritsen et al., 2019)
was part of the Coupled Model Intercomparison Project
Phase 6 (CMIP6). The atmosphere model component is
ECHAM6.3. Through surface exchange of mass, momentum
and heat, it is coupled to the land model JSBACH3.2. The
horizontal resolution is spectral T63, corresponding to ap-
proximately 200 km grid spacing, while there are 47 hybrid-
sigma pressure levels in the vertical. We configure MPI-
ESM1.2-LR to run in atmosphere-only mode where the SST
boundary conditions are prescribed based on the observed
historical surface temperature evolution.

The seven different observed–reconstructed SST datasets
applied as boundary conditions are HadISST1 (Rayner et al.,
2003), AMIPII (Hurrell et al., 2008), COBE-SST2 (Hirahara
et al., 2014), ERSSTv5 (Huang et al., 2017), had4_krig and

had4sst4_krig (Cowtan and Way, 2014) and Vaccaro2021
(Vaccaro et al., 2021a; Table A1). All of these datasets are
globally complete, infilled fields of SST at a monthly reso-
lution from 1871 to 2017. The had4krig, had4sst4krig and
Vaccaro2021 datasets are available only as anomalies rela-
tive to a base period. We have used the corresponding base
period from COBE-SST2 to create the absolute tempera-
tures. The differences among these datasets arise from the
differences in the (1) measurement sources that they are con-
structed from, the bulk of which is common, (2) assimilation
and bias correction methods applied and (3) infilling meth-
ods employed which aim to construct a spatially complete
dataset. For instance, had4krig and had4sst4krig employs an
optimal interpolation algorithm known as kriging (Cressie,
1990) to HadCRUT4 data, whereas Vaccaro2021 employs a
method based on Gaussian graphical models applied to the
raw HadCRUT4.6 (Vaccaro et al., 2021a). A comparison of
the dataset properties is given in Table A1.

The datasets are regridded to the Gaussian grid corre-
sponding to the T63 resolution of MPI-ESM1.2-LR. We per-
formed a bi-linear interpolation on the datasets. The same is
done for the AMIPII sea-ice data which is set as the bound-
ary condition for sea-ice concentration in all the simula-
tions in order to isolate the effect of the SSTs. We apply
pre-industrial forcing to these set of simulations and named
them observedSST-piForcing. We perform an ensemble of
five observedSST-piForcing simulations for each dataset. Un-
less otherwise specified, throughout the text, the displayed
results are based on the mean of the five ensemble simula-
tions while the uncertainty denotes the standard error from
the ordinary least squares (OLS) regression and the ranges
are the 5th–95th percentiles.

As expected, the historical evolution of the global annual
mean surface temperature anomaly from the observedSST-
piForcing simulations are similar (Fig. 2a). The differences
are due to differences in the way the SST fields are re-
constructed and partly due to land surface warming, which
evolves on its own in these simulations. The tempera-
ture anomaly in the ERSSTv5-forced observedSST-piForcing
simulation is lower compared to others, consistent with
Fueglistaler and Silvers (2021). This is related to ship SST
bias corrections made to temperature during the 1880s–
1940s and 1950s–1960s (Huang et al., 2017; Fig. 2a).

The root-mean-square deviation (RMSD) of the surface
temperature anomaly between the individual observedSST-
piForcing simulations and their mean diverges most in the
case of ERSSTv5 until the 1970s (Fig. 2b–d), which is prob-
ably mostly due to the lower global mean warming in that
dataset. The differences reduces to within 0.15 K after the
1970s. Although there is a close agreement in the global
mean evolution of surface warming, we find apparent re-
gional differences in the temperature anomaly trends shown
in Fig. 3. These differences in the pattern of surface temper-
ature change could lead to different estimates of the pattern
effect.
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Figure 2. Evolution of simulated global mean surface temperature anomaly (a) and root-mean-square deviation (RMSD) of the temperature
anomaly for the seven observedSST-piForcing simulations relative to the dataset mean (b). The dashed gray line in (b) marks the year 1970.
The RMSD are calculated over each ocean grid with the land masked. The temperature anomalies are relative to the 1871–1900 mean.

Figure 3. Change in the pattern of SST (change in T against the
change in global mean T ; in K K−1) from 1871 to 2017 for each of
the observedSST-piForcing simulations relative to the dataset mean.

We obtain λ4×CO2 and λhist from the corresponding
AOGCM simulations piControl, abrupt4×CO2 and histor-
ical which are available from the CMIP6 database for MPI-
ESM1.2-LR. We perform a 150-year OLS regression of
the global annual mean TOA net radiative flux change (N )
against surface temperature change (T ) to estimate λ4×CO2

as −1.48± 0.03 W m−2 K−1 (Gregory et al., 2004). The
changes are between the first 150 years of the abrupt4×CO2
simulation and the mean of the last 500 years of the piCon-
trol simulation. Note that since we use surface temperature
in our analysis, our estimate of λ4×CO2 for MPI-ESM1.2-LR
is larger than the estimate from Zelinka et al. (2020) and An-
drews et al. (2022), which used surface air temperature in-

stead. For λhist, we take the changes between the global an-
nual mean N and T of the entire period 1851–2014 of the
historical simulation relative to the mean of first 50 years of
the same. Since there are 10 ensemble members present in
the historical simulation, we use the ensemble mean in our
calculation. In addition, we conduct a simulation in fixed-
SST configuration, but with evolving historical forcings to
evaluate the effective radiative forcing (F ) from 1851 to
2014. To calculate F , we account for the land surface warm-
ing: we subtract the product of λ4×CO2 and the land sur-
face warming from N simulated by historical simulation in
fixed-SST configuration (Hansen et al., 2005; Modak et al.,
2018). We then regress N −F against T to estimate λhist as
−1.64± 0.07 W m−2 K−1 (Fig. 1).

4 Results and discussion

In the following we present the pattern effect estimated with
the seven SST datasets, along with an inference of the un-
forced part. Then we discuss the differences between the
datasets, and close by evaluating the impact of these new
findings on estimates of ECS from historical warming.

4.1 Total pattern effect

The difference in feedback between the abrupt4×CO2 and
the observedSST-piForcing AGCM simulations is defined as
the total pattern effect (Fig. 4a). We call it “total” to high-
light the fact that the observedSST-piForcing AGCM sim-
ulations encapsulates the radiative effect of the spatial dis-
tribution of temperature, which depends on the all external
forcings during the historical period as well as internal vari-
ability (Gregory et al., 2019; Seager et al., 2019; Watanabe
et al., 2021; Lewis and Mauritsen, 2021). On the other hand,
for a given model, the forced pattern effect can be derived
from an ensemble of historical simulations. This pattern ef-
fect is the result of all forcing agents applied in the respec-
tive historical simulation. The difference between the “total”
and “forced” could then be interpreted to be due to internal
variability (discussed in next section). It is worth mentioning
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that while interpreting the temperature gradient in the equa-
torial Pacific, recent studies (e.g., Seager et al., 2019) have
proposed that rising greenhouse gases are the cause for the
observed temperature gradient. However, other studies sup-
port natural forcing and internal variability are equally possi-
ble causes (e.g., Gregory et al., 2019; Watanabe et al., 2021;
Olonscheck et al., 2020).

Depending on the underlying dataset, the strength of the
total pattern effect ranges from −0.01± 0.09 to 0.42±
0.10 W m−2 K−1 over 1871–2017 while the mean estimate
is 0.20 W m−2 K−1 [0.01 to 0.39 W m−2 K−1] (Fig. 4a). The
uncertainty in the pattern effect estimates are calculated
by adding the errors from λ4×CO2 and respective λ from
observedSST-piForcing simulations in quadrature. A posi-
tive pattern effect would lead to a relatively less stabilizing
feedback, i.e., a less negative λ and consequently a higher
climate sensitivity. The mean estimate of the pattern effect
derived from different dataset is less than the multi-model
mean estimate of Andrews et al. (2022) and the mean es-
timate considered in the IPCC’s Sixth Assessment Report
(AR6; IPCC, 2021). Nevertheless, here one must keep in
mind that MPI-ESM1.2-LR produces a slightly weaker pat-
tern effect than that on average produced by other mod-
els. For example, Andrews et al. (2022) reported a value
of 0.56 W m−2 K−1 for ECHAM6.3, the atmosphere com-
ponent of MPI-ESM1.2-LR, whereas the multi-model mean
was larger at 0.70 W m−2 K−1 with AMIPII (more discussion
in Sect. 4.5). The differences in the pattern effect among the
observedSST-piForcing simulations arises primarily due the
differences in the shortwave (SW) cloud feedback (Fig. 4c).
This is expected as the spatial pattern of temperature re-
sponse primarily drives the circulation and the cloud re-
sponse (Zhou et al., 2016; Ceppi et al., 2017; Mauritsen,
2016; Andrews and Webb, 2018). The large positive SW
cloud pattern effect in the case of AMIPII compared to the
rest of the datasets is responsible for inducing the overall
larger net pattern effect.

We inferred the total pattern effect from Lewis and Mau-
ritsen (2021) for the in-common SST datasets, which they
calculated based on CAM5.3 Green’s function (Fig. A2).
We find that their estimates of total pattern effect are sub-
stantially different from our estimates for some of the SST
datasets. The differences could be either because the Green’s
function that is applied in Lewis and Mauritsen (2021) is de-
rived from a different model (CAM5.3 Green’s function ap-
plied to ECHAM6.3) and different models produce different
pattern effects or because of its inherent limitations (Zhou
et al., 2017). However, we find that the uncertainty in the pat-
tern effect estimates across the in-common SST datasets are
of similar magnitudes between the studies. We plan to fur-
ther address the comparison with the estimates derived from
Green’s function in a future study.

4.2 Unforced pattern effect

The unforced pattern effect, which represents the pattern ef-
fect due to the internal variability in the climate system, is
defined as the difference in feedback between the historical
and the observedSST-piForcing simulations, as discussed in
the previous section. The rationale is that the observedSST-
piForcing simulations could be one possible trajectory other
than the fully coupled historical simulation.

The dataset mean estimate of the unforced pattern ef-
fect is quite small, in agreement with Lewis and Maurit-
sen (2021), although it ranges from −0.17± 0.11 to 0.26±
0.11 W m−2 K−1: except for the AMIPII- and Vaccaro2021-
based estimates, which lie at the two ends, all other
datasets induce small values (Fig. 4b). In recent decades, we
find strong dampening of the unforced pattern effect. The
dataset mean estimate for the period 1970–2017 is 0.48±
0.19 W m−2 K−1, for 1980–2017 it is 0.59±0.25 W m−2 K−1

and for the most recent period, 2000–2017, it is 0.29±
0.48 W m−2 K−1. Thus, when inspecting short periods the
unforced pattern effect can be substantial but across the cen-
tury we find only small pattern effects.

4.3 Dataset differences

To investigate the differences in the strength of the pattern ef-
fect among the datasets, we compare the temperature trends
over the Indo-Pacific Warm Pool (IPWP), equatorial west Pa-
cific (EWP), equatorial east Pacific (EEP) and SO. The tem-
perature trends over these key regions in the historical pe-
riod typically stand in contrast to that in the long-term re-
sponse (e.g., Andrews et al., 2018; Dong et al., 2019; Lewis
and Mauritsen, 2021; Fueglistaler and Silvers, 2021). We find
that the local warming compared to the warming over 50◦ S–
50◦ N from 1871 to 2017 in each of these regions has signif-
icant differences in some cases among the datasets (Fig. 5).
For instance, over the IPWP region, the ERSSTv5 dataset
shows significant differences compared to HadISST, COBE-
SST2, had4krig, hadsst4krig and Vaccaro2021. In the case of
Vaccaro2021, the warming ratio is significantly different in
all regions except over the EEP.

Past studies showed that the relative warming of the IPWP
compared to the rest of the oceans or to the tropics could in-
fluence the strength of the pattern effect (Dong et al., 2019;
Fueglistaler and Silvers, 2021; Lewis and Mauritsen, 2021).
Dong et al. (2019) suggested that the IPWP governs the
strength of the pattern effect as they found a strong depen-
dence of the TOA radiation balance on the temperature over
the IPWP. However, later it was found that such a clear de-
pendence is not supported by the CMIP6 models (Dong et al.,
2020; Lewis and Mauritsen, 2021). Across the datasets, we
find a comparative correlation between the pattern effect and
the regional warming relative to the 50◦ S–50◦ N: 0.64 over
the IPWP, 0.31 over the EWP, −0.43 over the EEP and
0.69 over the SO (Fig. 6). Although AMIPII stands out from
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Figure 4. Estimates of total (a, c, e) and unforced pattern effect (b, d, f) and its shortwave (SW) and longwave (LW) radiative components
from the seven observedSST-piForcing simulations from 1871 to 2017. Also shown is the dataset mean estimate in the gray shaded region.
The error bars show ±1 standard error.

the rest of the datasets in its pattern effect strength, it does
not show substantial differences in the relative warming ex-
cept over the EEP and SO (Fig. 6c). However, both over the
EEP and SO, even HadISST1, which simulates a relatively
weak pattern effect, has relative warming similar to AMIPII.
Thus, it is difficult to link the pattern effect variations across
datasets only to IPWP warming; rather, we find all regions
show a positive correlation, with the IPWP and SO show-
ing a relatively stronger correlation than the EWP and EEP
(Fig. 6).

To further investigate if any of the datasets bias the corre-
lation, we calculate a range of correlation between the pat-
tern effect and the relative warming by removing one dataset
at a time. We find that over the IPWP the Pearson coeffi-
cient correlation (r) ranges from 0.15 to 0.96; in the ab-
sence of ERSSTv5, the correlation improves to 0.96, while
without Vaccaro2021 it weakens to 0.15. Over the EWP,
EEP and SO, the correlation ranges from −0.35 to 0.60,
−0.69 to −0.13 and 0.45 to 0.80, respectively. Over the
EWP without ERSSTv5, the correlation coefficient improves
to 0.60; however, over the EEP without AMIPII, the correla-
tion changes sign. Over the SO, the correlation coefficient is
not sensitive to the datasets.

4.4 Temporal variation in pattern effect

Since the concept of the pattern effect comes from the
time-evolving spatial structure of the surface temperature
response, we regress N against T from the observedSST-
piForcing simulations from 1871 to 1900 and then consec-
utively increase the regression length by 1 year to find the
time-varying nature of the feedback (Fig. 7). Note that the fi-
nal value of this feedback evolution is the 1871–2017 regres-
sion shown in Fig. 4a, c and e. We find that the feedback from
the observedSST-piForcing simulations has a large spread in
the early period until the 1940s, but in recent decades they
agree more with each other. Unlike other datasets, feedback
based on AMIPII starts to become more negative from the
1970s (Lewis and Mauritsen, 2021; Fueglistaler and Silvers,
2021). We find that feedback based on Vaccaro2021 also
starts to drift relative to the rest from the 1970s (Fig. 7a),
but in the opposite direction. It is apparent that the SW cloud
feedback governs the evolution of the net feedback as shown
in previous studies (Andrews et al., 2018; Fueglistaler and
Silvers, 2021) and is primarily responsible for the behav-
ior of feedbacks. Additionally, the spread in the early period
is partly associated with the longwave (LW) cloud feedback
(Fig. 7e).

Another way to visualize the evolution of net feedback and
its components is based on the regression of N against T in
the sliding 30-year windows, shown in Fig. A3. We find that
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Figure 5. Top panel shows the selected regions. Bottom panel shows the local warming compared to the warming over 50◦ S–50◦ N (K K−1)
from 1871 to 2017 for the observedSST-piForcing simulations. The selected regions are the Indo-Pacific Warm Pool (IPWP): 15◦ S–15◦ N,
45–195◦ E; equatorial west Pacific (EWP): 15◦ S–15◦ N, 110–195◦ E; equatorial east Pacific (EEP): 15◦ S–15◦ N, 195◦ E–80◦W and South-
ern Ocean (SO): 35–60◦ S. The error bars show ±1 standard error.

Figure 6. Relationship between the local warming in the selected regions to that over 50◦ S–50◦ N and the total pattern effect for the
observedSST-piForcing simulations from 1871 to 2017. The selected regions are defined in Fig. 5. The Pearson correlation coefficient (r) is
shown in the respective panels. The ranges show the correlation coefficient by removing one dataset at a time.
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Figure 7. Net feedback (a), SW (b, d) and LW (c, e) components of feedbacks obtained by regressing the change in TOA radiative fluxes
against the change in surface temperature from 1871 to 1900 and then consecutively incrementing the regression length by 1 year from the
observedSST-piForcing simulations. The shading represents the±1 standard error while the dashed lines in (a) shows λ4×CO2 and λhist. The
cyan in (a) shows the time-varying λhist from the historical simulation, which denotes the forced pattern effect.

the feedback from all the observedSST-piForcing simulations
is becoming less negative and consequently there is a smaller
pattern effect in the most recent decade (Fig. A3a).

4.5 An updated estimate of ECS

We now illustrate how ECS constrained based on the instru-
mental record given in AR6 is updated when we account for
dataset dependency (Fig. 8). We can integrate the pattern ef-
fect (1λ) in the linear energy budget as ECS=−F2x/(λ+
1λ). In this section, note that we consider the best esti-
mate while the uncertainty (standard deviation) and ranges
denotes the 5 %–95 % confidence intervals. We apply the
energy imbalance anomaly between 1850–1900 and 2006–
2019 from AR6 as 1N = 0.59± 0.35 W m−2, the change in
surface temperature as1T = 1.03±0.20 K, the historical ra-
diative forcing as 1F = 2.20 [1.53 to 2.91] W m−2 and the
ERF for doubling of CO2 as F2× = 3.93± 0.47 W m−2. We
account for the correlated uncertainties between the F2× and
the ERF for the well-mixed greenhouse gases. We infer the
estimate of ERF of well-mixed greenhouse gases from AR6
as 1.73±0.29 W m−2. The best estimate is obtained from the
forcing data available from the IPCC AR6 GitHub repository.
We deduced the uncertainty by taking the 5 %–95 % ranges
of ERF of the well-mixed greenhouse gases from Fig. 7.6 of
AR6 and adding them in quadrature.

Employing these values within the linear energy budget
framework, we reproduce the constrained ECS estimate of
2.5 K [1.6 to 4.9 K] (Fig. 8). To compare the adjusted ECS
derived based on our dataset-dependent pattern effect, we
first apply the pattern effect used in AR6, 0.50 W m−2 K−1

[0.0 to 1.0 W m−2 K−1]. This updates the ECS to 3.6 K

[1.9 to 13.7 K]. When we apply our dataset-dependent pat-
tern effect estimate with the mean of the total pattern ef-
fect deduced from each dataset, 0.20 W m−2 K−1 [0.01 to
0.39 W m−2 K−1]), the ECS is adjusted to 2.9 K [1.7 to 6.7 K]
(Fig. 8). As expected, this drops the best estimate and re-
stricts the ECS range owing to the smaller pattern effect
strength and uncertainty. However, the adjusted ECS with
this pattern effect includes only the uncertainty due to differ-
ent boundary conditions, which are based on the observed–
reconstructed datasets and may be biased by the model. An-
drews et al. (2022) estimated the pattern effect considering
AMIPII and HadISST datasets. Here, we apply their pattern
effect based on AMIPII only as they had amip-piForcing
simulations from a greater number of models. They es-
timate the pattern effect to be (0.70 W m−2 K−1 [0.23 to
1.17 W m−2 K−1]), which when applied lifts the AR6 ECS
to 4.3 K [2.1 to 19.3 K]. However, this only includes model
uncertainty.

We therefore update the instrumental record-constrained
ECS from AR6 with the combined pattern effect, which in-
cludes the pattern effect based on the dataset dependency as
well as the intermodel spread from Andrews et al. (2022). We
assume that the uncertainties from model and dataset depen-
dencies are independent. We find the combined pattern effect
estimate to be 0.37 W m−2 K−1 [−0.14 to 0.88 W m−2 K−1].
The combined estimate is obtained by subtracting the mean
of ECHAM6.3 and MPI-ESM1.2-LR estimate in Andrews
et al. (2022) from the sum of our estimate and their multi-
model mean estimate. The uncertainty range in the com-
bined estimate is deduced by adding in quadrature the stan-
dard deviations from our dataset-dependent estimate and
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Figure 8. Probability distributions for ECS constrained based on
the instrumental record of historical warming as per IPCC AR6 and
updated with pattern effect estimates as indicated by the legend.
AR6 without pattern effect estimate is the baseline for all the other
estimates.

their multi-model estimate. Thus, our calculation also ac-
counts for the weaker pattern effect in ECHAM6.3 and MPI-
ESM1.2-LR compared to the multi-model mean. While ac-
counting for the weaker pattern effect, the assumption is
that ECHAM6.3/MPI-ESM1.2LR is different from all the
other models in all datasets as in AMIPII. However, one
can dispute this assumption. We infer from Andrews et al.
(2022) and examine this. We show in Fig. A4 that not only
ECHAM6.3/MPI-ESM1.2LR but also other models, though
producing a stronger pattern effect, show a similar difference
in pattern effect estimates based on AMIPII and HadISST
datasets as in ECHAM6.3/MPI-ESM1.2LR. Nevertheless,
when we apply the combined pattern effect, we find that the
constrained ECS based on historical warming is adjusted to
3.2 K [1.8 to 11.0 K] (Fig. 8), which is slightly smaller and
better constrained than in the instrumental record estimate of
IPCC AR6.

5 Conclusions

Observed historical warming provides an opportunity to es-
timate Earth’s ECS. However, our ability to constrain ECS
based on it is limited both by the uncertainty in aerosol
cooling and by the strength of the pattern effects. Pat-
tern effects temporarily dampen transient global warming
and so factoring this leads to larger and less-constrained
ECS estimates. Recent studies have estimated the model
dependence of the pattern effect strength using a range of
models with prescribed SSTs primarily from the AMIPII
observed–reconstructed dataset. Here we instead investigated
the dataset dependence using a single model with seven dif-
ferent datasets. The resulting spread is substantial, although
smaller than that among different models, and it turns out
that the pattern effect estimated from the AMIPII dataset is
by far the largest, suggesting that earlier studies may have
overestimated the pattern effect. However, we reiterate that

any of the SST dataset could be a possible path Earth could
have taken.

The datasets differ due to the measurement sources,
methods applied to merge datasets and infilling tech-
niques. Depending on the applied datasets, we find that
the total pattern effect varies from −0.01± 0.09 to 0.42±
0.10 W m−2 K−1 over 1871–2017, while the mean across
the datasets is 0.20 W m−2 K−1 [0.01 to 0.39 W m−2 K−1].
The mean unforced pattern effect across the dataset is gener-
ally small although it ranges from −0.17± 0.11 to 0.26±
0.11 W m−2 K−1. As expected, differences in the pattern-
effect is primarily attributed to differences in the cloud radia-
tive effects. While the estimates from the 1970s until present
are less dataset dependent, the major disparities originate in
the early period and are driven by cloud feedback. By as-
suming the variations in model and dataset dependencies are
independent, we then estimate a combined pattern effect of
0.37 W m−2 K−1 [−0.14 to 0.88 W m−2 K−1]. Taking global
warming, radiative forcing and imbalance from AR6, this re-
sults in a historical warming-constrained ECS estimate of
3.2 K [1.8 to 11.0 K], which is better constrained than that
of AR6 as a result of the slightly weaker mean pattern effect.

In the community currently, the prevailing understanding
is that the strength of the pattern effect is related to the tem-
perature response over the IPWP. However, here we find a
comparative correlation between the pattern effect strength
and the relative warming trends over all of the IPWP, EWP,
EEP and SO and those over 50◦ S–50◦ N across the datasets.
Thus, we are unable to identify specific regions that could
govern the strength of the pattern effects and it is difficult
to co-locate patterns of surface temperature change and the
strength of the pattern effect between the datasets.

In the current study we had to assume that the variations in
the pattern effect as estimated among the models and across
the datasets are independent of each other in order to pro-
vide a combined estimate of the pattern effect. However, one
could raise the concern that a single model will not com-
pletely display dataset dependency. In particular, the model
we used here is correlated less well with the observed SW
anomalies in Loeb et al. (2020). Therefore, we have decided
in extension to conduct a multi-model and multi-dataset in-
tercomparison project to address this outstanding concern.
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Appendix A

Table A1. List of observed SST datasets applied to MPI-ESM1.2-LR in this study.

Data set Description

HadISST1 Resolution: 1× 1◦

(Rayner et al., 2003) From 1871 to 1995, the SST data were taken from the Comprehensive Ocean Atmosphere
Dataset (COADS). From 1981 onwards, AVHRR satellite surface skin temperature are
also used in conjunction. It applies a two-stage reduced-space optimal interpolation
procedure along with superposition of quality-improved gridded observations onto the
reconstructions to restore local details.

AMIPII Resolution: 1× 1◦

(Hurrell et al., 2008) Standard SST data used for amip-piForcing (CMIP6/CFMIP) simulations. It is a merged
product based on HadISST1 and OI.v2 SST fields. Before November 1981, it uses
HadISST1 while afterwards it uses OI.v2 SST fields. The merging is done by first adding
the HadISST1 anomalies relative to its own base period to OI.v2 climatology for the
same base period; adjusting that then eliminates outliers and produces physically
realistic SST values. The re-basing and adjustments change relative temperature values
prior to 1981 as well. OI.v2 also employs the same AVHRR source as HadISST1 but applies
different techniques of assimilation and bias correction. Here, further adjustments are
made to monthly SST fields to preserve the seasonal cycle amplitude when interpolated to
the daily timescale.

COBE-SST2 Resolution: 1× 1◦

(Hirahara et al., 2014) SST field constructed as a sum of a trend, interannual variations and daily changes, using
in situ SST and sea-ice concentration observations (ship and buoy). Satellite observations
are adopted for the purpose of reconstruction of SST variability over data-sparse regions.
The employed infilling method is claimed to be superior to the direct use of optimal interpolation
when data are sparse.

ERSSTv5 Resolution: 2× 2◦

(Huang et al., 2017) This dataset is based on in situ measurements from ships and buoys but up to 2010 the
ship SST values are based on HadNMAT2 nighttime marine air temperature data. It
applies the OIv2 dataset the same as AMIPII but the infilling method is different. The colder
temperature during ∼ 1900–1980 relative to other datasets is associated with higher
ship SST bias correction during 1880–1940s and 1950–1960s.

had4-krig-v2-0-0 Resolution: 5× 5◦

(Cowtan and Way, 2014) This is based on HadCRUT4.6 temperature data (Morice et al., 2012) where the kriging
method is applied for producing spatially complete data. The SST data are a krigged
version of HadSST3 based on in situ measurements from ships and buoys.

had4sst4-krig-v2-0-0 Resolution: 5× 5◦

(Cowtan and Way, 2014) Same as had4-krig-v2-0-0, but the SST data are a krigged version of HadSST4.

Vaccaro2021 Resolution: 5× 5◦

(Vaccaro et al., 2021a) This is based on HadCRUT4.6 temperature data (Morice et al., 2012). Here, a Gaussian
graphical model called graphical expectation maximization algorithm is applied to
produce a spatially complete estimate of HadCRUT4.6 data. This infilling method gives
improved estimates of missing values compared to other methods such as kriging
(Vaccaro et al., 2021a). These data produce a realistic reconstruction of past climates like
1877–1878 El Niño and stronger historical warming trends than the ones which are not
interpolated. This dataset comes with 100 ensemble members of temperature
reconstructions, and we have applied the median temperature reconstruction.
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Figure A1. Linear regression between the change in global annual mean net downward radiation flux at TOA against surface temperature
change (Gregory et al., 2004) for the observedSST-piForcing simulations. The changes are relative to the 1871–1900 mean. The Pearson
correlation coefficient (r) is shown for each panel.

Figure A2. Comparison of total pattern effect estimated from the observedSST-piForcing simulations (as in Fig. 4a) and inferred from Lewis
and Mauritsen (2021) for the in-common SST datasets.
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Figure A3. Net feedback obtained by regressing the change in TOA radiative fluxes against the change in surface temperature with a sliding
30-year period from 1871 to 2017 from the observedSST-piForcing simulations. The shading represents the ±1 standard error while the
dashed lines in (a) show λ4×CO2 and λhist. The cyan in panel (a) shows net feedback from historical simulation for MPI-ESM1.2-LR.

Figure A4. Difference in the total pattern effect estimates derived from AMIPII and HadISST datasets for a given model against its total
pattern effect estimate based on AMIPII. Shown for all models (in legend) from Andrews et al. (2022).

Code and data availability. The source code for MPI-ESM1.2-
LR is available through https://mpimet.mpg.de/en/science/
models/mpi-esm (MPI-M, 2023). MPI-ESM1.2-LR model
output for the piControl, abrupt4×CO2 and historical sim-
ulations are freely available from the Lawrence Livermore
National Laboratory, World Climate Research Programme
(WCRP), 2019 (https://esgf-node.llnl.gov/search/cmip6/;
WCRP, 2023). The observed–reconstructed SST datasets
HadISST1, AMIPII, COBE-SST2, ERSSTv5, had4-krig-
v2-0-0, had4sst4-krig-v2-0-0 and Vaccaro2021 are avail-
able from https://www.metoffice.gov.uk/hadobs/hadisst/
(Met Office Hadley Centre, 2023), https://pcmdi.llnl.
gov/mips/amip/amip2/#data (Taylor et al., 2023), https:
//psl.noaa.gov/data/gridded/data.cobe2.html (Hirahara et al., 2014),
https://www.ncei.noaa.gov/products/extended-reconstructed-sst
(Huang et al., 2017), https://www-users.york.ac.uk/~kdc3/
papers/coverage2013/series.html (Cowtan and Way, 2014) and
https://doi.org/10.5281/zenodo.4601616 (Vaccaro et al., 2021b)
respectively. Data associated with the figures are publicly available

at https://doi.org/10.5281/zenodo.7106446 (Modak and Mauritsen,
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